文档库 最新最全的文档下载
当前位置:文档库 › 万洲WP系列静止式进相器故障及处理方式(新版)

万洲WP系列静止式进相器故障及处理方式(新版)

万洲WP系列静止式进相器故障及处理方式(新版)
万洲WP系列静止式进相器故障及处理方式(新版)

万洲WP系列静止式进相器故障及处理方式

检查可控硅好坏及更换可控硅

(用万用表测量极间电阻,触发极G与阴极K间电阻为几十欧姆;触发极G与阳极A间电阻大于几十千欧;阳极A与阴极K间电阻大于几十千欧);测量可控硅时因前后是铜排相连接的,当检测到一只可控硅有问题时,你在测量这一相的可控硅时,测的结果是其他都有问题。此时应把铜排拆下后逐个测量。换可控硅时就注意阴阳的位置,别装反了,应注意在安装时为了保证可控硅的平整度,在散热器上加有一个钢珠,另紧螺丝时散热器的两个螺丝应保持一致。

在拆铜排时应做好标记,哪一个根在什么位置,否则在安装时位置不对,螺丝孔也有偏差,不好安装。

可控硅控制极对阴极有0.2-0.5V以上的直流电压

●严禁在进相器运行期间,切断进相器外部电源,否则,主电机将

停机;

●定期检查进相器运行参数(主变压器输入、输出电流、可控硅温

度、铜排温度等);

●定期检查控制器状态指示灯状况;

●定期检查风扇运行状况;

●定期检查可控硅阻容保护是否完好,发生损坏应立即更换,否则

容易损坏可控硅;

●定期打扫柜内卫生;

静止式进相器拨码开关

试验状态(在未开电机情况下,模拟进相操作)

工作状态(开电机进相)

变频器故障及处理方法

1、如何区分重故障和轻故障? 轻故障时,系统发出报警信号,故障指示灯闪烁。重故障发生时,系统发出故障指示,故障指示灯常亮。同时发出指令去分断高压、合闸 禁止,并对故障信息、高压分断指令作记忆处理。重故障状态不消除, 故障指示、高压分断指令依然有效。 2、轻故障都有哪些? 轻故障包括:变压器超温报警、柜温超温报警、柜门打开、单元旁路,系统对轻故障不作记忆处理,仅有故障指示,故障消失后报警自动 消除。变频器运行中出现轻故障报警,系统不会停机。停机时出现轻故 障报警,变频器可以继续启动运行。 3、重故障具体都有哪些? 系统发生下列故障时,按照重故障处理,并在监视器左上角显示重故障类型:外部故障、变压器过热、柜温过热、单元故障、变频器过流、 高压失电、接口板故障、控制器不通讯、接口板不通讯、电机过载、参 数错误、主控板故障。单元故障包括:熔断器故障、单元过热、驱动故障、光纤故障、单元过压。外部故障必须先解除高压分断(柜门按钮或 外部接点)状态再系统复位,才能使系统恢复到正常状态;除外部故障 以外的重故障发生后,直接系统复位即可使系统恢复到正常状态,但在 再次上电前一定要找出故障原因。单元故障发生后,只有再次上高压电源方能检测到单元状态。若故障较难分析且无法确定能否二次上高压时,请向厂商咨询。注意:切忌在未查明故障原因前贸然二次上电,否则可 能严重损坏变频器! 4、变压器超温报警当变压器温控仪测量温度大于其设置的报警温度(默 认设置为100℃)时,温控仪超温报警触点闭合。 检查变压器柜顶风机或柜底风机是否工作正常(如果柜底风机工作不正常,可能出现三相温度相差较大);测温电阻是否正常(有无断线、线路插头接触不良,如果接触不良,温度值将偏高);过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是否过高(环境温度应低于45℃,否则需要加强通风);安装于变压器柜内正面底部的风机开关和接触器是否断开;变压器柜风机控制和保护电路是否正常。 5、柜温超温报警单元柜测温点的温度大于55℃时,系统会发出柜温超温轻故障报警。 检查单元柜柜顶风机是否工作正常,安装于二次室内的风机开关是否跳闸;过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是 否过高(环境温度应低于45℃,否则需要加强通风(墙上安装通风机或柜顶安装风道)或安装制冷设备);变压器柜风机控制和保护电路是否 正常。

