文档库 最新最全的文档下载
当前位置:文档库 › 硬件工程师必读攻略-如何通过仿真有效提高数模混合设计性 上

硬件工程师必读攻略-如何通过仿真有效提高数模混合设计性 上

硬件工程师必读攻略-如何通过仿真有效提高数模混合设计性 上
硬件工程师必读攻略-如何通过仿真有效提高数模混合设计性 上

前言

一、数模混合设计的难点

二、提高数模混合电路性能的关键

三、仿真工具在数模混合设计中的应用

四、小结

五、混合信号PCB设计基础问答

前言:

数模混合电路的设计,一直是困扰硬件电路设计师提高性能的瓶颈。众所周知,现实的世界都是模拟的,只有将模拟的信号转变成数字信号,才方便做进一步的处理。模拟信号和数字信号的转变是否实时、精确,是电路设计的重要指标。除了器件工艺,算法的进步会影响系统数模变换的精度外,现实世界中众多干扰,噪声也是困扰数模电路性能的主要因素。本文通过Ansoft公司的“AD-Mix Signal Noise Design Suites” 数模混合噪声仿真设计软件的对数模混合设计PCB的仿真,探索分析数模混合电路的噪声干扰和优化设计的途径,以达到改善系统性能目的。

一、数模混合设计的难点

数模混合电路设计当中,干扰源、干扰对象和干扰途径的辨别是分析数模混合设计干扰的基础。通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在设计和调试过程中,需要同时控制这两个变量,而且他们对于外部的干扰更敏感,因而通常作为被干扰对象做分析;数字信号上只有随时间变化的门限量化后的电压成分,相比模拟信号对干扰有较高的承受能力,但是这类信号变化快,特别是变化沿速度快,还有较高的高频谐波成分,对外释放能量,通常作为干扰源。

作为干扰源的数字电路部分多采用CMOS工艺,从而导致数字信号输入端极高的输入电阻,通常在几十k欧到上兆欧姆。这样高的内阻导致数字信号上的电流非常微弱,因而只有电压有效信号在起作用,在数模混合干扰分析中,这类信号可以作为电压型干扰源,如CLK信号,Reset等信号。除了快速交变的数字信号,数字信号的电源管脚上,由于引脚电感和互感引起的同步开关噪声(SSN),也是数模混合电路中存在的重要一类电压型干扰源。此外,电路中还存在一些电流信号,特别是直流电源到器件负载之间的电源信号上有较大的电流,根据右手螺旋定理,电流信号周围会感应出磁场,进而引起变化的电场,在分析时,直流电源作为电流型干扰源。

无论电压型还是电流型的干扰源,在耦合到被干扰对象时,既可能通过电路传导耦合,也可能通过空间电磁场耦合,或者二者兼有。然而一般的仿真分析工具,往往由于功能所限,只能分析其中一种。例如在传统的SPICE电路仿真工具中,只考虑电路传导型的干扰,并不考虑空间电磁场的耦合;而一般的PCB信号完整性(SI)分析工具,只考察空间电磁场耦合,将所有的电源、地都看作理想DC

直流,不予分析考虑。耦合路径提取的不完整,也是困扰数模混合噪声分析的重要原因。

数模混合设计中,电源和地的划分,是业内争论的焦点。传统的设计中,数字模拟部分被严格分开;然而随着系统越来越复杂,数模电路集成度不断提高,分割又会造成数字信号跨分割,信号回流不完整,进而影响信号完整性,另外,电源的分割还造成电源分配系统的阻抗过高;有人提出“单点连接”:还是做分割,但是在跨分割的信号下方单点连接以避免跨分割问题;但是如果数模之间信号很多,难于分开,这种“单点连接”也存在困难,因而又有人提出不分割,只是保持数字和模拟部分不要交叉;还有一些资料介绍,在跨分割的信号旁边包地线或者并联电容,用来提供完整回流路径。无论哪种方法,似乎都有一定道理,而且都有成功的先例,然而所有这些分割方案的有效性以及可能存在的问题,一直没有检验的标准。

数模混合电路的仿真,还存在模型的问题。业界普遍接受的模拟电路仿真模型还是SPICE模型,数字电路信号完整性分析使用IBIS模型。多家EDA公司的仿真软件已经推出支持多种模型的混合模型仿真器,然而摆在设计师案头的主要困难是器件模型,特别是模拟器件模型很难得到。在数字设计看来,时域的瞬态分析,即某一时间点上确定的电压值,是仿真的主要手段,就像调试中的示波器那样直观。没有精确的模型,瞬态分析就无法实现。然而对模拟设计,特别是噪声分析,激励源在时间轴上难于描述或很难预测,只知道他的频率带宽范围和大致幅度,这时候我们通常会引入频域扫频分析,考察扫频信号在关注点的变化,如同频谱分析仪的作用。或者干脆如网络分析仪(NA)那样考察信号或噪声通过的通道的频域SYZ参数,进而预测干扰发生的频率和幅度。可见,数模混合噪声分析,既需要支持混合模型的仿真器,也需要仿真器同时支持时域分析和频域分析。

二、提高数模混合电路性能的关键

在解释了数模混合电路仿真存在的主要困难后,下来我们来讨论如何解决这些困难,从而仿真预测数模干扰进而解决数模干扰的问题。

首先是干扰源的创建和设置。干扰源分为电压型和电流型的干扰源,电压型干扰源通常是数字信号本身以及数字电源管脚;电流型干扰源通常是DC电源。数字信号通常表现为周期性的方波脉冲信号,

在信号与系统教程中我们知道,这类周期信号经傅立叶变换后的频谱,表现为高幅度的离散谱,这些频谱会随着频率的提高而幅度降低,频谱幅度与信号变化沿Tr, Tf以及占空比都有关系。

数字电源管脚上的噪声,通常由于同步开关噪声(Simultaneous Switch Noise)引起,而同步开关噪声又是由于晶元上IO到的电源和地管脚之间的引线电感造成的,这个电压波动会与电感大小和信号开关速度成正比,如下图。现在的大规模IC中,管脚更多,封装更大,信号开关速度更快,因而SSN

会更严重,对模拟信号的干扰也就越大。

同步开关噪声在时域上表现为幅度较小的随机脉冲,频谱为连续频谱,频谱的幅度不随频率改变而变

化,只与噪声大小有关。可见,要精确分析电压型的干扰源的影响,必须精确描述出来他们的时域

和频域的特性,才能准确分析。电源(VRM)作为电流型的干扰源,从直流来讲,由于滤波电路和

铜箔的电阻率,在PCB上存在电流分布密度和直流压降,整个压降会影响模拟信号参考电位进而影

响模拟电路性能。从交流来讲,整个电路上有源和无源器件作为电源负载,工作频率不一样,电流大

小会随频率而变化,而即使负载不随频率变化,电源电流输出也是随频率变化而变化的参数。对这样

一种激励和负载都变化且难以描述的传输系统,我们转入考察电源通道的频域SYZ参数,特别是电

源阻抗Z参数。我们估算出电源系统在工作频率范围内的最大电流,只要确保电源阻抗足够小,就能

保证电源电压波动满足指标要求。例如下图,系统最大负荷电流2A,电压3.3V,要求电压噪声控制

在5%即0.165V,那么从电源到负载处的阻抗只要低于82.5ohm,就能满足系统要求。

干扰源讨论后,我们再看耦合途径的提取。数模混合噪声,是通过电路传导和电磁场耦合两种方式工作作用的。众所周知,麦克思维方程和基尔霍夫电压电流(KCL和KVL)定律,构成了解决传统电学问题的基础。20世纪60年代伯克力SPICE推出后,解决了利用计算机工程计算求解电路KCL和KVL方程问题,因而如今的电路设计仿真可以利用计算机辅助做到前所未有的规模,在SPICE中,就可以分析噪声通过电路传导的影响。在电磁场计算领域,20世纪80年代出现的有限元法(FEM),特别是Ansoft公司推出的三维结构分析工具HFSS,以其算法的先进和精确,被作为电磁场计算的标准而闻名。然而三维有限元算法,由于工程计算量巨大,一直作为RF微波设计的工具。为了应对PCB上成百上千条网络的电磁场计算,一些EDA公司开始简化PCB电磁场求解的难度使用解析法,而数字电路对于求解精度要求并不高,这样就出现了专门针对高速数字PCB仿真的信号完整性分析(SI)工具。然而由于解析法固有的局限性,无法考虑诸如跨分割、不完整电源地平面、非理想直流信号的影响,因此无法分析数模混合干扰这样对精度要求更高的电磁场计算。

