文档库 最新最全的文档下载
当前位置:文档库 › TDA2030 2.1多媒体BTL功放原理图

TDA2030 2.1多媒体BTL功放原理图

tda2030_功放_OTL_BTL_OCL单、双电源___高保真

TDA2030A是高保真集成功放之一,许多功放电路都采用这种集成方式。用TDA2030A做几款不同形式的功放,也许能给音响爱好者增加一点趣味。 一、用TDA2030A做成的OTL形式的功放 OTL功放的形式:采用单电源,有输出耦合电容。如图1所示电路中的R5 (150 kΩ)与R4 (4.7 kΩ)电阻决定放大器闭环增益,R4电阻越小增益越大,但增益太大也容易导致信号失真。两个二极管接在电源与输出端之间,是防止扬声器感性负载反冲而影响音质。C3(0.22 uF)电容与R6(1 Ω)的电阻是对感性负载(喇叭)进行相位补偿来消除自激,该电路采用36V单电源,输出功率约20 W。 二、用TDA2030A做成的OCL形式功放 OCL功放的形式是采用双电源,无输出耦合电容,如图2所示,由于无输出耦合电容低频响应得到改善,属于高保真电路。双电源采用初级线圈中间点接地、上下电压对称相等的变压器,经过整流滤波后构成±18 V的双电源,输出功率为20 W。 三、用TDA2030A做成的BTL形式功放 BTL的主要特点是:由两个相同的功放组成,输入信号互为反相。实际采用放大器的同相输入与反相输入,以保证输入信号互为反相,同时还应使两输入信号的幅度相同,这样便可以满足BTL电路形式的基本要求。电路图如图3所示,其中R7 (1 kΩ)与R8(33 Ω)电阻对信号分压后衰减的倍数与U1的放大倍数正好相同,衰减后的信号通过R5加在U2的反相输入端。事实上是由两个运放完成了一路信号放大,实际测得输出电平高出用一个集成电路的

1.5倍。即原输出功率为20 W的运放,现输出功率约为50 W。但由于BTL电路特点,选择集成电路时尽可能用参数一致的两个运算放大电路,调整输入信号幅度,可通过输入正弦波用示波器观察两输入信号的幅度,这时调整R7使两输入信号的幅度相同,以保证在提高功率的同时尽可能减小非线性对称性失真。笔者曾见到与图3类似的电路,但其电路中没有R7, R8对信号分压后衰减的电阻,而U2的反相输入端R5(680 Ω)电阻仍接地。表面看来它也满足BTL电路的特点,喇叭也能发声,但用一个集成电路U1也能发出同样响的声音(U1的④脚对地接喇叭),而U2的④脚对地接喇叭却无声,正常应该能发声。事实上,原来由于信号通过U2的④脚与②脚相连的R4 (22 kΩ)电阻时,极大衰减了输入信号,再从680Ω与地之间加到U2的反相端,信号几乎为零。用一个U1也能发出声响的原因是:U2在电源电压作用下对信号形成一个接地通路,与喇叭一端接地相同。 经过以上分析,读者也可以将其他功放集成块做类似的变换,大家不妨试一下

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

双声道BTL功放电路的设计

双声道BTL功放电路的设计

双声道BTL 功放电路的设计 一、任务 根据设计课题的要求,音频功率放大器主要有电源电路、前置放大电路、音量控制电路、功率放大电路等四部分构成,构成框图见图所示。 二、要求 (1)设计产生±14V 的直流电源。 (2)设计前置放大器为左、右声道各提供 一级同向比例运算放大器(电压串联负反馈电路)进行电压放大,电压放大倍数约为6,可消除高频杂波。 (3)设计双声道BTL 功放电路, 8 负载上 的输出功率大于20W 。 三、思考题 音量控制 功率放大 扬声器 前置放大 音 电 源 电 路

