文档库 最新最全的文档下载
当前位置:文档库 › 英文翻译格式

英文翻译格式

英文翻译格式
英文翻译格式

附录1

A simplified approach for settlement calculation of pile

groups considering pile-to-pile interaction

in layered soils

1 Introduction

Piles, generally arranged in groups, are used in various applications to support structures exposed to vertical loads. In many cases, the settlement of pile groups is the controlling factor in design because the primary purpose of pile groups is to limit the deformation of structures. Therefore, many researchers have proposed different methods to investigate the behavior of the settlement of pile groups.

The current methods for estimating the settlement of pile groups can be categorized as: 1) Numerical methods, such as finite element method, and boundary element method. As a very powerful technique, numerical methods can readily calculate the settlements of pile groups in terms of the nonlinearity of soils and the interaction between individual piles by performing full three-dimensional-models for pile groups. However, the application of numerical methods is limited in practice for the complex modeling procedures and the high computational requirements, especially for large numbers of pile groups. 2) Equivalent pier methods. The methods consider the pile groups as a whole pier to simplify the procedure for estimating the settlement of pile groups which equals that of single pile by means of load-transfer function. The obvious drawback of equivalent pier method is that the computed settlement is only relative to the size of the equivalent pier by neglecting the influence of the pile number and pile space in pile groups. 3) Superimposing methods. The methods, originally introduced by POULOS, are widely used recently which estimate the settlements of pile groups by superimposing the interaction factors of any two individual piles. LEE developed a procedure to calculate the interaction factors for both rigid and flexible pile groups. COSTANZO and LANCELLOTA proposed an approximate solution to evaluate the interaction factors taking into account the nonlinearity characteristic of surrounding soil around piles. WONG and POULOS modified the interaction factors which can account for the different type of piles. However, the superimposing method does not consider

the reinforcing effects of pile group, i.e. the settlement reduction of soils due to the presence of the neighboring piles. As a result, the computed settlement of pile groups is usually greater than the actual result. Therefore, it is required that developing a simplified approach for estimating the settlement of pile groups considering the reinforcing effect of piles induced by the interaction between individual piles in pile groups which can readily be used in practice.

This work presents a simplified approach to carry out a load settlement analysis of pile groups subjected to vertical loads in layered soils by using two models. First, the shear-deformation model of soils deduced from the method presented by RANDOLPH and WROTH, is developed to simulate the interaction between individual piles in pile groups. The load-transfer model, general used in analyzing the behaviors of single piles, is then extended to estimate the settlement of pile groups by accounting for the interaction between individual piles. Consequently, the relationship between the settlement and the vertical load of pile groups is developed. Results of a certain laboratory on pile groups are used to verify the proposed approach in this work. The influences of the pile space and pile length on the settlement of pile groups are also discussed.

2 Interaction between piles

This work focuses on the vertically-loaded pile groups consisting of n identical piles with the same length L, diameter d, pile space S, and elastic embedded in layered soils, as shown in Fig.1(a).Generally, the modulus E

p

resistance of the surrounding soils at thepile/soil interface, i.e. shaft frictional force named as τ

, is mobilized once the displacement of the piles occurs. The

z

displacement of pile groups at a given depth is different from that of single pile under the same load due to the fact that the reinforcing effect caused by the interaction between some neighboring piles confines the displacement of soils along piles. Therefore, it is necessary to consider the interaction between individual piles in calculating the settlement of pile groups. The soils are assumed to be a series of nonlinear springs attached along the pile shaft to simulate the behaviors of soils subjected to shaft frictional force, as shown in Fig.1(b). Obviously, the stiffness of springs, denoted as the ratio of the shaft frictional force to the displacement of soils, is relative to the interaction between individualpiles in pile group.

Fig.1 Sketch of pile groups located in layered soils

in Considered the interaction between any two piles with the pile space S

ij pile group, i and j, as shown in Fig.2. For pile i, the vertical displacement of the surrounding soil at depth z, defined as w

(z), is composed of three parts: the first,

i

(z), is caused by the shaft frictional force of pile i itself at depth z; named as w

ii

the second is due to the shaft frictional force of pile j at the same depth z, w

(z);

ij

the third is the reduction part induced by the reinforce-effect of pile j, w'

ij (z).Likewise, the values of the equivalent stiffness of springs are also composed of the same three parts. The procedure of calculating each part of the soil vertical displacement and the equivalent stiffness of springs are presented as follows.