近年来,Ansoft推出了专门针对PCB的电磁场分析工具SIwave,考虑到PCB纵向长度与信号波长之间相差悬殊,它使用2维有限元算法,既保证了精度,又大大降低求解难度。结合了Ansoft的SPICE 仿真器和2维有限元电磁场计算的优势,使得对数模混合噪声完整耦合路径提取和分析成为可能。

分割问题,一直是数模混合电路设计师的一个关注焦点。分割的目的,是为了提高数模之间的隔离度,使得数字部分干扰源的能量尽量少的传递到模拟信号端。然而分割又可能造成信号完整性,或者电源阻抗变化等问题。关于这一点,单纯的说分割或者不分割,单点连接还是提供回流路径,都是不全面的。一方面,分割的目的是提高隔离度,只要不出现跨分割情况,可以做分割,然而不合理的层叠或滤波,反而会降低隔离度,分割没有达到效果;另一方面,只要干扰源的噪声幅度控制的足够低,去耦滤波等策略合适,提高数模之间的隔离度达到一定要求,没有必要做分割;再有,跨分割不是绝对不能出现的,合理的层叠和去耦策略可以有效避免跨分割的影响。

三、仿真工具在数模混合设计中的应用

Ansoft公司的“AD-Mix Signal Noise Design Suites”数模混合噪声仿真设计软件包括:PCB 全波整版级信号完整性/电源完整性及电磁兼容/电磁干扰仿真设计和参数抽取工具SIwave;Ansoft工具和其他CAD、EDA设计工具的接口AnsoftLinks;电路、系统和多层平面电磁场设计仿真工具Ansoft DesignerSI/Nexxim;此外,还可以选配三维结构电磁场仿真和EMC分析工具Eminence。Ansft所有的工具都基于Windows设计风格,菜单和快捷键方式操作方便,可以直接从现有的电路设计软件中导入Ansoft的仿真软件,如Protel,PowerPCB,CR5000,Allegro,Boardstation和Expedition。

而且各个模块数据通用,可以相互间直接调用。

仿真第一步,通过Ansoft Links导入PCB

数据到SIwave,设

置层叠材料特性

和厚度信息。当然

层厚和材料可以

在PCB工具中设定

好,直接导入

SIwave。

第二步,设置数字信号电压型干扰源。在Ansoft DesignerSI/Nexxim中,我们把电路中快速变化的数字信号输出模型调入,通常是IBIS模型。利用IBIS模型输出端口中给出的Vref,Rref和Cref参数,搭建激励和负载电路做瞬态时域分析。把时域分析的结果输出成频谱参数并以表格方式输出成文本文件,这个随频率变化幅度的扫频源就作为数字信号端的干扰源进行分析了。

第三步,同步开关噪声仿真。同步开关噪声作为数字电源脚的电压型干扰源,需要通过时域仿真确定噪声的幅度。首先我们在SIwave中提取包括同步信号的输出输入端口,VRM电源输出到IC的VCC 管脚上的端口的多端口S参数模型,并将该模型输出到Ansoft DesignerSI/Nexxim中。有时候,器件VCC管脚可能不止一个,SIwave提供了创建Pin Group的功能,可以将多个相同电平的管脚合成一个Pin Group,然后添加端口。在Ansoft DesignerSI/Nexxim中,我们给所有的输入输出端口加上仿真模型,通常也是IBIS模型,在VRM电源输出添加理想直流源,然后探测VCC管脚上的电压波动,这个波动电压就是SSN。需要指出的是,通常SSN包括PCB和封装上耦合电感引起的电压波动,在这里仿真的只是由于PCB布线引起的部分,如果有IC封装的S参数模型,我们可以仿真完整的SSN,关于完整的SSN分析,请参看Ansoft与Xilinx公司合作推出的SSN仿真文章

https://www.wendangku.net/doc/1e13809036.html,/publications/xcellonline/xcell_57/xc_pdf/p092-094_57-sso.pdf或https://www.wendangku.net/doc/1e13809036.html,/workshops/converge/Xilinx_Ansoft.pdf

得到SSN的电压后,就可以在SIwave中的VCC管脚上添加独立的扫频源做干扰分析了。所有干扰源确定后,我们就可以在SIwave中做扫频分析,用户可以在自己关心的位置,添加电压探头,输出实际干扰大小波形,也可以将整个PCB的电压波动以动画方式反映。

第四步,分析电流型干扰源。在SIwave中允许用户添加电流型的干扰源,与电压型干扰源类似,这个干扰源的幅度可以是不随频率变化的独立源,也可以是随频变变化的,只要能够给出变化特性。一般来讲,我们可以对已知DC电流大小的电源处添加独立电流源,分析他的电流分布密度和DC直流压降。对于频变的电流源,我们只能依靠在电源负载端添加端口,分析随频率变化的电源阻抗Z参数,来评估噪声的大小。

第五步,分析干扰源与被干扰对象之间的隔离度。除了以上干扰分析外,SIwave另外一个主要功能就是考察电源地的分割。在没有有源器件模型,无法给出干扰源幅度的情况下,考察数模之间的隔离度,也是解决问题的一个好方法。在SIwave中,在干扰源和受干扰对象点分别添加端口,分析S参数,看看隔离情况是否良好。我们在SIwave中,做出一个12x10inch的四层PCB例子,分别是顶层信号层,第二层电源,第三层GND和底层信号层,再分别模拟两个点作为干扰源和被干扰对象,

分析各种情况下的隔离度。

1,不分割时的隔离度

2,分割后的隔离度

3,单点连接是的隔离度

4,不分割,添加20个电容(10个47uF, 10个0.1uF)后的隔离度

对于跨分割对数字信号的影响,由于传统的SI工具并不能分析,所以常常用设计规则来约束,致使

很多情况布局布线困难,或者增加层厚和成本。SIwave可以精确分析跨分割信号的传输和反射特性,确定分割到底对那个频率的谐波有多大的作用。由于数字信号的频谱离散特性,只要这个波动频点不在谐波处,就不会对信号有太大的影响。此外,我们在跨分割的两个电源上PCB上添加去耦电容,也可以改变波动频点的位置,只要它落在数字信号的转折频率之外,也不会对信号有太大的影响。

下图是一个跨分割信号的S11和S21参数,添加去耦电容后的S11和S21参数比较。

四、小结

数模混合噪声的分析,是一个复杂的问题,牵扯到电路求解和电磁场计算的问题,需要时域仿真和频域仿真的协同分析。这里仅提出一点实践中的经验和体会,供大家讨论以求共同进步。电路的设计中没有绝对一成不变的规则,必须针对问题,找到针对性的分析手段和解决方案,方能事半功倍。

五、混合信号PCB设计基础问答

1、在数字和模拟并存的系统中,我看到过有2种处理方法,一个是数字地和模拟地分开,比如在地层,数字地是独立地一块,模拟地独立一块,单点用铜皮或FB磁珠连接,而电源不分开;另一种是模拟电源和数字电源分开用FB连接,而地是统一地地。请问李先生,这两种方法效果是否一样?

答:应该说从原理上讲是一样的。因为电源和地对高频信号是等效的。区分模拟和数字部分的目的是为了抗干扰,主要是数字电路对模拟电路的干扰。但是,分割可能造成信号回流路径不完整,影响数字信号的信号质量,影响系统EMC质量。因此,无论分割哪个平面,要看这样作,信号回流路径是否被增大,回流信号对正常工作信号干扰有多大。现在也有一些混合设计,不分电源和地,在布局时,按照数字部分、模拟部分分开布局布线,避免出现跨区信号。

2、我的PCB设计中位于多通道12_bitCCD模拟视频信号采样电路布局区域内的多个模拟多路器与模拟开关的CMOS驱动信号必须跨越多片ADC下的数字模拟分割,(在不同的位置用几个0欧姆

电阻对数字模拟地短接)此时的信号端接方式:国外样板采用源端120R,负载端采用1个5K电阻对2或4个TTL兼容的COMS负载对地进行端接,这些走线宽6mil,长4inch左右,领近的敷铜层间距大概在5-8mil之间。这是否与120欧姆源匹配阻抗有出入,而且5K电阻的存在是否还会导致驱动电流的增加,加大数字对模拟部分的干扰,如果当多个receiver间距离较远如0.8inch时这个5K电阻的位置该如何调整,或是需要改变匹配方式。如果上述匹配方式正确,那么应该怎样计算并如何看待违反设计规则的跨越分割布线。

答:对跨分割信号,用0欧姆电阻对数字模拟地短接不如信号用平行地线包夹或使用旁路电容更好。源端采用120欧串阻很少见,这个驱动信号是电压驱动的数字信号吗?是不是有功率要求才作这种端接处理?如果实在是电压有效的数字信号,那需要仿真模型仿真来估算匹配的位置和大小。

3、您好!现代高速PCB设计中,为了保证信号的完整性,常常需要对器件的输入或输出端进行端接。请问端接的方式有哪些?采用端接的方式是由什么因素决定的?有什么规则?希望专家对此能给予详细的答复或告知哪里可以找到解决这些问题的资料。谢谢!