1、音调控制电路由那些滤波器所构成 【设计参考】: (1)电源电路 直流电源电路有降压变压器、全波整流、滤波和稳压电路构成。由于我们选择TDA2030作为

功放管,其直流供电电压为6V ~18V ,因此为了产生±14V 的直流电源,我们选择100W 的环牛变压器,输出双12V 交流电,负载为8Ω扬声器。整流电路,见图1.4所示: Tr1 1 2 3 4 RL D1 D2 D3 D4 + - u 1 +A -B u 2 +- 图1.4 整流电路 u1正半周时,Tr1次级A 点电位高于B 点电位,二极管D1、D3导通,电流自上而下流过RL ;u1负半周时,Tr1次级A 点电位低于B 点电位,二极管D2、D4导通,电流自上而下流过RL 。于是RL 两端产生单方向全波脉动直流电压uo 。 负载和整流二极管上的电压和电流: 负载电压: =10.8V 负载电流: 二极管的平均电流: =0.65A 2 9.0U U =L 2 L 09.0R U R U I = = 02 1 I I D =

tda2030功放电路图

tda2030功放电路图 TDA2030是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。如图1所示,按引脚的形状引可分为H型和V型。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。 电路特点: 1.外接元件非常少。 2.输出功率大,Po=18W(RL=4Ω)。 3.采用超小型封装(TO-220),可提高组装密度。 4.开机冲击极小。 5.内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。 6.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。无疑,用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。 引脚情况: 1.脚是正相输入端 2.脚是反向输入端 3.脚是负电源输入端 4.脚是功率输出端 5.脚是正电源输入端。 注意事项: 1.TDA2030具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,以保证5脚上的脉冲串维持在规定的幅度内。 2.热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。 3.与普通电路相比较,散热片可以有更小的安全系数。万一结温超过时,也不会对器件有所损害,如果发生这种情况,Po=(当然还有Ptot)和Io就被减少。 4.印刷电路板设计时必须较好的考虑地线与输出的去耦,因为这些线路有大的电流通过。

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

TDA2030经典电路

2015年大学生创新基地第二阶段培训题目题目:基于TDA2030的音频功放 一、培训目的 独立完成一个音频功放,增加同学们对DXP软件的使用熟练度及对各种电子元器件的认识。本功放分成两部分,前置放大加调高低音部分及功率放大两部分,其中功率放大部分是必做部分,前置放大部分有能力的同学也可以做(希望同学们都做),DXP使用熟练的同学可以将两个原理图连起来画在同一个板子上。 二、原理图: 1. 功率放大,必做!(基础部分) 2. 前置放大加调高低音部分,有能力的同学做完功率放大后可选做(加分部分) 三、电路工作原理: 本电路是基于TDA2030A的音频功放电路,TDA2030A是电话机根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。本电路是内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接以及负载泄放电压反冲等。TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。无疑,用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。 NE5532是高性能低噪声双运算放大器(双运放)集成电路,用作音频放大时音色温暖,保真度高,在上世纪九十年代初的音响界被发烧友们誉为“运放之皇”,至今仍是很多音响发烧友手中必备的运放之一。本电路中采用NE5532进行前置放大。电路中J2口接入音频信号,经前置放大后,进入调高低音部分,最后通过TDA2030进行功率放大。该电路中同时也加入了话筒和音频接口,做完该电路后且调试成功后,有兴趣的同学可以接上音源,通过扩音器来享受自己的劳动成果。 四、元器件实物图