电子镇流器的工作原理与常见故障修

电子镇流器的工作原理与常见故障修 一、概述 自GE公司的因曼博士(Inman)等在1938年发明了实际应用的荧光灯,到现在已有近70年的历史。虽然新型光源不断出现,但在一定的时间范围内,荧光灯作为主要照明光源的地位可能难以改变。在日光灯发展的过程中,廉价实用的电感镇流器和启辉器,解决了荧光灯的启动与限流问题,对荧光灯迅速发展和普及曾起到过积极推动作用。然而,时至今日,资源变得越来越紧张了,电感镇流器消耗太多的有色金属使人们一定要想办法用更廉价的电子产品来替代它,电子镇流器在上世纪八十年代应运而生,到目前已 经非常普及。 电子镇流器所用元器件少,电路简单,容易制造,并且市场需求量大,是电子爱好者开始创业时的首选产品,有条件的同学,如果打算出去后大干一场的话,也可以考虑先制造电子镇流器。据我所知在仙 桃市,就有几个人在专门制造电子镇流器。 本讲座开办的目的是让同学们关注灯具的变化,了解日光灯电子镇流器的工作原理,学会修理和制 造电子镇流器。 二、普通日光灯的缺陷 普通日光灯的缺陷除消耗有色金属太多外,其对电能的损耗也是不容忽视的。电感镇流器的绕组的欧姆损耗和铁芯的涡流损耗较大,约占灯功率损耗的15%左右。在荧光灯如此普及的今天,电感镇流器所消耗的总能量是十分巨大的。此外,电感镇流器的功率因数较低,一般为0.5左右,会造成电网的严重污染,电力部门不得不加大功率因数补偿电容,增加了电力成本。 三、电子镇流器的特点 电子镇流器的工作原理是将工频(50Hz或60Hz)电源变换成20~50KHz左右高频电源,直接点灯,无需其它限流器件。与电感镇流器相比,电子镇流器具有以下优点: 1、节能: 1)照明效率提高 普通荧光灯的工作频率为50Hz,其照明高效率因所谓的正电(或负电)降落的存在而很低,当电源频率在1000Hz以上时,这种正电(或负电)降落现象消失。而电子镇流器工作频率一般都在20一50kHz,不产生正电或负电电位跌落,这就是电子镇流器能提高照明效率的原因。 2)电子镇流器自身功率损耗低。 电子镇流器的自身消耗功率较难测量,经间接测量估算,工作点调整较好的电子镇流器,其自身消 耗一般都在灯功率的5%以下。 2、其它优点 由于应用了高频电感,电子镇流器体积小,重量轻;低电压可启动点燃灯管;无需启辉器;无频闪, 无噪声等等。 四、电子镇流器的组成与主流电路分析 1、电子镇流器的组成

接触器常见故障及处理

接触器常见故障及处理 接触器常见故障及处理 一( 按下启动按钮,接触器吸不上或吸力不足,即触点已经闭合但其铁芯尚未完全吸合。 1. 可能的原因: (1) 电源电压过低或波动过大。 (2) 操作回路电源容量不足或发生断线,接线错误及控制触点接触 不良等。 (3) 线圈技术参数与使用条件不符合。 (4) 线圈本身受损。 如:线圈断线或烧损。 如:机械可动部分卡住。 如:转轴生锈或歪斜等。 (5) 触点弹簧压力与行程过大。 2. 处理方法: (1) 调高电源电压至额定值。 (2) 增加电源容量 更换线路 修理控制线圈。 (3) 更换线圈,排除卡住故障 修理受损零件。 (4) 按要求调整触点参数。 二( 按下启动按钮,接触器不释放或释放缓慢。 1. 可能原因: (1) 触头弹簧压力过小。 (2) 触头熔焊在一起。 (3) 机械可动部分卡住,转轴生锈或歪斜。 (4) 反力弹簧损坏。 (5) 铁芯极面有污垢或有尘埃粘着。 (6) E型铁芯寿命终了时,因去磁气隙消失,剩磁增大,使铁芯不 释放。 2. 处理方法: (1) 调整触头参数。 (2) 排除熔焊故障,修理或更换触头。 (3) 排除卡住现象,修理受损零件。 (4) 更换反力弹簧。 (5) 清洁铁芯极面。

(6) 更换铁芯。 三( 线圈过热或烧损。 1. 可能原因: (1) 电源电压过高或过低。 (2) 线圈技术参数与时间使用条件不符 如:额定电压 如:额定频率 如:通电持续率 如:适用工作制等等。 (3) 操作频率过高。 (4) 线圈制作不良或由于机械损伤,绝缘损坏等。 (5) 使用环境条件特殊 如:空气潮湿 如:含有腐蚀性气体 如:环境温度过高等。 (6) 运动部件被卡住。 (7) 交流铁芯极面不平或气隙过大。 2. 处理方法: (1) 调整电源电压。 (2) 调换线圈或接触器。 (3) 选择其他合适的接触器。 (4) 更换线圈,排除引起线圈机械损伤的故障。 (5) 采用特殊设计的线圈。 (6) 排除卡住现象。 (7) 清洁极面或调换铁芯。四( 电磁铁(交流)噪音大。 1. 可能原因: (1) 电源电压过低。 (2) 触头弹簧压力过大。 (3) 磁系统歪斜或机械上卡住,使铁芯不能系平。 (4) 极面生锈或因异物如:油垢,尘埃等侵入极面。 (5) 短路环断裂。 (6) 铁芯极面磨损过度而不平。 2. 处理方法: (1) 提供操作回路电压。 (2) 调整触头弹簧压力。 (3) 排除机械卡住故障。 (4) 清洁铁芯极面。