Fig.2 Interaction between two piles in pile group

2.1 Calculation of w ii (z )

According to the formulation presented by RANDOLPH and WROTH to estimate the shear-deformation mechanism of surrounding soils around piles subjected to the shaft frictional force τiz , the displacement of a point of soils is expressed as

m 0s m 0,)

/l n ()(r r r G r r r z w iz i ≤≤=τ

(1)

m ,0)(r r z w i >=

where r 0=d /2, is the radius of the pile; r is the distance from the point of soil to the center of the pile; s G is the shear modulus of soils around the pile shaft, and the expression can be written as below accounting for the layer characteristic of soils:

L h G G n i i

i ∑==01,s s (2)

where i G ,s and h i are the shear modulus and the thickness of the i -th layer soil, respectively; r m is the radial distance from the pile centre to a point at which the shaft shear stress induced by the pile can be considered to be negligible. The value of r m can be taken as r m =2.5ρL (1-0.5μs ), where the parameter ρ is the ratio of the shear modulus of soils at the depth L /2 to that of the soil at L , and μs is the Poisson ratio of the soil.

So, the expression of w ii (z ) is

s 0m 0)

/l n ()(G r r r z w iz ii τ= (3)

and the relative equivalent stiffness of the springs is

)

/l n (20m s r r G w k i i z iz

iiz πτ== (4) 2.2 Calculation of w ij (z )

For pile j , there is also a shaft frictional force at the depth z to resist the vertical load at the pile top, τjz .Likewise, according to the shear-deformation formulation, w ij (z ) can be written as

s m 0)

/l n ()(G S r r z w ij jz ij τ= (5)

Obviously, accounting for all the action of the other piles, the relative equivalent stiffness of springs can be written as

∑≠==

n i j j ij ijz S r G k ,1m s )/ln(2π (6) 2.3 Calculation of w '

ij (z )

This part of displacement of the soil around the pile i is induced by the reinforce-effect of pile j . The value of the stress of pile j at the depth z caused by the spread of τiz , can be expressed as

ij iz jiz S r ,a 0ττ=

(7)

For pile j , τjiz can be taken as a negative frictional force which pulls pile j down, whereas pile j generates a counter force with the same value but opposite

direction namely ijz

τ' , which reduces the vertical displacement of the soil around the pile i . Hence, the value of w '

ij (z ) is

)l n ()(m s 20ij

ij iz ij S r S G r z w τ=' (8) Accounting for all the other piles action, the relative equivalent stiffness of springs can be written as

)

/l n ()/(2m ,10s

ij n i j j ij ij S r S r G k ∑≠=='π (9) So, the total equivalent stiffness of springs along pile i can be readily obtained:

i j z

i j z i i z iz k k k k '++=1111 (10) 3 Procedure for calculating settlement of pile group

3.1 Developing load-transfer function for individual pile in pile groups The analysis method, proposed originally by COYLE and REESE , is an efficient method to predict the load settlement relationship for single piles subjected to vertical load for its simplicity and capability of incorporating the nonlinear behavior of soils. However, due to the emission of influence of pile-to-pile interaction on the deformation of the soil surrounding the pile, it is rather difficult to be extended to pile-group analysis. In this work, a load-transfer function is developed based on the analysis of the aforementioned interaction between individual piles in pile group.

Pile i , supported by a series of nonlinear springs along pile shaft or pile bottom to resist the vertical load P i at the pile top, is taken out to be analyzed separately, as shown in Fig.3(a). The stiffness of spring at the pile bottom can be conveniently expressed using the following equation suggested in Ref.:

)

1(4sb 0sb b μπ-=r G k (11) where G sb and μsb are the shear modulus and Poisson ratio of the soil at the pile

bottom.

Fig.3 Load settlement analysis of individual pile in pile-group:

(a) Load analysis of pile i ; (b) Load analysis of pile j

Considering one element with the finite length dz of pile i at the depth z , all the loads exerting on the finite element can be described as two parts: vertical load located at the top and bottom, P (z ) and P (z )+dP (z ), and shaft frictional force τ(z ). The relative differential equation can be established according to the equilibrium condition in vertical direction as

dz

z dp z )(1)(?-=μτ (12) where u is the perimeter of the pile. Besides, the elastic compresstion of the finite element can be expressed as

dz A E z P z dw p

p p )()(-= (13) where A P is the area of the cross-section of pile.