功放基础知识

功放基础知识 1 家用声频功率放大器常识 1.1定义 声频功率放大器是将信号源(例如VCD)输来的信号进行放大处理使之能驱动扬声器系统工作的设备它是电声系统中的重要设备决定着整个 放声系统的电声性能和放声效果 1.2分类 从用途上可以大致分为四种 1.2.1 家庭影院用环绕声放大器 它追求准确的声像定位追求听众的现场感受俗称AV放大器AV功放能对编码的或不编码的信号进行处理当然也有仅作功率放大的多声道放大器 1.2.2 专用音乐重放功率放大器 追求低噪声高品质力求原汁原味的艺术体现俗称Hi-Fi放大器1.2.3卡拉OK功率放大器 追求人声表现好并可对人声进行美化 1.2.4 组合音响 追求功能的实现并没有对音色有很高的要求 1.3 AV放大器的组成 一般来讲最常见的AV放大器可分为AV综合放大器内置解码器码器和AV多声道放大器不含解码器两种例如我公司的TA6110和TA 2030就分别属于上述两种放大器也有很多AV功放带有收音功能所以也有人称AV接收机AV RECEIVER 以TAE6110为例一般AV放大器包括音源选择解码音量音调控制功率放大控制与显示和电源等部分如下图所示

1.4 AV放大器的主要指标 1.4.1 输出功率 一般是指功放机输送给其负载的功率单位为瓦W一台功放机的输出功率是和负载大小失真度大小以及测量方法密切相关所以只有说明清 楚这几项条件功率的数值才是有意义的才具有可比性 市场上有的机器标出音乐功率和音乐峰值功率其实由于这两种功率无统一的标准各厂的测量方法也不一样故其数值往往不实 1.4.2 频率响应 频率响应是表征功放机的频率范围以及在频率范围内的不均匀度频率响应曲线是否平直一般用分贝表示 1.4.3 信噪比 信噪比是指功放机输出的信号电平与各种噪声电平之比用分贝dB 来表示信噪比当然越高越好 1.4.4 失真度 失真度是指功放机输出信号的失真程度常见的是指谐波失真多用百 分数表示 2 常见环绕声系统的几种类型 2.1 Dolby Sourround Dolby Sourround是杜比实验室在MP矩阵基础上发展而来的它有4个声道解码器的作用就是把隐藏着的第三维信号恢复出来我们常见的杜比 定向逻辑解码器Dolby Pro Logic采用主动式解码性能比被动式解码器大大提高直到今天还在使用 2.2 Dolby Digital Dolby Digital也是杜比实验室研发的它有5.1个声道其中三个是前置声道左中右和两个环绕声道共5个全频带20Hz20kHz声道 一个被称为.1声道的有限频带3Hz120Hz的不完全频带的低频声道统称5.1声道 这5.1声道中的5声道用来产生平面水平面立体声而.1声道用于表现那些特殊的低频效果声如爆炸声撞击声 所有这6个声道的信号都是数字化的即将模拟声音信号进行取样量化和编码再进行码率压缩形成AC3码流功放机就是将接收到的码流进行解压缩并转换成模拟信号经放大处理后推动扬声器发声 2.3 DTS DTS是英文Digital Theater System的缩写其意为数字影院系统它和Dolby Digital有相似之处也是一种将多声道信号数字化后压缩编码的音频制式采用5.1声道格式但最多可达8.1声道目前采用DTS编码的 的软件越来越多DTS已经在家庭影院中占有重要的地位

LM386 电路原理 音频放大器

LM386 电路原理 LM386是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 一、 LM386内部电路 LM386内部电路原理图如图所示。与通用型集成运放相类似,它是一个三级放大电路。 第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输出差分电路。使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。 第三级中的T8和T9管复合成PNP型管,与NPN型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。