变频器常见故障及处理

变频器常见故障 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5、5kW变频器时,客户送修時标明电机行抖动,此时第一反应就是输出电压不平衡、在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1、5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的就是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不就是参数问题,又怀疑就是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此瞧来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3、7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的就是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于就是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查瞧,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7、5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬

变频器的常见故障及处理方法介绍

变频器的常见故障及处理方法介绍 在变频器维修时我们需要根据变频器的故障来判断,一般发生的故障和损坏的特征一般可分为:一种是在运行中频繁出现的自动停机现象,并伴随着一定的故障显示代码,其处理措施可根据随机说明书上提供的指导方法,进行处理和解决。这类故障一般是由于变频器运行参数设定不合适,或外部工况、条件不满足变频器使用要求所产生的一种保护动作现象。另一类是由于使用环境恶劣,高温、导电粉尘引起的短路、潮湿引起的绝缘降低或击穿等突发故障(严重时,会出现打火、爆炸等异常现象)。这类故障发生后,一般会使变频器无任何显示,其处理方法是先对变频器解体检查,重点查找损坏件,根据故障发生区,进行清理、测量、更换,然后全面测试,再恢复系统,空载试运行,观察触发回路输出侧的波形,当6组波形大小、相位差相等后,再加载运行,达到解决故障的目的。 关于变频器的常见故障以及维修方法详解 1.维修变频器整流块损坏 变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。 中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。 在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。如果没有同型号整流块时,可用同容量的其它类型的整流块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。 2.变频器充电电阻易损坏维修 导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。 其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。也可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的阻值大小确定)判断。

艾默生变频器故障及处理方法

艾默生变频器故障及处理方法 艾默生变频器故障及处理方法故障代码故障类型 故障代码故障类型 POFF 输入欠压E008 输入缺相 E001 加速过流E009 输出缺相 E002 减速过流E010 模块保护 E003 恒速过流E011 逆变过热 E004 加速过压E012 整流过热 E005 减速过压E016 读写故障 E006 恒速过压E018 接触器未吸合 E007 控制电源过压E019 电流检测电路 故障 1、电流检测故障 (如报E019,E001): (1)控制板Q1(15050026)坏。 (2)7840坏:在变频器通电时,用直流档,黑接5脚,红分别接6,7,8脚,值为 2.5,2.5,5为正常,否则7840坏。 (3)小板坏:在变频器通电时,用直流档,黑接7840的5脚,红分别接小板的脚从左到右应为 2.5,2.5,2.5,3.4 1.5 ,0,1.6。

如值不对,小板坏:此时可更换小板坏中的三个小 IC(39030024 LMV393),如还不好,更换小板。 2、显示POFF: 驱动板上电POFF,测CVD电压正常应为 2.6-2.7,如测得1.9,可能R51,R52,C36,C37,排线中的某一个坏,其中的电解电容坏的最多。只在带电机运行时报POFF,驱动板变压器也有可能坏。 3、缓冲电阻坏: 缓冲电阻和滤波大电容是成对的。如果其一坏,另一个 很可能也坏。缓冲电阻坏也有可能是继电器不吸合(继电器坏或控制板坏,或与二者相连的电路上元件坏)引起。单相输入(220V)的变频器, 特别要注意:如果无显示或炸机,很可能是用户接入了 三相电(380V)引起的(可察控制板的故障记录:母线电压是否由310变为了540)。此时不断IPM的整流桥已坏,滤波大电容也坏(或炸裂或顶面凸起变硬)。如果只更换IPM后就上电,会听到“啪,啪”的响声(电容内的声音),应立即掉电,否则IPM的整流桥又会坏。发现一个大电容坏,最 好都换新的。因电容是易坏易老化的器件。 4、显示不稳: 先有显示,然后没有,风扇停下,电压只有12,此种现