If it is assumed that there is no slipping in the pile/soil interface, substitute

Eq.(12) into Eq.(13) so that the load-transfer function of pile i subjected to vertical load can be written as

0)()(2

2P =-z w k dz z w d A E i iz i P (14) 3.2 Solution for settlement of pile group

If the axial load on the top of pile i is assumed as P i , the boundary condition of Eq.(14) can be easily expressed as

i z i P dz

z dw A E -==0P P |)( (15)

)(|)(P

P L w k dz

z dw A E i b L z i -== So, the solution of Eq.(14) may be simplified as z z i i i e c e c z w λλ-+=21)( (16) where

iz i k A E P P =λ

)]

cosh()sin([2)]/(1[P P P P b 1L L A E A E k e P c i i i i L i i λλλλλ+-?=- )]

cosh()sin([2)]/(1[P P P P b 2L L A E A E k e P c i i i i L i i λλλλλ++?= Obviously, the value of Eq.(16) when z =0 is the settlement of pile i , which can also be regarded as the settlement of the n -pile group, because the rigid cap makes all the individual pile in pile group deform simultaneously, which can be expressed as

)0()0()0(21n w w w =???==

(17)

Q P P P P n =+???+++321

where Q is the total load applied at the center of the cap.

4 Verification by model test

A model test of 3×3 pile group subjected to axial loads in a two-layer soil system is carried out to verify the proposed approach discussed above. A layout of the foundation is shown in Fig.4. Each of the concrete testing pile has an

elastic modulus (E

) of 20 GPa with a diameter (d) of 62.5 mm and a length (L)

p

of 2 000 mm. All the piles are placed at an identical space of 4d (d is the pile diameter) and connected at the pile top by a rigid cap made of high-strength organic glass with a elastic modulus E c=60 GPa. The soil includes the silty clay layer and clay layer with the basic properties listed in Table 1, where w,γ, c, , μrepresent water content, unit weight, internal cohesion, friction angle, and Poisson ratio, respectively.

Fig.4 Experimental model of 3×3 pile-group:

(a)Plan view; (b) Cross-sectional view

Table1 Basic properties of soils in model test

The vertical displacements of the cap also defined as the settlement of pile group are measured by four dial indicators located at each corner of the cap in

the loading process, and the average value is considered as the settlement of pile group. A series of tests for pile group are conducted under various vertical loads applied at the center of the cap. Figure 5 shows the comparison between the measured settlements of pile group and the predicted settlements calculated based on the previously presented approach. As it can be seen, the computedresults are basically in good agreement with the measurements. Only small differences between them are observed, especially at small loading level, which is similar to the work loading of pile group in actual engineering.

Fig.5 Comparison of computed and measured load settlement

curve for pile group in test

5 Parametric studies

In the design process of pile group, pile space and pile length are two important parameters that determine the cost and the construction difficulty. In order to gain a foundational understanding of the effects of these two parameters on the settlement of pile group, a parametric study for the settlement of pile group is conducted. The basic parameters required are as follows: the piles with

=27 GPa, are placed pile length L=25 m, diameter d=1.2 m, elastic modulus E

p

=6 MPa, in an isotropic and homogeneous soil with the shear modulus G

s

Poisson ratioμ

=0.35, whereas the loading located at the top is kept as a

s

constant P=1 000 kN.

5.1 Influence of pile space

Figure 6 shows the settlements of two kinds of pile groups, 3×3 and 2×2 pile groups, with different pile spaces subjected to the same vertical load. The pile spaces vary from 3d to 9d. It can be seen from the both cases that the settlement of pile group decreases with the increase of pile space if the amount of the piles in pile group is a constant. The reason is that the interaction between individual piles is weakened with the increase of pile space, which indicates that the settlement of pile group induced by other piles has been reduced. Therefore, the pile space of individual pile should be kept as a high value appropriately in the design of pile group.

Fig.6 Influence of pile space on settlement of pile-group

5.2 Influence of pile length

The settlements of a 2×2 pile group with different pile lengths are obtained by using the presented approach, as illustrated in Fig.7, where the slenderness of pile is defined as the ratio of the length to diameter of pile. Obviously, the relative settlement decreases with the increase of pile length because more shaft frictional force is mobilized. However, only slight changes can be observed as the pile length reaches a certain value, which indicates that there exists a critical

pile length of pile group. In other words, the part of the pile exceeding the critical length only has negligible contributions to the bearing capacity of the pile group. Therefore, the reasonable pile length should be smaller than the critical length which is related to the load, the characteristic of pile and surrounding soil, and the arrangement of pile group.