答:端接(terminal),也称匹配。一般按照匹配位置分有源端匹配和终端匹配。其中源端匹配一般为电阻串联匹配,终端匹配一般为并联匹配,方式比较多,有电阻上拉,电阻下拉,戴维南匹配,AC 匹配,肖特基二极管匹配。匹配采用方式一般由BUFFER特性,拓普情况,电平种类和判决方式来决定,也要考虑信号占空比,系统功耗等。数字电路最关键的是时序问题,加匹配的目的是改善信号质量,在判决时刻得到可以确定的信号。对于电平有效信号,在保证建立、保持时间的前提下,信号质量稳定;对延有效信号,在保证信号延单调性前提下,信号变化延速度满足要求。Mentor ICX产品教材中有关于匹配的一些资料。另外《High Speed Digital design a hand book of blackmagic》有一章专门对terminal的讲述,从电磁波原理上讲述匹配对信号完整性的作用,相信在阅读后,对匹配的理解会更加透彻。

4、在当今无线通信设备中,射频部分往往采用小型化的室外单元结构,因而体积结构收到很大限制,因而室外单元的射频部分,中频部分,乃至对室外单元进行监控的低频电路部分往往采用部署在同一PCB上,请问李宝龙先生,对这样的PCB在材质上有何要求,如何防止射频,中频乃至低频电路互相之间的干扰,mentor在这方面有无解决方案。

答:混合电路设计是一个很大的问题。很难有一个完美的解决方案。一般射频电路在系统中都作为一个独立的单板进行布局布线,甚至会有专门的屏蔽腔体。而且射频电路一般为单面或双面板,电路较为简单,所有这些都是为了减少对射频电路分布参数的影响,提高射频系统的一致性。相对于一般的FR4材质,射频电路板倾向与采用高Q值的基材,这种材料的介电常数比较小,传输线分布电容较小,阻抗高,信号传输时延小。在混合电路设计中,虽然射频,数字电路做在同一块PCB上,但一般都分成射频电路区和数字电路区,分别布局布线。之间用接地过孔带和屏蔽盒屏蔽。Mentor的板级系统设计软件,除了基本的电路设计功能外,还有专门的RF设计模块。在RF原理图设计模块中,提供参数化的器件模型,并且提供和EESOFT等射频电路分析仿真工具的双向接口;在RF LAYOUT 模块中,提供专门用于射频电路布局布线的图案编辑功能,也有和EESOFT等射频电路分析仿真工具的双向接口,对于分析仿真后的结果可以反标回原理图和PCB。同时,利用Mentor软件的设计管理功能,可以方便的实现设计复用,设计派生,和协同设计。大大加速混合电路设计进程。手机板是典型的混合电路设计,很多大型手机设计制造商都利用Mentor加安杰伦的eesoft作为设计平台。

5、如何更好的避免高频部分可能对系统造成的影响?比如206M的CPU,100M以上的SDRAM等,在布局、布线中如何处理才能保证50M以上信号的稳定性?

答:高速数字信号布线,关键是减小传输线对信号质量的影响。因此,100M以上的高速信号布局时

要求信号走线尽量短。数字电路中,高速信号是用信号上升延时间来界定的。而且,不同种类的信号(如TTL,GTL,LVTTL),确保信号质量的方法不一样。有很多这方面的书和网址,建议先您浏览。

6、有一个问题请教,在一块12层PCb板上,有三个电源层2.2v,3.3v,5v,将三个电源各作在一层,没有问题,地线该如何处理,是与电源一一对应,还是使用一个层,另外两个地线层只不过作为结构层而已。

答:一般说来,三个电源分别做在三层,对信号质量比较好。因为不大可能出现信号跨平面层分割现象。跨分割是影响信号质量很关键的一个因素,而仿真软件一般都忽略了它。对于电源层和地层,对高频信号来说都是等效的。在实际中,除了考虑信号质量外,电源平面耦合(利用相邻地平面降低电源平面交流阻抗),层叠对称,都是需要考虑的因素。

7、对于全数字信号的PCB,板上有一个80MHz的钟源。除了采用丝网(接地)外,为了保证有足够的驱动能力,还应该采用什么样的电路进行保护。另外如果用单独的时钟信号板,一般采用什么样的接口,来保证时钟信号的传输受到的影响小。

答:什么是丝网(接地)?是不是铺网格铜?2,确保时钟的驱动能力,不应该通过保护实现,一般采用时钟驱动芯片。一般担心时钟驱动能力,是因为多个时钟负载造成。采用时钟驱动芯片,将一个时钟信号变成几个,采用点到点的连接。选择驱动芯片,除了保证与负载基本匹配,信号沿满足要求(一般时钟为沿有效信号),在计算系统时序时,要算上时钟在驱动芯片内时延。3,时钟信号越短,传输线效应越小。采用单独的时钟信号板,会增加信号布线长度。而且单板的接地供电也是问题。如果要长距离传输,建议采用差分信号。LVDS信号可以满足驱动能力要求,不过您的时钟不是太快,没有必要。

8、同一个芯片,有1个2.8V的数字电源输入,还有一个2.8V的模拟电源。能不能通过电感把两者连起来,共用一个LDO。就像数字地和模拟地连接在一起一样。另:0欧姆的电阻是干什么用的,能不能和电感互换?

答:一般情况下是可以共用LDO的,经典的是pi滤波(不是用电感直接相连);但如果芯片本身对数字、模拟电源的隔离度要求很高,以致PI滤波不能满足要求的话则分别由不同的LDO供电。0ohm 电阻一般用于冗余或可选设计,类似跳线器的作用,如果不考虑寄生的话是没有电感的,不能起到滤波作用,因此不能和电感互换。

9、我想知道业界在模数混合信号的设计验证方面流程。据我理解,设计验证在设计流程中具有举足轻重的作用,直接会影响到芯片最终的成败。设计验证分为不同的级别,如系统级验证、电路模块级验证、模数混合仿真和最后的物理验证或者后仿真。设计验证工程师如何能够保证系统验证与最后的版图级验证的一致性?之所以这样问是因为,不同的抽象级别仿真时付出的时间代价是不一样的,可以说差距是巨大的,系统级抽象级别比较高,系统仿真可以在很短的时间内完成,但是到了版图级的验证,几乎没有办法做整个芯片的后仿真。而如果不做整个芯片的后仿真,就无法有效的保证系统仿真与最终芯片实现之间的一致性。我不知道业界比较流行的做法是怎样的。我想知道的是一种脱离使用工具的通用流程。这应该属于方???范畴,请问倪亮先生能否给予解答?谢谢。

答:这是一个非常好的问题,很专业。如你所说,不同的抽象级别仿真时付出的时间代价是不一样的,有一个甚至几个数量级的时间差异是很正常的。因为随着数据量的增加,验证的计算量是指数增加的。

那么到了芯片后仿真时,特别是针对全芯片时,寄生RC参数的数据量会比原来的器件和结点数量增加很多, 这时候的计算量就多得惊人,即使有很好的硬件设施作支持,一次验证跑上几个月甚至更久都是

很常见的.这时候,为了解决这个问题,通常的作法是这样的:1、用fast-spice级别的仿真器代替spice 级别的仿真器,即以牺牲一点精度换来更大的容量和速度;

2、让Digital的模块成为真正的Digital.