电子镇流器电路原理图及故障分析

电子镇流器电路原理图及故障分析 荧光灯镇流器有电感式镇流器和电子式镇流器。电子镇流器因具有高效、节能、重量轻等特点,而越来越被广泛使用。电子镇流器是将市电经整流滤波后,再经DC/AC电源变换器(逆变)产生高频电压点亮灯管。其特点是灯管点燃前高频高压,灯管点燃后高频低压(灯管工作电压)。目前最广泛使用的是具有电压馈电半桥式逆变器类型的电子镇流器。现以该类型逆变器为例,介绍电子镇流器的电路组成和工作原理。 一、典型电路组成 图中BR及C1构成整流滤波电路。R1、C2及VD2构成半桥逆变器的启动电路。开关晶体管VT1、VT2,电容器C3、C4及T1构成振荡电路。同时VT1、VT2兼作功率开关,VT1和VT2为桥路的有源侧,C3、C4是无源支路,L1、C5及FL组成电压谐振网络。 二、工作原理 在给电子镇流器加市电后,经BR整流C1滤波后,得到约300V的直流电压。电流流经R1对启动电容C2充电.当C2两端电压升高到VD2的转折电压值后,VD2击穿;C2则通过VT2的基极-发射极放电,VT2导通。在VT2导通期间半桥上的电流路径为:+VDc-C3-灯丝FL1-C5-灯丝FL2-振流圈L1-T1初级线圈Tla-VT2-地。电流随VT2导通程度的变化而变化。同时,流过Tla的电流在T1的两个次级线圈T1b和T1c两端产生感应电势。极性是各绕组同名端为负。T1c上的感应电势使得VT2基极的电位进一步升高。V12集电极电流进一步增大,这个正反馈过程,使VT2迅速进入饱和导通状态。V12导通后。C2将通过VD1和VT2放电。T1c、T1b的感应电势逐渐减小至零。VT2基极电位呈下降趋势,IC2减小,T18中的感应电势将阻止IC2减少,极性是同名端为正。于是VT2基极电位下降,VT1基极电位升高,这种连续的正反馈使VT2迅速由饱和变到截止。而VT1则由截止跃变到饱和导通,半桥上的电流路径为:+VDc—VT1-T1a-L1-灯丝FL2-C5-灯丝FL1-C4-地。与VT2情况相同,正反馈又使得VT1迅速退出饱和变为截止状态。VT2由截止跃变为饱和导通状态。如此周而复始,VT1和V12轮流导通,流过C5的电流方向不断改变。由C5、L1及灯丝组成的LC网络发生串联谐振。C5两端产生高压脉冲,施加到灯管上,使灯点燃。灯点燃后L1起到了限流的作用。 因接错输出线,导致灯管工作电流波峰比(Ilcf)和灯丝电流波峰比(Ifcf)严重偏离正常值!这样会加重灯管快速黑头或整流效应!

变频器常见故障分析与处理

变频器常见故障分析与处理 本系列变频器具有过流、过热、过载、欠压多种保护功能。当发生故障时,变频器就会立即报警跳开,LED监视器上显示相应的故障类型,并且电动机自动停止转动。当排除故障后,按“STOP”键或输入控制电路端子复位命令,即能解除报警跳开状态。 故障代码表: 一过压:分别为加速时过电压(E002)、定速时过电压(E003)、停止时过电压(E00A)、减速时过电压(E00B) 分析:E002、E003、E00A、E00B故障出现的直接原因就是变频器本身检测到的电压过高。

而出现E002、E003、E00A根本原因有三个:1)外部实际电网电压过高,处理方法:降低电网电压(可采用稳压电源)。2)变频器检测到的电压(U)比外部实际的高,处理方法:重新检测电压(进入内部参数b123)。3)能量反馈,电机实际转速高于变频器输出(即电机被拖动);处理方法:去除电机拖动现象或加能耗电阻。4)变频器内部电压检测电路有故障,与办事处联系维修。 出现E00B则与下列几个因素有关:减速时间、制动器(制动电阻或制动单元)、负载惯性 减速时间过短会使变频器在减速过程中产生反馈电压(减速时间越短同样的负载产生的反馈电压越大),如果没有制动器或制动器过小,那就无法消耗这部分多余的电压,当电压高到一定值时(460)就会跳E00B报警,而负载惯性越大同样的减速时间产生的反馈电压就越高。所以,应适当的加长减速时间。 二欠压:E001 出现E001故障报警的原因有: 1)外部电网电压异常(缺相、三相不平衡、电压过低); 2)有大容量负载在同一线运行,处理方法:另选电源; 3)变频器检测到的电压(U)比实际低,处理方法:重新检测电压(进入内部参数b123); 4)变频器内部故障,继电器没吸合(现象是带负载时跳)。处理方法:检查继电器接口是否接触良好;否,则为变频器内部电压检测电路故障,与办事处联系。 三过流:分别为加速时过电流(E004)、定速时过电流(E005)、减速时过电流(E006)出现这三类故障的原因有: 1)电机连接端子相间短路,处理方法:检查输出线路及负载; 2)负载突变或过重,处理方法:减小线路负载,检查变频器与电机搭配是否适当; 3)加速时间过短,处理方法:加长加速时间;

变频器常见故障及处理方法

变频器常见故障及处理方法 1 引言 IGBT变频调速器,自研制开发投入市场以来,以其优越的调速性能,可观的节能量已为广大的电机用户所接受,正以每年大规模的销售量走向社会,为电力、建材、石油、化工、煤矿等各行业的发展提供了优质的服务,其用户群已遍布生产的各行各业,成为广大用户所喜爱的产品。 这里笔者结合自己在长期的售后服务工作中经历的一些常见故障及处理方法,提出来与广大的用户及维修工作者进行探讨,以期把该产品使用得更好,更切实的为顾客服务。 2 变频器运行中有故障代码显示的故障 在变频器的使用说明书中,有一栏具体阐述了变频器有故障代码显示的故障,具体如表1所示。注:表1中Io、Vo分别是输出额定电流、输入额定电压;Vin是输入电压。 现就这几种情况作一下分析。 表1 故障代码显示的故障 2.1 短路保护 若变频器运行当中出现短路保护,停机后显示“0”,说明是变频器内部或外部出现了短路因素。这