引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电,故为OTL电路。输出端(引脚5)应外接输出电容后再接负载。 电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。 二、 LM386的引脚图 LM386的外形和引脚的排列如右图所示。引脚 2为反相输入端,3为同相输入端;引脚5为 输出端;引脚6和4分别为电源和地;引脚1 和8为电压增益设定端;使用时在引脚7和地 之间接旁路电容,通常取10μF。 LM386的外形和引脚的排列如右图所示。引脚2为反相输入端,3为同相输入端;引脚5为输出端;引脚6和4分别为电源和地;引脚1和8为电压增益设定端;使用时在引脚7和地之间接旁路电容,通常取10μF。 查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200dB;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。 尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声 查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200dB;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。 尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声。 1、通过接在1脚、8脚间的电容(1脚接电容+极)来改变增益,断开时增益为20dB。因此用不到大的增益,电容就不要接了,不光省了成本,还会带来好处--噪音减少,何乐而不为? 2、PCB设计时,所有外围元件尽可能靠近LM386;地线尽可能粗一些;输入音频信号通路尽可能平行走线,输出亦如此。这是死理,不用多说了吧。 3、选好调节音量的电位器。质量太差的不要,否则受害的是耳朵;阻值不要太大,10K最合适,太大也会影响音质,转那么多圈圈,不烦那! 4、尽可能采用双音频输入/输出。好处是:“+”、“-”输出端可以很好地抵消共模信号,故能有效抑制共模噪声。 5、第7脚(BYPASS)的旁路电容不可少!实际应用时,BYPASS端必须外接一个电解电容到地,起滤除噪声的作用。工作稳定后,该管脚电压值约等于电源电压的一半。增大这个电容

双声道音频功放的设计

双声道音频功放的设计 1引言 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程。1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术 的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发 展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电 子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。 音频放大器的目的是在产生声音的输出元件上重建输入的音频 信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响 应(驱动频带受限的扬声器时要小一些,如低音喇叭或(高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常

很高(至少40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪音,所以经常采用反馈。 高频功率放大器用于发射级的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经将其辐射到空间,保证在一定区域内的接收级可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或;宽带高频功率放大器的输出电路则是或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于

TDA2030A功放芯片电路图

BTL的主要特点是:由两个相同的功放组成,输入信号互为反相。实际采用放大器的同相输入与反相输入,以保证输入信号互为反相,同时还应使两输入信号的幅度相同,这样便可以满足BTL电路形式的基本要求。电路图如图3所示,其中R7 (1 kΩ)与R8(33 Ω)电阻对信号分压后衰减的倍数与U1的放大倍数正好相同,衰减后的信号通过R5加在U2的反相输入端。事实上是由两个运放完成了一路信号放大,实际测得输出电平高出用一个集成电路的1.5倍。即原输出功率为20 W的运放,现输出功率约为50 W。但由于BTL电路特点,选择集成电路时尽可能用参数一致的两个运算放大电路,调整输入信号幅度,可通过输入正弦波用示波器观察两输入信号的幅度,这时调整R7使两输入信号的幅度相同,以保证在提高功率的同时尽可能减小非线性对称性失真。笔者曾见到与图3类似的电路,但其电路中没有R7, R8对信号分压后衰减的电阻,而U2的反相输入端R5(680 Ω)电阻仍接地。表面看来它也满足BTL电路的特点,喇叭也能发声,但用一个集成电路U1也能发出同样响的声音(U1的④脚对地接喇叭),而U2的④脚对地接喇叭却无声,正常应该能发声。事实上,原来由于信号通过U2的④脚与②脚相连的R4 (22 kΩ)电阻时,极大衰减了输入信号,再从680Ω与地之间加到U2的反相端,信号几乎为零。用一个U1也能发出声响的原因是:U2在电源电压作用下对信号形成一个接地通路,与喇叭一端接地相同。 TDA2030A的BTL大功率功放电路原理图 发布: | 作者:-- | 来源: -- | 查看:219次 | 用户关注: 采用4个TDA2030A或LM1875组成双通道的BTL电路。电阻为金属膜电阻,两个大滤波电容为6700U/25V(实测耐压可达40v左右)的红宝石或黑金刚(这两个品牌质量好一点)电解电容,其它电容采用CBB无极性电容。TDA2030A是目前性价比最高的功放集成块之一,内部有完善的过载及过热保护,是入门级功放制作的绝佳选择。TDA2030A的工作电压范围较广,从±6~±22V都可以正常工作。