早期的数模混合整体验证时,因为验证工具的局限性,往往是把数字电路的gate-level也当成transistor-level来跑。这样的好处是流程简单,工具单一.但是缺点也很明显.加大了计算量,并且把更多的计算量放在到不是很需要的数字电路部分。(因为数模混合电路往往是数字部分比模拟部分多)即使可以调低一些数字电路部分的精度,那也是很大的资源浪费。现在的趋势是在提取版图时,数字部分仍然是提成gate-level,利用真正的数模混合信号仿真器来进行仿真。

3、把模拟部分抽象成高级别的AMS.这个对验证效率的提升极大。其实很多IP也是利用AMS来进行整体验证的。

10、我想用模拟电路来解一个4阶微分方程用于实时控制,这样速度比较快。具体就是把MCU计算出的待积分信号通过D/A引入模拟积分器,积分的结果在通过A/D回送入MCU进行控制,不知这样是否可行,主要考虑精度和干扰方面。如果可行您能否推荐一款积分芯片,还是我自己搭积分电路?如果把整个系统包括加法器,乘法器都设计成模拟芯片是不是可行,有什么要注意的?谢谢。

答:看起来好象是可行的.也许你可以用MATLAB先试试方案.因为我不了解具体细节,所以没办法向你推荐具体的做法。你可以到网上搜搜看有没有符合你具体要求的积分芯片,如果有的话,还是用现成的吧,自己搭电路太麻烦了,并且不能保证性能。一般来说会认为加法器乘法器用数字电路来实现,如果要整合在一起做一个混合芯片也算是常见。提醒一下,这些工作不太可能由一个人独立完成.如果想验证系统可行性,可以考虑先用AMS跑跑仿真吧.

数模混合设计实验报告

数模混合设计 实验报告 作者:竹叶听筝 时间:2012年12月05日课程题目:声光报警系统

摘要:声光报警器在实际的生活中可以见到许多,运用于生活的许多方面。声光报警电路可作为防盗装置,在有情况时它通过指示灯闪光和蜂鸣器鸣叫,同时报警。声光报警器可用在危险场所,通过声音和光信号向人们发出示警信息。 Abstract: sound and light alarm can be seen in real life many, used in many aspects of life. Sound and light alarm circuit can be used as anti-theft device, when it lights flash and buzzer tweet, alarm at the same time. Sound and light alarms can be used in hazardous locations, issued a warning to people through sound and light signals. 关键词:报警器声音光信号示警 1、设计原理 根据设定的基准报警电压。当输入电压超出报警值时发出声和光报警信号。当输入电压信号减小恢复到报警值以下时,要求有一定的回程余量才能撤销报警信号。也就是要实现电压信号的迟滞比较功能。LED灯闪烁,蜂鸣器报警。 2、方案比较 方案一:通过单片机控制进行AD采样计算,当采样电压超过,设定输入电压时,通过单片机控制LED闪烁,蜂鸣器报警,当输入电压小于设定Vh电压时,单片机撤销报警信号。此方案性能稳定,思路清晰,但性价比不高,涉及微处理器,以及软件编程,开发难度较大。 方案二:采用LM311滞回比较器,比较输入电压值,当大于设定电压时,比较器输出端为高电平,通过光电耦合器,进行传递信号,通过555定时器输出1HZ频率脉冲,是LED灯闪烁,同时蜂鸣器报警,当输入电压小于阈值电压时,LM311输入低电平,撤销报警信号。此方案采用纯硬件方法实现神声光报警,具有成本低,调试容易且通过光耦合器进行数字电路和模拟电路的隔离,同样也具有较高的稳定性。三、系统总体方案描述

硬件工程师面试题集(含答案-很全)

硬件工程师面试题集 (DSP,嵌入式系统,电子线路,通讯,微电子,半导体) 1、下面是一些基本的数字电路知识问题,请简要回答之。 (1) 什么是Setup和Hold 时间? 答:Setup/Hold Time 用于测试芯片对输入信号和时钟信号之间的时间要求。建立时间(Setup Time)是指触发器的时钟信号上升沿到来以前,数据能够保持稳定不变的时间。输入数据信号应提前时钟上升沿(如上升沿有效)T 时间到达芯片,这个T就是建立时间通常所说的SetupTime。如不满足Setup Time,这个数据就不能被这一时钟打入触发器,只有在下一个时钟上升沿到来时,数据才能被打入触发器。保持时间(Hold Time)是指触发器的时钟信号上升沿到来以后,数据保持稳定不变的时间。如果Hold Time 不够,数据同样不能被打入触发器。 (2) 什么是竞争与冒险现象?怎样判断?如何消除? 答:在组合逻辑电路中,由于门电路的输入信号经过的通路不尽相同,所产生的延时也就会不同,从而导致到达该门的时间不一致,我们把这种现象叫做竞争。由于竞争而在电路输出端可能产生尖峰脉冲或毛刺的现象叫冒险。如果布尔式中有相反的信号则可能产生竞争和冒险现象。解决方法:一是添加布尔式的消去项,二是在芯片外部加电容。 (3) 请画出用D 触发器实现2 倍分频的逻辑电路 答:把D 触发器的输出端加非门接到D 端即可,如下图所示: (4) 什么是"线与"逻辑,要实现它,在硬件特性上有什么具体要求? 答:线与逻辑是两个或多个输出信号相连可以实现与的功能。在硬件上,要用OC 门来实现(漏极或者集电极开路),为了防止因灌电流过大而烧坏OC 门,应在OC 门输出端接一上拉电阻(线或则是下拉电阻)。 (5) 什么是同步逻辑和异步逻辑?同步电路与异步电路有何区别? 答:同步逻辑是时钟之间有固定的因果关系。异步逻辑是各时钟之间没有固定的因果关系.电路设计可分类为同步电路设计和异步电路设计。同步电路利用时钟脉冲使其子系统同步运作,而异步电路不使用时钟脉冲做同步,其子系统是使用特殊的“开始”和“完成”信号使之同步。异步电路具有下列优点:无时钟歪斜问题、低电源消耗、平均效能而非最差效能、模块性、可组合和可复用性。 (7) 你知道那些常用逻辑电平?TTL 与COMS 电平可以直接互连吗? 答:常用的电平标准,低速的有RS232、RS485、RS422、TTL、CMOS、LVTTL、LVCMOS、ECL、ECL、LVPECL 等,高速的有LVDS、GTL、PGTL、CML、HSTL、SSTL 等。 一般说来,CMOS 电平比TTL 电平有着更高的噪声容限。如果不考虑速度和性能,一般TTL 与CMOS 器件可以互换。但是需要注意有时候负载效应可能引起电路工作不正常,因为有些TTL 电路需要下一级的输入阻抗作为负载才能正常工作。 (6) 请画出微机接口电路中,典型的输入设备与微机接口逻辑示意图(数据接口、控制接口、锁存器/缓冲器)

硬件工程师必用的20个电子线路图

这20个电子线路图,硬件工程师一定用得上! 电子技术、无线电维修及SMT电子制造工艺技术绝不是一门容易学好、短时间内就能够掌握的学科。这门学科所涉及的方方面面很多,各方面又相互联系,作为初学者,首先要在整体上了解、初步掌握它。 无论是无线电爱好者还是维修技术人员,你能够说出电路板上那些小元件叫做什么,又有什么作用吗?如果想成为元件(芯片)级高手的话,掌握一些相关的电子知识是必不可少的。 普及DIP与SMT电子基础知识,拓宽思路交流,知识的积累是基础的基础,基础和基本功扎实了才能奠定攀登高峰阶梯!这就是基本功。 电子技术的历史背景: 早在两千多年前,人们就发现了电现象和磁现象。我国早在战国时期(公元前475一211年)就发明了司南。而人类对电和磁的真正认识和广泛应用、迄今还只有一百多年历史。在第一次产业革命浪潮的推动下,许多科学家对电和磁现象进行了深入细致的研究,从而取得了重大进展。人们发现带电的物体同性相斥、异性相吸,与磁学现象有类似之处。 1785年,法国物理学家库仑在总结前人对电磁现象认识的基础上,提出了后人所称的“库仑定律”,使电学与磁学现象得到了统一。 1800年,意大利物理学家伏特研制出化学电池,用人工办法获得了连续电池,为后人对电和磁关系的研究创造了首要条件。

1822年,英国的法拉第在前人所做大量工作的基础上,提出了电磁感应定律,证明了“磁”能够产生“电”,这就为发电机和电动机的原理奠定了基础。 1837年美国画家莫尔斯在前人的基础上设计出比较实用的、用电码传送信息的电报机,之后,又在华盛顿与巴尔的摩城之间建立了世界上第一条电报线路。1876 年,美国的贝尔发明了电话,实现了人类最早的模拟通信。英国的麦克斯韦在总结前人工作基础上,提出了一套完整的“电磁理论”,表现为四个微分方程。这那就后人所称的“麦克斯韦方程组”.麦克斯韦得出结论:运动着的电荷能产生电磁辐射,形成逐渐向外传播的、看不见的电磁波。他虽然并未提出“无线电”这个名词,但他的电磁理论却已经告诉人们,“电”是能够“无线”传播的。 对模拟电路的掌握分为三个层次: 初级层次 熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次 能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。