有以下几方面的原因: (1) 负载出现短路 这种情况下如果把负载甩开,即将变频器与负载断开,空开变频器,变频器应工作正常。这时我们用兆欧表(或称摇表)测量一下电机绝缘,电机绕组将对地短路,或电机线及接线端子板绝缘变差,此时应检查电机及附属设施。 (2) 变频器内部问题 如果上述检测后负载无问题,变频器空开仍出现短路保护,这是变频器内部出现问题,应予以排除。如图1所示。 图1 变频器主电路示意图 在逆变桥的模块当中,若IGBT的某一个结击穿,都会形成短路保护,严重的可使桥臂击穿,甚至于送不上电,前面的断路器将跳闸。这种情况一般只允许再送一次电,以免故障扩大,造成更大的损失,应联系厂家进行维修。 (3) 变频器内部干扰或检测电路有问题 有些机子内部干扰也易造成此类问题,此时变频器并无太大的问题,只是不间断的、无规律的出现短路保护,即所谓的误保护,这就是干扰造成的。 变频器的短路保护一般是从主回路的正负母线上分流取样,用电流传感器经主控板的检测传至主控芯片进行保护的,因此这些环节上任何一处出现问题,都可能造成故障停机。 对于干扰问题,现低压大功率的及中高压变频器都加了光电隔离,但也有出现干扰的,主要是电流传感器的控制线走线不合理,可将该线单独走线,远离电源线、强电压、大电流线及其他电磁辐射较强的

接触器的继电器在吸合或分断时火花太大的原因及处理方法

接触器的继电器在吸合或分断时火花太大的原因及处理方法 火花太大,不仅会导致触头磨损过快,缩短电器使用寿命,还会造成触头粘连故障,对附近的无线电设备和控制系统也会产生干扰,因此必须采取措施加以抑制。最常见的消火花方法有: 1、采用RC回路 在线圈两端并接RC串联回路,将线圈中的磁能转换为电容C的电能,并通过电阻及、电容C和线圈本身的阻抗消耗掉。 电阻R的阻值可取50~200Ω、1~2W,线圈功率越大,取阻值越小,瓦数越大;电容C的容量可取0.047~2μF,耐压大于线圈额定电压,线圈功率越大,取电容量越大。电阻R和电容C元件的参数值通常可由试验来确定。 2、采用二极管 在线圈两端并联一只二极管VD,二极管的方向应当是接触器接通时电流不通过它。这样,当触头断开时,由于放电电流方向而将磁消耗在二极管内阻和线圈的阻抗中。 二极管VD可选择耐压大于线圈的额定电压Z、正向电流大于E /R(R为线圈的直流电阻)的任何二极管,如1N4004(1A/400V)或1N4004(1A/700V) 3、采用压敏电阻 在线圈两端并接压敏电阻RV。氧化锌压敏电阻的阻值对外加电压

很敏感,外加电压增大时,其阻值减小,外加电压越大,阻值下降越显著。当线圈工作时,加在RV两端的电压为线圈的工作电压,RV 阻值极大。当线圈断开时,RV两端的电压剧增,其阻值剧减,于是就抑制了浪涌电压的产生,避免了触头火花。 接触器的触头接触不牢靠的原因及处理 方法 触头接触不牢靠会使动静触头间接触电阻增大,导致接触面温度过高,使面接触变成点接触,甚至出现不导通现象。造成此故障的原因有: (1)触头上有油污、花毛、异物。 (2)长期使用,触头表面氧化。 (3)电弧烧蚀造成缺陷、毛刺或形成金属屑颗粒等。 (4)运动部分有卡阻现象。 处理方法有: (1)对于触头上的油污、花毛或异物,可以用棉布蘸酒精或汽油擦洗即可。 (2)如果是银或银基合金触头,其接触表面生成氧化层或在电弧作用下形成轻微烧伤及发黑时,一般不影响工作,.可用酒精和汽油

AB变频器常见故障的原因及处理方法

AB变频器常见故障一、电动机不能启动 原因:没有输出电压送给电动机。 补救措施:检查电源电路,如电源电压、所有熔断器以及断路装置,检查电动机票,核查电动机连接是否正确,控制输入信号,起动信号是否存在。I/O端子01是否激活,核查P036与组态是否匹配。核查A095是否没有禁止转动。 AB变频器常见故障二、变频器不能从端子排连接线所送入的启动或运行输入启动 原因: 变频器存在故障。这类原因补救措施主要是清除故障,按停止键,重新上点,将A100设置为选项1“清除故障”。若A051—A052被设置为选项7“清除故障”,则重新送入数字量输入信号。 编程不正确。补救措施为检查参数设置。 输入接线不正确。补救措施:正确接线并/或安装跳线。 AB变频器常见故障三、变频器不能从集成式键盘启动 原因: 集成式键盘没被使能。将参数P036设置为选项0,将参数A051—A052设置为选项5,并激活输入。 I/O端子01的“停止”输入信号不存在。正确接线并/或安装跳线。 AB变频器常见故障四、变频器对速度命令不作响应 原因: 速度命令源中没有给定速度。检查参数D012,看控制信号来源是否正确。如果是模拟量输入,则检查接线并用表计检查信号是否存在。检查参数D002,核查命令是否正确。 通过远程设备或数字量输入选择了不正确的基准信号源。检查参数D012,检查参数D014,看输入是否选择交流电源。核查A051—A052的设置。检查P038中的速度基准来源。如果有必要就重新编程。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/1a13987399.html,/