各种进口功放电路图

ONKYO 安桥A-VR400功放后级电路图 ONKYO 安桥A-VR410功放后级电路图 此电路X 2 Q6∞ 2SA1015 K511 330 II C513 IOMP R501 2K2 Ilf ------------ ?H C654 IUIE R?0 H M T C501 IOUF R503 411 470 GIn) ------ R661 IOCe 丄 0501 29^878 _ ? Q507~X? γ+L 29J2259 J TC5O3 I I 丄330? U Q509 k T 297184! ?Γ I \ 2931815 C513 X515 270 OUT

此电路× 5 RS19 R621 82 C5001 刚1 4TuF C 70 +44. 2 V 2.2 R6 C519 104 R63, 龙 9 Q525 2SAt^l Q521 C1845 Q523 2335198 0517 C34I? LAJJ L501 S 5 丄C53 丁 223 R541 2.2 K569 22 -CZ}-? R567 22 R623 82 过浹保护 ± l ^C51FL VT 0607 AM9 1501 Q5O3 ± R513 T ? 「r J .C 1845 X 2 刁 [C=I 丄 C5O3 〕 跑5 I IOi RS07 JR509 T IK 上 C5O5 丄<∏ 47 [220UF RSli RSoI C50I 470 4?UF L IN *→=>i ∣ R501 270 Q5O5 Cl$45 0529 C1740 IoOK X673 C52J 2K IOl R539 2.2 R652 33K ?来自萨道 ^f ?r' RM7 ×2 中点检测 L Our R¢63 D511 R62? 82 R631 I8K Q515 C2229 R625 68 t ,C526 L -IlftIF R592 Lc? -44.2 V ONKYO 安桥TX-DS575功放后级电路图 SSXe 270 Q5003 2X1Π5 Tr ≡ 47 45002 2SC!775 516 U S5311 C501 1 :CC 2 2X174O×2 C5012 ICtf KOS 10 470 Q5013 ΠD2061 K∞4 22K C5018 41tf R5013 刚6 KU1024 2X5203 IBeeM R5016 2TK —?>- 站019 ι∞ I 此电路X5绍 Q5001 2SC1775 R501 5 Wo5 M ITAI Tt C5003 IOI ?5OI2 IOK R5020 !8K RMo7 47 ≡DB ∏ QSOO8 ITC32D^/ DMM R (7 K¢30 ∞19 C5023, ICtf ? I B5026 470 ÷71V Q601? 2sc2ωi ≡35 331 ≡≡ 胃f 中龍护 ■ T zzh TT T onT KMO 8.2 T czh TV UJJ L5001 86038 10×2 C5OI4 473 -TlV ONKYO 安桥TX-DS777功放后级 电路

双声道音频功率放大电路

唐 山 学 院 Protel DXP 课 程 设 计 题 目 系 (部) 班 级 姓 名 学 号 指导教师 张雅静 2016 年1 月 18 日 至 2016 年 1 月 29 日 共 2 周 2016年 1 月 30 日 双声道音频功率放大电路 智能与信息工程学院 12电信一班

1前言 (1) 2 Protel DXP 2004的简介 (2) 2.1 Protel DXP的简介 (2) 2.2 DXP的主要工作界面 (2) 2.3原理图设计基本操作 (4) 2.3.1项目文件和原理图文件的创建 (4) 2.3.2 工作环境设置 (4) 2.3.3 放置元件 (5) 2.3.4 原理图连线 (5) 3 功率放大器简介 (6) 3.1 功率放大器原理 (6) 3.2功率放大器的性能指标 (7) 3.3 TDA 2030简介 (7) 4 双声道音频功放电路的设计 (9) 4.1 系统总体流程图 (9) 4.2 直流稳压电源的设计 (9) 4.3 前置放大电路设计 (10) 4.4 音量控制电路设计 (10) 4.5 功率放大电路设计 (12) 4.6 总体设计图 (13) 5 PCB电路板制作 (13) 5.1原理图的绘制 (13) 5.2 PCB图的绘制 (14) 6 总结 (15) 参考文献 (16)