数模混合设计报告

数模报告 时钟电路的设计与制作 成都理工大学工程技术学院 专业:电子信息科学与技术 学号: 指导教师: 姓名: 日期:

计时电路设计原理与制作 一、设计任务 设计并制作一个60秒计时电路,要求自制直流稳压电源,能够提供给数字时钟+5V的电压。同时具有手动复位的功能,能够产生一个1Hz的秒计时脉冲。并且具有进位功能能够显示出完整的24小时制的时钟电路,同时具有手动校时电路,能够对计时电路手动校正时间,校时电路包括对分、时校时。设计并仿真出时、分电路。 1、模拟电路部分设计要求 (1)制作输出电压可调的直流稳压电源,输出电压范围为 1.25~15V,通过电位器调节至5V。 (2)该直流稳压电源可供数字电路正常工作。 2、数字电路部分设计要求 (1)设计一个具有“时”、“分”、“秒”显示的电子钟(23小时59分59

秒)如图,应具有校时功能。 时分秒 . . . . 二、设计思路 1、直流稳压电源:为时钟电路提供一个+5V 的电压,驱动时 钟电路的正常工作。 2、脉冲产生模块:能够产生秒脉冲信号,从而实现对计时模块的控制。 3、计时循环模块:能够对时钟脉冲计数,并且能够对计数电路自动复位。

4、译码显示模块:用数码管将计数循环电路模块的状态转换为数字显示出来。 5、秒控制模块:实现对秒计时器的复位功能。 6、时、分校时模块:能够实现对电路中的时、分显示进行校时。 三、设计方案 1、直流稳压电源:通过变压器将220V的家庭用电降为电压更低的正弦交流电(如22V),然后通过电桥(整流电路,利用单向导电性能的整流元件)将正负交替变化的正弦交流电压转换成单方向的脉动直流电压,通过滤波电路尽可能的将单向脉动直流电压中的脉动部分(交流分量)减小,使输出电压成平滑的直流电压。再通过稳压芯片使输出的直流电压在电源发生波动或负载变化时保持稳定。常用的稳压芯片有7815、7805、7809、LM317等。 2、多谐振荡电路:多谐振荡器是一种能够产生矩形波的自激振荡器,也称矩形波形发生器。多谐指矩形波中除了基波成分外,还有高次谐波成分。多谐振荡器没有稳态,只有两个暂稳态,在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的时钟信号。具体地说,如果开始时多谐振荡处于0状态,那么它在0状态停留一段时间后将自动转入1状态,在1状态停留一段时间后又将自动转入0状态,如此周而复始,输出矩形波。通过对电容、电阻的计算来确定1秒的脉冲信号,实现对计数器的时钟控制,多谐振荡器在接通电源以后,不需要外触发信号,便能够自动产生矩形脉冲。多谐振荡器又很多种,例如对称

硬件工程师笔试题硬件工程师笔试题

硬件工程师面试试题 模拟电路 1、基尔霍夫定理的内容是什么?(仕兰微电子) 2、平板电容公式(C=εS/4πkd)。(未知) 3、最基本的如三极管曲线特性。(未知) 4、描述反馈电路的概念,列举他们的应用。(仕兰微电子) 5、负反馈种类(电压并联反馈,电流串联反馈,电压串联反馈和电流并联反馈);负反馈的优点(降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用)(未知) 6、放大电路的频率补偿的目的是什么,有哪些方法?(仕兰微电子) 7、频率响应,如:怎么才算是稳定的,如何改变频响曲线的几个方法。(未知) 8、给出一个查分运放,如何相位补偿,并画补偿后的波特图。(凹凸) 9、基本放大电路种类(电压放大器,电流放大器,互导放大器和互阻放大器),优缺点,特别是广泛采用差分结构的原因。(未知) 10、给出一差分电路,告诉其输出电压Y+和Y-,求共模分量和差模分量。(未知) 11、画差放的两个输入管。(凹凸) 12、画出由运放构成加法、减法、微分、积分运算的电路原理图。并画出一个晶体管级的运放电路。(仕兰微电子) 13、用运算放大器组成一个10倍的放大器。(未知) 14、给出一个简单电路,让你分析输出电压的特性(就是个积分电路),并求输出端某点的 rise/fall时间。(Infineon笔试试题) 15、电阻R和电容C串联,输入电压为R和C之间的电压,输出电压分别为C 上电压和R上电压,要求制这两种电路输入电压的频谱,判断这两种电路何为高通滤波器,何为低通滤波器。当RC<

硬件工程师面试自我介绍文档6篇

硬件工程师面试自我介绍文档6篇Hardware Engineer interview self introduction docume nt 编订:JinTai College

硬件工程师面试自我介绍文档6篇 前言:自我介绍是向别人展示你自己,直接关系到你给别人的第一印象的好坏及以后交往的顺利与否,也是认识自我的手段。自我介绍是每个人都必然要经历的一件事情,日常学习、工作、生活中与陌生人建立关系、打开局面的一种非常重要的手段,通过自我介绍获得到对方的认识甚至认可,是一种非常重要的技巧。本文档根据自我介绍内容要求和特点展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意调整修改及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:硬件工程师面试自我介绍文档 2、篇章2:硬件工程师面试自我介绍文档 3、篇章3:硬件工程师面试自我介绍文档 4、篇章4:it工程师面试英文自我介绍文档 5、篇章5:it工程师面试英文自我介绍文档 6、篇章6:it工程师面试英文自我介绍文档

自我介绍得好不好也直接影响到面试的效果,那么硬件工程师该怎么自我介绍呢?接下来小泰带你了解一下硬件工程师面试自我介绍。 篇章1:硬件工程师面试自我介绍文档 学习方面,我觉得大学生的首要任务还是学好文化知识,所以在学习上我踏踏实实,一点也不放松。我认为好的学习方法对学好知识很有帮助,所以在每次考试后,我都会总结一下学习经验。一份耕耘一分收获,每每看到自己可喜的成绩,我就会感叹只要你有决心,没有什么事是不可能的。对于我们计算机相关专业的学生来说,光光学好书本上的知识是远远不够的。我利用课余时间经常阅览计算机类的书籍,并参加了一些计算机水平的资格考试,计算机相关专业毕业生自我介绍。取得了不错的成绩。我认为学习是学生的职业,这份职业同样需要有智慧、毅力和恒心。 在当今这个快速发展的信息时代,我们只有不断汲取新知识,才不会落后。学习固然重要,一个人能力的培养也不容忽视。四年的大学生活给了我很多挑战自我的机会,如系学生会的竞选,院里组织的演讲比赛,文化艺术节的文艺汇演、英语演讲比赛等。在参与这些活动的过程中,我结交了一些很好的朋友,学到了为人处事的方法,锻炼了自己的能力。这些经

数模混合设计

数模混合课程设计 实践报告 题目:FM发射机设计 指导老师:徐灵飞 系别:电子信息与信息工程系 班级:电子信息工程1班 姓名:周荣 学号:201320107104 2015年4月13日

摘要: 该实验主要包括三个电路:电源电路、数字电路、模拟电路;其中电源电路有以LM7805为主要所构成的电源电路以及以单片机STC89C52为主要所构成的电源电路两部分组成,数字电路由复位、晶振及按键电路以及LED电路两部分组成,模拟也由FM调制电路以及音频检测电路两部分组成;通过三部分的同步合作,最终实现了由发射者通过调解频率使之接受者能够接收到发射者覆盖的相应频率的信息,方便实用。 系统设计 1.总体框图 单片机独立按键 输入电压 在此可设定 FM输出频 率FM调制电 路 光电报警 5V线性整流稳 压电路 12V输入 LED数码管显 示 音频输入 音频检测 音频信号强度 LED灯显示

2.系统各部分电路图

PCB图

设计内容及要求 1.(1)单片机里面的程序烧写,需要在单片机实验室借一台开发板,直接进 行烧写。 2.元器件和跳线都在电路板正面安装。绘制PCB时一定要注意元件引脚的极性如,二极管及电解电容。对于三极管,最好查阅对应的数据手册,确定正反面(对于TO-92A封装的器件来讲,一般平的一面是正面)及PCB封装引脚的顺序。 3.调试时应采用分步调试方法,先焊接电源电路,调出5V输出电压,再焊接数字电路部分(单片机及相关外围电路)的元件,调出按键和LED数码管电路(等够通过按键改变LED显示内容-FM频率)。然后再焊接模拟电路部分的元件(音频检测电路和FM调制电路),调FM调制电路。在调试过程中按步骤尽心,谁是排除出现的故障,直至最后整体电路板调试成功。 元器件清单