变频器常见故障代码及处理实例

一、过流(OC) 令狐采学 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,

更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。三、欠压(Uu)

励磁系统常见故障及其处理方法

励磁系统常见故障及其处理方法 1、起励不成功 原因1:起励按钮/按键接通时间短,不足以使发电机建立维持整流桥导通的电压。 处理方法:保持起励按钮持续接通5秒以上。 原因2:发电机残压太低,却仍然投入“残压起励”,这样即使按起励按钮超过5秒,也不会起励成功。 处理方法:切除“残压起励”功能,直接用辅助电源起励。 原因3:将功率柜的脉冲投切开关仍置于切除位置。 原因4:整流桥的交流电源未输入(励磁变高压侧开关或低压侧开关未合上)。 原因5:同步变压器的保险丝座开关未复位。 原因6:机组转速未到额定,而转速继电器提前接通,造成自动起励回路自动退出。 原因7:起励电源开关未合,起励电源未送入起励回路。 原因8:起励接触器未动作或主触头接触不良。 原因9:起励电源正负极输入接反,导致起励电流无法输入转子。 原因10:起励电阻烧毁开路。 原因11:转子回路开路。 原因12:转子回路短路。 原因13:始终存在“逆变或停机令”信号。(近方逆变旋钮开关未复位;远方监控或保护的停机令信号未复位) 原因14:灭磁开关控制回路的分闸切脉冲或分闸逆变信号始终保持。原因15:调节器没有开机令信号输入。 原因16:可控硅整流桥脉冲丢失或可控硅损坏。 原因17:调节器故障 原因18:调节器脉冲故障。 原因19:脉冲电源消失或电路接触不良。 原因20:灭磁开关触头接触不良。

2、起励过压 原因1:励磁变压器相序不对。 原因2:PT反馈电压回路存在故障。 原因3:残压起励回路没有正确退出。 原因4:调节器输出脉冲相位混乱。 3、功率柜故障 原因1:风压低,风压继电器接点抖动。 处理方法:调整风压继电器行程开关的角度。 原因2:风温过高,温度高于50度。 处理方法:对比两个功率柜,检查测温电阻是否正常。 原因3:电流不平衡,6个可控硅之间均流系数<0.85。 处理方法:检查是否有可控硅不导通或霍尔变送器测量误差。 4、PT故障 条件:PT电压>10%,任一相电压低于三相平均值的83%。 原因1:PT高压侧保险丝熔断 处理方法:测量PT输入端三相电压,检查电压是否平衡。 原因2:模拟量总线板故障,其中间电压互感器或接线插头有问题。 处理方法:将输入A/B套DSP板的接线插头互相调换测试。 原因3:调节器DSP板故障,导致PT电压测试不准确 处理方法:更换对应的DSP板,或将A/B套DSP板互换。 5、调节器故障 原因1:调节器硬件故障,包括CPU、DSP、I/O板故障。 处理方法:更换对应的电路板,或将A/B套电路板互换。 原因2:同步信号没有输入调节器。 处理方法:检查进入开关量总线板的同步信号是否正常。 原因3:程序跑飞或CPU死机造成程序运行超时 处理方法:按RESET键将程序重新启动,观察程序重新运行是否正常。

接触器常见故障及处理

接触器常见故障及处理 一.按下启动按钮,接触器吸不上或吸力不足,即触点已经闭合但其铁芯尚未完全吸合。 1.可能的原因: (1)电源电压过低或波动过大。 (2)操作回路电源容量不足或发生断线,接线错误及控制触点接触不良等。 (3)线圈技术参数与使用条件不符合。 (4)线圈本身受损。 如:线圈断线或烧损。 如:机械可动部分卡住。 如:转轴生锈或歪斜等。 (5)触点弹簧压力与行程过大。 2.处理方法: (1)调高电源电压至额定值。 (2)增加电源容量 更换线路 修理控制线圈。 (3)更换线圈,排除卡住故障 修理受损零件。 (4)按要求调整触点参数。