在当代生活中,人们因生活层次、文化习俗、音乐修养、欣赏口味的提高,人们对音响的性能要求也越来越高。所以,制作出完美音响也成了人们追求的目标。音频功率放大器作为音响设备的重要器件,完美的音频功率放大器是做出完美音响的必要条件。音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力。无论是从线路技术还是元器件方面,乃至思想认识上都获得了长足的进步。回顾一下功率放大器的发展历程,对我们来说也是一件积极有意义的事情。随着时代的发展,信息时代的来临,音频功率放大领域取得了喜人的硕果。新的技术飞跃往往是新材料、新理论、新方法的出现之后产生的,音频放大器同样也不会例外。在科技日新月异的时代,我们有理由期待更完美的功率放大器的出现。 此次电子技术课程设计我们选择的就是音频功率放大电路的设计。音频放大器的目的是在产生声音的输出元件上重建输入的音频信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇叭或(高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV 或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常很高(至少40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪音,所以经常采用反馈。

TDA2030A功放电路图

TDA2030A功放电路图,引脚图,电路图 发布时间:2011-5-5 9:49:33 | 来源: 第一价值网| 查看: 1551次| 收藏| 打印 TAG:TDA2030A功放电路图TDA2030A引脚图TDA2030A电路图 一、用TDA2030A做成的OTL形式的功放 OTL功放的形式:采用单电源,有输出耦合电容。如图1所示电路中的R5 (150 kΩ)与R4 (4.7 kΩ)电阻决定放大器闭环增益,R4电阻越小增益越大,但增益太大也容易导致信号失真。两个二极管接在电源与输出端之间,是防止扬声器感性负载反冲而影响音质。C3(0.22 uF)电容与R6(1 Ω)的电阻是对感性负载(喇叭)进行相位补偿来消除自激,该电路采用36V单电源,输出功率约20 W。 二、用TDA2030A做成的OCL形式功放 OCL功放的形式是采用双电源,无输出耦合电容,如图2所示,由于无输出耦合电容低频响应得到改善,属于高保真电路。双电源采用初级线圈中间点接地、上下电压对称相等的变压器,经过整流滤波后构成±18 V的双电源,输出功率为20 W。 三、用TDA2030A做成的BTL形式功放 BTL的主要特点是:由两个相同的功放组成,输入信号互为反相。实际采用放大器的同相输入与反相输入,以保证输入信号互为反相,同时还应使两输入信号的幅度相同,这样便可以满足BTL电路形式的基本要求。电路图如图3所示,其中R7 (1 kΩ)与R8(33 Ω)电阻对信号分压后衰减的倍数与U1的放大倍数正好相同,衰减后的信号通过R5加在U2的反相输入端。事实上是由两个运放完成了一路信号放大,实际测得

输出电平高出用一个集成电路的1.5倍。即原输出功率为20 W的运放,现输出功率约为50 W。但由于BTL 电路特点,选择集成电路时尽可能用参数一致的两个运算放大电路,调整输入信号幅度,可通过输入正弦波用示波器观察两输入信号的幅度,这时调整R7使两输入信号的幅度相同,以保证在提高功率的同时尽可能减小非线性对称性失真。笔者曾见到与图3类似的电路,但其电路中没有R7, R8对信号分压后衰减的电阻,而U2的反相输入端R5(680 Ω)电阻仍接地。表面看来它也满足BTL电路的特点,喇叭也能发声,但用一个集成电路U1也能发出同样响的声音(U1的④脚对地接喇叭),而U2的④脚对地接喇叭却无声,正常应该能发声。事实上,原来由于信号通过U2的④脚与②脚相连的R4 (22 kΩ)电阻时,极大衰减了输入信号,再从680Ω与地之间加到U2的反相端,信号几乎为零。用一个U1也能发出声响的原因是:U2在电源电压作用下对信号形成一个接地通路,与喇叭一端接地相同。 TDA2030单电源接法电路图 TDA2030是许多电脑有源音箱所采用的Hi-Fi功放集成块。它接法简单,价格实惠。额定功率为14W。电源电压为±6~±18V。输出电流大,谐波失真和交越失真小(±14V/4欧姆,THD=0.5%)。具有优良的短路和过热保护电路。其接法分单电源和双电源两种:单电源接法