常见硬件工程师笔试题标准答案

硬件工程师笔试题 一、电路分析: 1、竞争与冒险 在组合逻辑中,在输入端的不同通道数字信号中经过了不同的延时,导致到达该门的时间不一致叫竞争。因此在输出端可能产生短时脉冲(尖峰脉冲)的现象叫冒险。 常用的消除竞争冒险的方法有:输入端加滤波电容、选通脉冲、修改逻辑设计等。 2、同步与异步 同步逻辑就是时钟之间有固定的因果关系。异步逻辑就是各时钟之间没有固定的因果关系。同步电路:存储电路中所有触发器的时钟输入端都接同一个时钟脉冲源,因而所有触发器的状态的变化都与所加的时钟脉冲信号同步。 异步电路:电路没有统一的时钟,有些触发器的时钟输入端与时钟脉冲源相连,只有这些触发器的状态变化与时钟脉冲同步,而其它的触发器的状态变化不与时钟脉冲同步。 异步电路不使用时钟脉冲做同步,其子系统就是使用特殊的“开始”与“完成”信号使之同步 同步就就是双方有一个共同的时钟,当发送时,接收方同时准备接收。异步双方不需要共同的时钟,也就就是接收方不知道发送方什么时候发送,所以在发送的信息中就要有提示接收方开始接收的信息,如开始位,结束时有停止位 3、仿真软件:Proteus 4、Setup 与Hold time Setup/hold time 就是测试芯片对输入信号与时钟信号之间的时间要求。建立时间就是指触发器的时钟信号上升沿到来以前,数据稳定不变的时间。输入信号应提前时钟上升沿(如上升沿有效)T时间到达芯片,这个T就就是建立时间-Setup time、如不满足setup time,这个数据就不能被这一时钟打入触发器,只有在下一个时钟上升沿,数据才能被打入触发器。保持时间就是指触发器的时钟信号上升沿到来以后,数据稳定不变的时间。如果hold time不够,数据同样不能被打入触发器。 5、IC设计中同步复位与异步复位的区别 同步复位在时钟沿采集复位信号,完成复位动作。异步复位不管时钟,只要复位信号满足条件,就完成复位动作。异步复位对复位信号要求比较高,不能有毛刺,如果其与时钟关系不确定,也可能出现亚稳态。 6、常用的电平标准 TTL: transistor-transistor logic gate晶体管-晶体管逻辑门 CMOS:Complementary Metal Oxide Semiconductor互补金属氧化物半导体 LVTTL(Low Voltage TTL)、LVCMOS(Low Voltage CMOS):3、3V、2、5V RS232、RS485 7、TTL电平与CMOS电平

数模混合电路的PCB设计

数模混合电路的PCB设计 高速PCB 设计中,数模混合电路的PCB 设计中的干扰问题一直是一个难题。尤其模拟电路一般是信号的源头,能否正确接收和转换信号是PCB 设计要考虑的重要因素。文章通过分析混合电路干扰产生的机理,结合设计实践,探讨了混合电路一般处理方法,并通过设计实例得到验证。 0 前言 印制电路板(PCB)是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。现在有许多PCB 不再是单一功能电路,而是由数字电路和模拟电路混合构成的。数据一般在模拟电路中采集和接收,而带宽、增益用软件实现控制则必须数字化,所以在一块板上经常同时存在数字电路和模拟电路,甚至共享相同的元件。考虑到它们之间的相互干扰问题以及对电路性能的影响,电路的布局和布线必须要有一定的原则。混合信号PCB 设计中对电源传输线的特殊要求以及隔离模拟和数字电路之间噪声耦合的要求,增加了设计时布局和布线的复杂度。在此,通过分析高密度混合信号PCB 的布局和布线设计,来达到要求的PCB 设计目标。 1 数模混合电路干扰的产生机理 模拟信号与数字信号相比,对噪声的敏感程度要大得多,因为模拟电路的工作依赖连续变化的电流和电压,任何微小的干扰都能影响它的正常工作,而数字电路的工作依赖在接收端根据预先定义的电压电平或门限对高电平或低电平的检测,具有一定的抗干扰能力。但在混合信号环境中,数字信号相对模拟信号而言是一种噪声源。数字电路工作时,稳定的有效电压只有高低电平两种电压。当数字逻辑输出由高电压变为低电压,该器件的接地管脚就会放电,产生开关电流,这就是电路的开关动作。数字电路的速度越快,其开关时间一般也

(完整)【硬件测试】华为2016校招·硬件技术工程师机考试题及答案,推荐文档

1.(判断题)DRAM上电时存储单元的内容是全0,而Flash上电时存储单元的内容是全1。(4分) A.正确 B.错误 FLASH可保存 2.(判断题)眼图可以用来分析高速信号的码间干扰、抖动、噪声和衰减。(4分) A.正确 B.错误 3.(判断题)以太网交换机将冲突域限制在每个端口,提高了网络性能。(4分) A.正确 B.错误 4.(判断题)放大电路的输出信号产生非线性失真是由于电路中晶体管的非线性引起的。(4分) A.正确 B.错误 5.(判断题)1的8位二进制补码是0000_0001,-1的8位二进制补码是1111_1111。(4分) A.正确 B.错误 6.(判断题)洗衣机,电冰箱等家用电器都使用三孔插座,是因为如果不接地,家用电器是不能工作的。(4分) A.正确 B.错误 7.(判断题)十进制数据0x5a与0xa5的同或运算结果为:0x00。(4分) A.正确 B.错误 8.(判断题)硅二极管的正向导通压降比锗二极管的大(4分) A.正确 B.错误 9.(单选题)一空气平行板电容器,两级间距为d,充电后板间电压为u。然后将电源断开,在平板间平行插入一厚度为d/3的金属板。此时电容器原板间电压变为(4分) A.U/3 B.2U/3 C.3U/4 D.不变但电容的大小不是由 Q(带电量)或U(电压)决定的,即: C=εS/4πkd。其中,ε是一个常数, S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。而常见的平行板电容器 电容为C=εS/d.(ε为极板间介质的介电常数, S 为极板面积, d为极板间的距离。) 3电容器的电势能计算公式: E=CU^2/2=QU/2 10.(单选题)8086CPU内部包括哪些单元(4分) A.ALU,EU B.ALU,BIU C.EU,BIU D.ALU,EU,BIU 80x86从功能上分执行单元EU(Execution Unit),和总线接口单元BIU(Bus Interface Unit),执行单元由8个16位通用寄存器,1个16位标志寄存器,1个16位暂存寄存器,1个16位算术逻辑单元ALU及EU控制电路组成。 总线接口单元由4个16位段寄存器(CS,DS,SS,ES),1个16位的指令指针寄存器,1个与EU通信的内部暂存器,1个指令队列,1个计算20位物理地址的加法器∑及总线控制电路构成。 11.(单选题)为了避免50Hz的电网电压干扰放大器,应该用那种滤波器:(4分) A.带阻滤波器 B.带通滤波器 C.低通滤波器 D.高通滤波器 12.(单选题)关于SRAM和DRAM,下面说话正确的是:(4分) A.SRAM需要定时刷新,否则数据会丢失 B.DRAM使用内部电容来保存信息 C.SRAM的集成度高于DRAM D.只要不掉点,DRAM内的数据不会丢失 【解析】SRAM和DRAM都是随机存储器,机器掉电后,两者的信息都将丢失。它们的最大区别就是:DRAM是用电容有无电荷来表示信息0和1,为防止电容漏电而导致读取信息出错,需要周期性地给电容充电,即刷新;而SRAM是利用触发器的两个稳态来表示信息0和1,所以不需要刷新。另外,SRAM 的存取速度比DRAM更高,常用作高速缓冲存储器Cache。

数模混合仿真详细文档

用SpectreVerilog进行模数混仿,以Sigma-Delta ADC为例 SpectreVerilog模数混仿, 模拟部分用Spectre, 数字部分用Verilog-XL. 所以还需要安装Cadence LDV软件, 其内含Verilog-XL仿真器. 这里以自行设计的二阶全差分Sigma-Delta ADC为例, 详细介绍用SpectreVerilog的仿真过程. 所用工艺库为TSMC 0.18u,电源电压:1.8V. 1. 准备 Sigma-Delta ADC分模拟和数字部分两块, 其中模拟部分为调制器, 数字部分为数字滤波器. 如下图. 其中out为调制器的输出, 这里是1位0,1数据流. 数字滤波器为Verilog RTL级代码. Schematic: Symbol:

Verilog Code: module DigitalFilter (in2out, out, clk, clr, in); output in2out; output [`wordsize-1:0] out; input clk; input clr; input in; reg in2out; wire clk_half1, clk_half2; …… Endmodule 同时为了直观的观看输出结果,因此把输出的数字字转化为模拟量,这里用Verilog-A做一个理想的DA转换器。 因此最好事先用Spectre仿真模拟部分, 用ModelSim或Verilog-XL等仿真数字部分. 这里假定我们已有: 1) 模拟部分的原理图(包括Symbol); 2) 数字部分的Verilog代码,DigitalFilter.v, 模块名:DigitalFilter(in2out,out,clk, clr,in); 3) 数字部分的TestBench代码, DigitalFilter_TB.v, 模块名: DigitalFilter_TB. 下图为最终的系统图:

硬件工程师笔试题附答案

一、填空题(每题5分,8题,共40分) 1.二极管的导通电压一般是0.7V 。 2.MOS管根据掺杂类型可以分为NMOS 、PMOS 。 3.晶体三极管在工作时,发射结和集电结均处于正向偏置,该晶体管工作在饱和状态。 4.二进制数(11010010)2转换成十六进制数是D2 。 5.贴片电阻上的103代表10k。 6.输出使用OC门或OD门实现线与功能。 7.假设A传输线的特征阻抗是70欧姆,B传输线的特征阻抗是30欧姆,A传输线与B传输线相 连,那么它们之间的反射系数是0.4。(-0.4也可以是正确答案) 8.假设模拟信号的输入带宽是10Hz~1MHz,对信号进行无失真采样的最低频率是 2MHz 。 二、问答题(每题10分,6题,共60分) 1.单片机上电后没有运转,首先要检查什么?(10分) 答案:第一步,测量电源电压是否正常;第二步,测量复位引脚是否正常;第三步,测量外部晶振是否起振。2.请分别画出BUCK和BOOST电路的原理框图。(10分) BUCK电路: BOOST电路: 3.请画出SAR型(逐次逼近型)ADC的原理框图,或者描述SAR型ADC的工作原理。(10 分)

SAR型ADC包括采样保持电路(S/H)、比较器(COMP ARE)、数/模转换器(DAC)、逐次逼近寄存器(SAR REGISTER) 和逻辑控制单元(SAR L OGIC)。模拟输入电压VIN由采样保持电路采样并保持,为实现二进制搜索算法,首先由SAR L OGIC 控制N位寄存器设置在中间刻度,即令最高有效位MSB为“1”电平而其余位均为“0”电平,此时数字模拟转换器DAC输出电压VDAC为0.5VREF,其中VREF为提供给ADC的基准电压。由比较器对VIN和VDAC进行比较,若VIN>VDAC ,则比较器输出“1”电平,N位寄存器的MSB保持“1”电平;反之,若VN

设备工程师必备能力_庖丁解牛

设备工程师必备能力-庖丁解牛 高振伟胡淑兵 (江西省电力设计院,江西南昌330096) 摘要:通过对设备进行详细分析,精通各个部件原理来达到‘庖丁解牛’的能力,分析不同设备间的异同点,寻找出设备可改善的方向和途径,做一名合格的设备工程师。 关键词:设备工程师;庖丁解牛 中图分类号:TP39文献标识码:A文章编号:1003-5168(2013)10-0121-01 厨师给梁惠王宰牛。手接触的地方,肩膀倚靠的地方,脚踩的地方,膝盖顶的地方,哗哗作响,进刀时豁豁地,没有不合音律的:合乎舞乐的节拍,又合乎乐曲的节奏。 梁惠王说:“嘻,好啊!(你解牛的)技术怎么竟会高超到这种程度啊?” 厨师放下刀回答说:“我追求的,是道-可理解成自然的规律,已经超过一般的技术了。起初我宰牛的时候,眼里看到的是一只完整的牛;三年以后,再未见过完整的牛了。现在,我凭精神和牛接触,而不用眼睛去看,感官停止了而精神在活动。依照牛的生理上的天然结构,砍入牛体筋骨相接的缝隙,顺着骨节间的空处进刀,依照牛体本来的构造,筋脉经络相连的地方和筋骨结合的地方,尚且不曾拿刀碰到过,更何况大骨呢!技术好的厨师每年更换一把刀,是用刀割断筋肉割坏的;技术一般的厨师每月就得更换一把刀,是砍断骨头而将刀砍坏的。如今,我的刀用了十九年,所宰的牛有几千头了,但刀刃锋利得就像刚在磨刀石上磨好的一样。那牛的骨节有间隙,而刀刃很薄;用很薄的刀刃插入有空隙的骨节,宽宽绰绰地,那么刀刃的运转必然是有余地的啊!因此,十九年来,刀刃还像刚从磨刀石上磨出来的一样。虽然是这样,每当碰到筋骨交错聚结的地方,我看到那里很难下刀,就小心翼翼地提高警惕,视力集中到一点,动作缓慢下来,动起刀来非常轻,豁啦一声,牛的骨和肉一下子就解开了,就像泥土散落在地上一样。我提着刀站立起来,为此举目四望,为此悠然自得,心满意足,然后把刀擦抹干净,收藏起来。” 当下众多理工科毕业生新进企业时,往往感觉到迷茫,学到的知识不能应用出来,对设备感觉无从下手。那么应对结构复杂多样的设备,如何能快速的上手达到“解牛”之效果呢?本文结合实例,来讲解设备构造原理---“骨架”以及元件的功能---“肉”,读者通过本文学到方法,到公司结合自身设备,勤加练习,多总结、在实践中提高动手能力,做一名设备的“庖丁”,实现自身的价值。 常见设备一般都可分为机械部分和电气部分。机械部分包含机械主体、紧固部件、传动部件等;电气部分包含电源、传感器、控制电路、执行器、气动部件等。 我们来举个简单的例子来说明如何能认识并理解‘庖丁解牛’的实质并或得相应的能力,某厂家conveyor(传送带)的功能是:当一块玻璃上线后,光电传感器感应有玻璃在convey-or上,玻璃缓慢移动到STOP位,启动下一节conveyor同时本机以同样的速度D向前传动,直至玻璃移出本机,在下一节conveyor上玻璃加速到A,到达Slow位停0.5秒,再以低速度B将玻璃移到STOP位等待2秒,同时启动并向后面的convey-or传送,直到目的地。 Conveyor构成有硬件部分和软件部分,在此我们先不说软件,说硬件部件如下:机械主体支架一副,滚轮轴10根,环形皮带1根,皮带轮10个,轴承20个(与滚轮轴配套),固定螺丝若干,易福门光电传感器OGH5002只,SEW变频一体电机一台,威琅I/O模块一只,7芯电缆若干,1芯扁平电缆若干。 各个部分功能如下: 机械主体支架:为conveyor提供支撑功能。 滚轮轴:conveyor功能传动部分,产品通过滚轮传动。 环形皮带:动力传动,将马达的转动转换成皮带轮的转动。 皮带轮:连接皮带与滚轮,实现10根滚轮的联动。 轴承:固定并是滚轮润换。 固定螺丝:固定各个机械电气部件。 OGH500:用于设备对产品的检测,以及设备的启动与停止的启动信号。 SEW变频一体电机:将电力转换成动力。 威琅I/O模块:1是接受OGH500的信号;2控制电机的启动与停止。 七芯电缆:提供380*3和RS485信号连接。 二芯扁平电缆:As-i电源与信号传递。 各个部件的功能我们都已经知道了,那么当设备出先故障现象时,我们就能缩小故障的检查范围,降低维修时间,提高设备的稼动率,这是设备维修方面;那么当设备改造时,依照要增加的功能,选择合适的零部件、传感器、执行器,就能很快的制作出来满足生产的需要。 通过此例来举一反三,当我们面对这一台全新的设备时,我们可以按照以下步骤去做: 1.了解设备的功能,也就是它是做什么的。 2.对设备进行检查,记下设备中各个部件的型号,根据检索零部件的的规格、参数。 3.研究、分析设备的组成方式,实现功能的步骤,根据零部件的规格、参数、性能进行分心总结,列表,描写出各个零部件失效时的现象、可能引发的后果、预防检修措施等。 4.日常工作中不断的对6步表格修改-完善,并建立备品备件清单。 5.按照设备功能要求自行设计,为达到功能的要求,选择合适的零部件,含机械、电气等部件并记下型号、规格、参数等等。 6.在笔记本上写下来:如果是我们来设计实现这样功能的设备该如何设计。 7.概念性组合,最好多人探讨,不断的修改,为日后的设备改造升级做好铺垫。 牛无疑是很复杂的,庖丁解牛,为什么能一刀下去,刀刀到位,轻松简单,原因是什么?是因为掌握了它的机理。牛与牛当然各不相同,但不管是什么牛,它们的机理都是一致的;同样设备也是一样,各有各的结构、各有各的机理,其原理也是近似的。庖丁因为熟悉了牛的机理,自然懂得何处下刀。作为工程师在工作中也一样,如果能理解透了、领悟了设备的原理,摸准了其中的规律,就能和庖丁一样,做到目中有牛又无牛,就能化繁为简、化整为零,同时又具有见一叶而知秋的慧眼,在工作中游刃有余,从而真正获得成功。 121