二.按下启动按钮,接触器不释放或释放缓慢。 1.可能原因: (1)触头弹簧压力过小。 (2)触头熔焊在一起。 (3)机械可动部分卡住,转轴生锈或歪斜。 (4)反力弹簧损坏。 (5)铁芯极面有污垢或有尘埃粘着。 (6)E型铁芯寿命终了时,因去磁气隙消失,剩磁增大,使铁芯不释放。 2.处理方法: (1)调整触头参数。 (2)排除熔焊故障,修理或更换触头。 (3)排除卡住现象,修理受损零件。 (4)更换反力弹簧。 (5)清洁铁芯极面。 (6)更换铁芯。 三.线圈过热或烧损。 1.可能原因: (1)电源电压过高或过低。 (2)线圈技术参数与时间使用条件不符 如:额定电压 如:额定频率

如:通电持续率 如:适用工作制等等。 (3)操作频率过高。 (4)线圈制作不良或由于机械损伤,绝缘损坏等。(5)使用环境条件特殊 如:空气潮湿 如:含有腐蚀性气体 如:环境温度过高等。 (6)运动部件被卡住。 (7)交流铁芯极面不平或气隙过大。 2.处理方法: (1)调整电源电压。 (2)调换线圈或接触器。 (3)选择其他合适的接触器。 (4)更换线圈,排除引起线圈机械损伤的故障。(5)采用特殊设计的线圈。 (6)排除卡住现象。 (7)清洁极面或调换铁芯。 四.电磁铁(交流)噪音大。 1.可能原因: (1)电源电压过低。 (2)触头弹簧压力过大。

康沃变频器常出现故障及处理方法

随着应用的不断推广,康沃品牌越来越深受用户欢迎,为让用户进一步了解康沃变频器,方便用户使用,现将康沃变频器在使用中常出现的故障及处理方法进行介绍。 4.1、故障P.OFF 康沃变频器上电显示P.OFF延时1~2秒后显示0,表示变频器处于待机状态。在应用中若出现变频器上电后一直显示P.OFF而不跳0现象,主要原因可能为输入电压过低、输入电源缺相及变频器电压检测电路故障。处理时应先测量电源三相输入电压,R、S、T端子正常电压为三相380V,如果输入电压低于320V 或输入电源缺相,则应总判定为外部电源故障。如果输入电源正常,则可判断为变频器内部电压检测电路或缺相保护故障。对于康沃G1/P1系列90kW及以上机型变频器,故障原因主要为内部缺相检测电路异常,缺相检测电路由两个单相380V/18.5V变压器及整流电路构成,处理时可测量变压器的输出电压是否正常。 4.2、故障ER08 康沃变频器出现ER08故障代码表示变频器处于欠压故障状态。主要原因有输入电源过低或缺相、变频器内部电压检测电路异常、变频器主回路电路异常等。通用变频器电压输入范围为三相320V~460V。在实际应用中当变频器满载运行,而输入电压低于340V时可能会出现欠压保护,这时应提高电网输入电压或变频器降额使用;若输入电压正常,变频器在运行中却出现ER08故障,则可判断为变频器内部故障。如图1所示可能为主回路中KS接触器跳开使限流电阻在变频器运行时串联到主回路中,这时若变频器带负载运行便会出现ER08故障。若变频器主回路正常,出现ER08报警的原因大多为电压检测电路故障。一般变频器的电压检测电路为开关电源的一组输出,经过取样、比较电路后给CPU处理器,当超过设定值时,CPU根据比较信号输出故障封锁信号并封锁IGBT,同时显示故障代码。 4.3、故障ER02ER05 故障代码ER02/ER05表示变频器在减速中出现过流或过压故障,主要原因为减速时间过短、负载回馈能量过大未能及时被释放。若电机驱动惯性较大的负载,当变频器输出频率(即电机的同步转速)下降时电机的实际转速可能大于同步转

整流器的原理和维修技巧

在采用交流发电机的电源系统中,整流器是该系统的重要组成部分。整流器实际上是一个硅二极管或由几个硅二极管组成,它的外形、结构和符号如图1所示。硅二极管则由一个PN 结加上电极引线和外壳所构成,它的两个电极,正极接P 型区,负极接N 型区。 一、整流器的作用 整流器用在交流发电机电源系统中,其作用一是将交流发电机产生的交流电变为直流电,以实现向用电设备供电和向蓄电池充电;二是限制蓄电池电流倒流回发电机,保护发电机不被逆电流烧坏。硅二极管具有单向导电的特性,即在硅二极管两端加上一定的电压(电源正