雅马哈EMX2300功放维修

雅马哈EMX2300功放维修 上面是其电原理图 高保真OCL、OTL功放电路前级多采用差分放大输入,末级采用互补大功率对管输出,前后级之间直接耦合。它具有工作稳定、频率特性好、失真小等优点,因而在近几年专业和家用功放电路中得到广泛的应用。但是,由于采用多管直接耦合,一旦某只元件变质或损坏,会造成整个电路工作点的改变,轻则导致声音小而失真,重则造成元器件大面积损坏,甚至烧毁扬声器系统。一点电压的改变,会引起多点电压随之改变,这也给故障的判断和检修造成困难。与同行交流时还发现,在检修此类功放时,如果故障排除不彻底,通电试机时往往引起新器件再次损坏,造成经济损失。因此笔者在检修实践中试行了一种安全检修方法,通过

实例的形式介绍给大家,以期与同行们交流。 实例1 一位同事检修一台日产雅马哈EMX2300功放和调音台组合机时,发现两路功放的16只大功率对管、4只推动管全部击穿,两只音箱内的扬声器全部烧毁。按规格全部更换已损坏件后,在没连接前级调音台的情况下,通电试机,仅过几分钟,就见机内冒烟。停机检查,新换的大功率对管又损坏12只,两只音箱内扬声器再次烧毁,损失达两千多元。他不敢再修,求助于笔者修理。 有了前车之鉴,笔者经慎重考虑,采取了一种稳妥安全的方法进行检修,排除了故障。 具体检修步骤如下: (1)对照实物,参照原理图(见图),弄清电路的工作原理和元器件参数。 (2)用电阻测量法对电路中所有元件进行一次在路测量,并将左、右电路测量结果对照比较,找出损坏元器件。 为了提高在路测量精确度,测量电阻时用数字式万用表。由于数字万用表内阻大,向被测电路提供的电流小,不能使二极管、三极管PN结导通,相当于开路,可减小对电阻测量的影响。测量二极管、三极管时用指针式万用表。测量PN结正向电阻时用R×1挡,既可向PN结提供较大的正向电流,检查其正向特性,又可减小在路其它元件对测试的影响。正常情况下用1.5V电池供电的电阻挡测量PN 结正向电阻时,指针应偏转到电阻量程刻度线的中点(距0Ω1/2左右),如果显示电阻较大,说明PN结正向特性不良。测反向电阻时,用R×100或R×1k挡,显示电阻应略小于测试两点间并联电阻。测量电容器时(特别是电解电容器),也选用指针万用表,并根据容量大小选择相应的量程,既可测量电容器在路电阻,又可根据指针摆动情况,估测电容器容量。 在上述方法进行在路测量后,该组合机有12只大功率输出管击穿,5只发射极电阻烧断,推动管有两只漏电,扬声器保护电路失效。将上述元件全部更换新件,修复扬声器保护电路后,进入关键的通电试机阶段。 (3)采用三步安全通电试机法进行通电试机。首先为了不损坏扬声器和大功率管,试机前不接扬声器系统,在推挽输出端与地之间(即图1中的C点与D点之间)接一只20~50Ω/20~50W线绕电阻做假负载。其次,断开末级大功率管的任意两个电极或事先不安装大功率管Q212~Q219。保留推动管Q210、Q211做互补推挽输出(如果推动管发射极与中点之间无发射极电阻,应临时加装两只100~270Ω、0.5W以上电阻,试机后拆除)。接着在功放电源220V输入端串接一台调压器,从50V开始向功放供电,并监测输出端中点电压(C点与D点之间的电压)。对OCL电路来说,这一电压应为0V±0.5V,对OTL电路来说应为电源电压的一半。如果中点电压不符合正常值,应立即停机检查。此时由于供电较低,一般不会造成元器件损坏。如果中点电压正常,可逐渐提高电源电压,一边监测中点电压,一边观察有无变色、冒烟元件,同时用手感觉推动管温度。如果市电升到正常值,通电半小时输出端电压保持不变,推动管无温度上升或元器件无变质变色等现象,则表明安全通电试机法第一步操作结束,可进行下一步操作。 第二步是接入大功率管,保持假负载,降压供电,监测中点。也就是说,装上末级大功率管Q212~Q219,并按照从50V起逐渐升压的方法继续通电试机。必要时,应对整机静态电流、中点电压进行相应的调整。如果中点电压失常,应重点检查末级功放管及外围电路。直到中点电压稳定,功放管不发热为止。 第三步是拆去假负载,接入低档扬声器和信号源,正常供电试听。具体说,