常见硬件工程师笔试题(标准答案)

硬件工程师笔试题 一、电路分析: 1、竞争与冒险 在组合逻辑中,在输入端的不同通道数字信号中经过了不同的延时,导致到达该门的时间不一致叫竞争。因此在输出端可能产生短时脉冲(尖峰脉冲)的现象叫冒险。 常用的消除竞争冒险的方法有:输入端加滤波电容、选通脉冲、修改逻辑设计等。 2、同步与异步 同步逻辑是时钟之间有固定的因果关系。异步逻辑是各时钟之间没有固定的因果关系。 同步电路:存储电路中所有触发器的时钟输入端都接同一个时钟脉冲源,因而所有触发器的状态的变化都与所加的时钟脉冲信号同步。 异步电路:电路没有统一的时钟,有些触发器的时钟输入端与时钟脉冲源相连,只有这些触发器的状态变化与时钟脉冲同步,而其它的触发器的状态变化不与时钟脉冲同步。 异步电路不使用时钟脉冲做同步,其子系统是使用特殊的“开始”和“完成”信号使之同步 同步就是双方有一个共同的时钟,当发送时,接收方同时准备接收。异步双方不需要共同的时钟,也就是接收方不知道发送方什么时候发送,所以在发送的信息中就要有提示接收方开 始接收的信息,如开始位,结束时有停止位 3、仿真软件:Proteus 4、Setup 和Hold time Setup/hold time 是测试芯片对输入信号和时钟信号之间的时间要求。建立时间是指触发器 的时钟信号上升沿到来以前,数据稳定不变的时间。输入信号应提前时钟上升沿(如上升 沿有效)T时间到达芯片,这个T就是建立时间-Setup time.如不满足setup time,这个数据就不能被这一时钟打入触发器,只有在下一个时钟上升沿,数据才能被打入触发器。保持时间是指触发器的时钟信号上升沿到来以后,数据稳定不变的时间。如果hold time不够,数据同样不能被打入触发器。 5、IC设计中同步复位与异步复位的区别 同步复位在时钟沿采集复位信号,完成复位动作。异步复位不管时钟,只要复位信号满足条件,就完成复位动作。异步复位对复位信号要求比较高,不能有毛刺,如果其与时钟关系 不确定,也可能出现亚稳态。 6、常用的电平标准 TTL:transistor-transistor logic gate晶体管-晶体管逻辑门 CMOS:Complementary Metal Oxide Semiconductor互补金属氧化物半导体 LVTTL(L ow Voltage TTL)、LVCMOS(L ow Voltage CMOS):3.3V、2.5V RS232、RS485 7、TTL电平与CMOS电平 TTL电平和CMOS电平标准

硬件工程师EMC必备知识系列

1 硬件工程师EMC必备知识系列(一)接地的基本概念 1.1 引言 接地,是个很复杂的问题,一篇帖子很难说的清楚,同时还想从例子说起,以便能够让大家认识到事物的本质,对我这样一个工科出身的硬件工程师来说还是有些难度,总怕表达不清楚或不到位,把大家引入歧途。尽力吧,讲的不当的地方,希望大家体谅。 1.2 基本概念 接地,比较直观的就是接大地。实际上,接地是一个系统级的概念,接大地已经不能清晰地描述系统接地的概念了。为了清楚表达接地的概念,可以引用亨利.奥特的定义:“接地是为电流返回其源提供的低阻抗通道”。 对于不同的应用,有不同的理解,对于线路工程师来说,接地的含义通常是线路电压的参考点;对于系统设计师来说,它常常是机柜或机架;而对电气工程师来说,它却是绿色安全地线或接到大地的意思。 1.3 接地的作用 设计中接地往往基于各种理由,例如电力配电、安全、信号综合、防雷、EMI和静电放电等等。接地设计时,电流幅度和频率是两项关键因素,他们决定着接地应采用何种方式以及系统对接地质量要求的高低。根据接地需求的不同,接地的主要作用有: (1)防雷接地 把可能受到雷击的物体和大地相接,以提供泄放大电流的通路称之为防雷地。这种接地的目的很明确,就是防止人及物体遭到雷击,这些物体可以是天线、大楼、电子或电气设备等。 由于雷电放电电流一般是脉冲性的大电流(可高达上百千安),其上升沿可达到微秒量级(1-10 微秒,持续时间100 微秒以下),因此要求防雷接地的接地阻抗要小。为了避免雷击电流引发机房设备之间的高电位差,要求设备之间特别是有电气联系或距离较近的设备进行低电感和电阻搭接。 (2)保护接地 保护接地就是为了保护设备、装置、电路及人身的安全。因此,在设备、装置、电路的底盘及机壳端一定要采取保护接地。因保护接地和人身安全相关,保护接地的方式在配电的标准规范中以及安全规范都有严格规定。 保护地主要用以保护工频故障电压对人身造成的危害,其保护原理是:通过把带故障电压的设备外壳短路到大地或地线端,保护过程中产生的短路电流使熔丝或空气开关断开。保护地的工频电阻要求较小,同时要求保护地的可靠性很高。从电源频率的角度来看,如仅对人身安全的保护接地而言,可以不对保护地提出低电感的要求。 (3)工作接地 工作地线是单板、母板或系统之间信号的等电位参考点或参考平面,它给信号回流提供了低的阻抗通道。信号质量很大程度上依赖于工作接地质量的好坏。由于受接地材料特性和其他技术因素的影响,接地导体的连接或搭接无论做的如何好,总有一定的阻抗,信号的回流会在工作地线上产生电压降,

数模混合IC设计流程

数模混合IC设计流程 1.数模混合IC设计 近十年来,随着深亚微米及纳米技术的发展,促使芯片设计与制造由分离IC、ASIC 向SoC转变,现在SoC芯片也由数字SoC全面转向混合SoC,成为真正意义上的系统级芯片。如今人们可以在一块芯片上集成数亿只晶体管和多种类型的电路结构。此时芯片的制造工艺已经超越了传统制造理论的界限,对电路的物理实现具有不可忽略的影响。因此,片上系统所依赖的半导体物理实现方式,面临着多样化和复杂化的趋势,设计周期也越来越长。目前越来越多的设计正向混合信号发展。最近,IBS Corp做过的一个研究预测,到2006年,所有的集成电路设计中,有73%将为混合信号设计。目前混合信号技术正是EDA业内最为热门的话题。设计师在最近才开始注意到混合信号设计并严肃对待,在他们意识到这一领域成为热点之前,EDA公司已经先行多年。EDA业内领头的三大供应商Mentor Graphics、Synopsys和Cadence在几年前即开始合并或研发模拟和混合信号工具和技术。其中Mentor Graphics是第一个意识到这一点,并投入力量发展混合信号技术的EDA供应商。 我们先分析数模混合IC设计的 流程,简单概括如图: 首先要对整个IC芯片进行理论 上的设计。对于模拟部分,可以直接 在原理图的输入工具中进行线路设 计;而对于数字部分,主要通过各种 硬件描述语言来进行设计,比如通用 的VHDL及Verilog,数字部分的设 计也可以直接输入到原理图工具中。 当完成原理图的设计时,必须对设计 及时的进行验证。如果原理设计没有 问题,就说明设计是可行的,但这还 停留在理论的阶段,接下来必须将它 转换为实际的产品。这时需要用版图 工具将电路设计实现出来,对于模拟 电路部分,可以使用定制版图工具; 对于数字电路部分,也可以采用P&R (自动布局布线)工具实现。在完成 整个电路各个模块的版图后,再将它 们拼装成最终的版图。这时的版图并 不能最终代表前面所验证过的设计, 必须对它进行验证。首先版图要符合 流片工艺的要求,这时要对版图做DRC(Design Rule Check)检查;而版图的逻辑关系是不是代表原理图中所设计的,同样要进行LVS(Layout Versus Schematic)检查;最后,由于在实现版图的过程中引入了许多寄生效应,这些寄生的电阻电容有可能对我们的设计产生致

相关文档