极接二极管正极,电源负极接二极管的负极)时,二极管就导通,有电流流过,反之,二极管不导通,无电流通过。 这样,电流只能从一个方向通过。人们利用二极管的这个特性,制成整流器。当给整流器加上交流电压时,只允许交流电的正半周通过,而负半周不通过,因此在整流器的负端便输出脉动直流电。 二、整流器的种类及结构 1. 单相半波整流器 图2所示是单相半波整流电路图,它由磁电机、整流器、用电设备和蓄电池组成。当永久磁铁旋转时,产生旋转磁场,定子绕组切割磁力线后便产生交流电压,由一个硅二极管完成半波整流,整流后的直流(脉动)电供给用电设备和向蓄电池充电。铃木A100 、AX100 、TR125 及雅马哈DX100 等型号的摩托车均采用这种电路。这是最简单的整流电路。 2. 单相全波桥式整流器 幸福XF250C 、D 型摩托车采用的电源电路为单相桥式整流电路,如图3所示。封装在散热片内的四只硅二极管组合成单相全波桥式整流器。当发电机输出交流电时,在交流电的正半周(A 正B 负),电流从A 端、二极管VD3 、蓄电池正极、负极、二极管VD2 到B 端;在负半周时(A 负B 正),电流从B 端、二极管VD1 、蓄电池正极、负极、二极管VD4 到A 端。幸福XF250 系列摩托车用电设备均使用直流电,因此供电电流、电压要相应地提高一些,利用全波桥式整流器完全可以胜任这一点。 3. 三相全波桥式整流器 三相交流发电机配用的整流器是三相全波桥式整流器,电路如图4所示。整流器由六只大功率硅二极管(VD1 ~VD6 )组成,其中三个正极管(VD1 ~VD3 ),三只负极管

高压变频器32个常见故障及处理

高压变频器32个常见故障及处理 1、如何区分重故障和轻故障? 轻故障时,系统发出报警信号,故障指示灯闪烁。重故障发生时,系统发出故障指示,故障指示灯常亮。同时发出指令去分断高压、合闸禁止,并对故障信息、高压分断指令作记忆处理。重故障状态不消除,故障指示、高压分断指令依然有效。 2、轻故障都有哪些? 轻故障包括:变压器超温报警、柜温超温报警、柜门打开、单元旁路,系统对轻故障不作记忆处理,仅有故障指示,故障消失后报警自动消除。变频器运行中出现轻故障报警,系统不会停机。停机时出现轻故障报警,变频器可以继续启动运行。 3、重故障具体都有哪些? 系统发生下列故障时,按照重故障处理,并在监视器左上角显示重故障类型:外部故障、变压器过热、柜温过热、单元故障、变频器过流、高压失电、接口板故障、控制器不通讯、接口板不通讯、电机过载、参数错误、主控板故障。单元故障包括:熔断器故障、单元过热、驱动故障、光纤故障、单元过压。外部故障必须先解除高压分断(柜门按钮或外部接点)状态再系统复位,才能使系统恢复到正常状态;除外部故障以外的重故障发生后,直接系统复位即可使系统恢复到正常状态,但在再次上电前一定要找出故障原因。单元故障发生后,只有再次上高压电源方能检测到单元状态。若故障较难分析且无法确定能否二次上高压时,请向厂商咨询。注意:切忌在未查明故障原因前贸然二次上电,否则可能严重损坏变频器! 4、变压器超温报警当变压器温控仪测量温度大于其设置的报警温度(默认设置为100℃)时,温控仪超温报警触点闭合;

检查变压器柜顶风机或柜底风机是否工作正常(如果柜底风机工作不正常,可能出现三相温度相差较大);测温电阻是否正常(有无断线、线路插头接触不良,如果接触不良,温度值将偏高);过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是否过高(环境温度应低于45℃,否则需要加强通风);安装于变压器柜内正面底部的风机开关和接触器是否断开;变压器柜风机控制和保护电路是否正常。 5、柜温超温报警单元柜测温点的温度大于55℃时,系统会发出柜温超温轻故障报警。 检查单元柜柜顶风机是否工作正常,安装于二次室内的风机开关是否跳闸;过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是否过高(环境温度应低于45℃,否则需要加强通风(墙上安装通风机或柜顶安装风道)或安装制冷设备);变压器柜风机控制和保护电路是否正常。 6、变压器过热变压器温控仪测量温度大于其设置的跳闸温度 (默认设置为130℃)时,温控仪跳闸触点闭合,系统会报变压器过热重故障。温控仪显示的温度是否在130度以上,若不是则检查温控仪的超温报警值是否设定为130度;其余检查项见变压器超温报警。 7、柜温过热 单元柜测温点的温度大于60℃时,系统会报柜温过热重故障。检查项见柜温超温报警。 8、柜门联锁报警行程开关是否与柜门顶碰件压实; 行程开关的“预行程”和“过行程”是否合适;行程开关电气功能是否工作正常;否则更换接口板。 9、控制器不通讯确认监视器控制板到主控板的通讯线是否连接无误

变频器故障及处理方法

变频器故障及处理方法 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 一、变频器干扰的来源 首先是来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落 (3)尖峰电压脉冲 (4)射频干扰。 1、晶闸管换流设备对变频器的干扰

当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。 2、电力补偿电容对变频器的干扰 电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。 其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。 变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。 (1)输入电流的波形变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。它具有很强的高次谐波成分。有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。 (2)输出电压与电流的波形绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的。 二、干扰信号的传播方式 变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 (1)电路耦合方式即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频器输入电流干扰信号的主要传

相关文档