音频放大电路的组成及原理

第二章高保真电路的组成及基本原理 2.1电路整体方案的确定 音频功率放大器的基本功能是把前级送来的声频信号不失真地加以放大,输出足够的功率去驱动负载(扬声器)发出优美的声音。放大器一般包括前置放大和功率放大两部分,前者以放大信号振幅为目的,因而又称电压放大器;后者的任务是放大信号功率,使其足以推动扬声器系统。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题也必须要重视。 OCL电路由于性能比较好,所以广泛地应用在高保真扩音设备中。本课题输出级选用OCL功率放大器,偏置电路选用甲乙类功放电路。为了使电路简单,信号失真小,本电路选用反馈型音调控制电路。为了不影响音调控制电路,要求前置输入阻抗比较高,输出阻抗低,本级电路选用场效应管共源放大器和源级跟随器组成。 高保真音频放大器组成框图 2.2 OCL功率放大器的原理 OCL功率放大器电路通常可分成:功率输出级、推动级和输入级三部分。根据给定技术指标,选择下图所示电路 功率输出级是由四个三极管组成的复合管准互补对称电路,可以得到较大的输出功率。再用一些电阻来减小复合管的穿透电流,增加电路的稳定性。前置电路用NPN型三极管组成恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。 推动级采用普通共射放大电路。 输入级部分由三极管组成差动放大电路,减小电路直流漂移。 2.3音调控制电路的原理 常用的音调控制电路有三种:一种是衰减式RC音调控制电路,其调节范围

基于TDA2030的音频功放设计报告

基于TDA2030的音频功放设计 院(系)名称信息工程学院 专业班级09 普本电信一班学号 学生姓名 指导教师

2012年5月25日 基于TDA2030的音频功放设计报告 1整体设计思路 音频功率放大器主要由前置级、音调级、功率放大级3部分组成。前置级要求输入阻抗高、输出阻抗小、频带宽、噪声小;音调级对输入信号主要起到提升、衰减作用;功率放大级是音频功率放大器的主要部分,它决定输出功率的大小,要求输出功率高,输出功率大的特点。 将功率集成块按一定方式组合,构成音频功率放大集成电路,其频响宽、噪声低、失真小。运用已有的集成电路,可以大大简化了电路的制作过程。 TDA2030是飞利浦公司生产的,实物图如图1 2.集成音频功率放大器TDA2030 TDA2030简介:TDA 2030是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动的减流或截止,使自己得到保护。 TDA2030集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑料大功率管,这就给使用带来不少方便。

相关文档
相关文档 最新文档