Fig.7 Influence of pile length on settlement of pile group

6 Conclusions

By developing two models to simulate the load-transfer behavior of pile groups in both vertical and lateral directions, a simplified approach for estimating the settlement of pile groups considering the pile-to-pile interaction is presented. Then, pile-group loading test is conducted to verify the proposed approach. Two conclusions can be drawn from the parametric study:

1) The settlement of pile groups decreases with the increase of the pile space when the total amount of the individual piles is kept as a constant.

2) There exists a critical pile length in a fixed arrangement pile group under

a certain load. The shaft frictional force pile beyond the critical pile length cannot be mobilized.

附录2

在层状土中考虑桩与桩相互作用的群桩的一种沉降计算的

简化方法

1 引言

桩,通常是以群桩的形式存在,使用在各种应用中来支持承受竖向荷载的结构。在许多情况下,群桩的沉降是设计控制因素,因为群桩最初的目的是限制结构的变形。因此,许多研究者建议了不同的方法来研究群桩的沉降性质。

目前估算群桩沉降的方法可归纳为:1)数值方法,例如有限元法和边界元法。作为一项强有力的技术,数值方法根据土的非线性和基桩的相互作用,通过对群桩实行全三维模型,可以很容易的计算出群桩的沉降。然而,数值方法的应用是有限的,它在复杂的建模程序和较高的计算要求,尤其是在大量群桩的实践中受到限制。2)等效墩的方法。这种方法把群桩看成一个整个的墩来简化计算群桩沉降的步骤,这等同于单桩的荷载传递函数的方法。等效墩方法的明显的缺陷是计算出的沉降只与等效墩的面积相关,忽略了群桩中桩的数量和桩的间距的影响。3)叠加的方法。这种方法,最初由POULOS提出,最近被广泛的应用,通过把任意两个基桩的相互作用因素进行叠加来计算群桩的沉降。LEE发明了一种计算刚性和柔性群桩的相互作用因素的程序。COSTANZO和LANCELLOTA提出了一种近似的解决方法来评估考虑了桩周土的非线性性质的相互作用因素。WONG和POULOS修改了能够考虑不同桩型的相互作用因素。然而,叠加方法没有考虑群桩的加强效应,即,由于相邻桩的存在使土体的沉降减少。因此,计算出的群桩沉降通常要比实际结果大。因此,提出一种能够在实践中容易使用的计算群桩沉降的简化方法是非常必要的,这种方法应考虑由群桩中的基桩所诱发的桩的加强效应。

这项工作通过使用两个模型介绍了一种简化方法,对在层状土中受到竖向荷载的群桩进行荷载沉降分析。首先,土的剪切变形模型是从RANDOLPH和WROTH提出的方法中推断出来的,这种方法是用来模拟群桩中基桩的相互作用的。荷载传递模型,通常用在分析单桩的性质中,

后来被扩展到计算考虑了基桩的相互作用的群桩的沉降。因此,群桩的沉降和竖向荷载之间的关系得到了发展。在群桩上的某项试验结果用来确认在这项工作中所提出的方法。也讨论了桩间距和桩长对群桩沉降的影响。 2 桩间的相互作用

这项工作的重点是埋深在层状土中由相同长度、相同直径、相同弹性模量p E 的n 个相同的桩所组成的竖向荷载群桩,如图Fig.1(a)所示。通常,桩土界面上周围土的阻力,即,桩身摩擦力命名为z τ,一旦桩产生位移,z τ就会产生。在给定深度处的桩群的位移不同于在相同荷载下的单桩的位移,由于由许多相邻桩的相互作用所引起的加强效应局限了沿桩土的位移。因此,在计算群桩的沉降时考虑基桩之间的相互作用是非常必要的。土被假设为连接在桩身上来模拟承受桩身摩阻力的土的性质的一系列非线性弹簧,如图Fig.1(b)所示。明显地,弹簧的刚度,命为桩身摩阻力和土的位移比,与群桩中基桩的相互作用有关。

图1 层状土上的群桩

考虑在群桩中桩间距为ij S 的任意两个桩之间的相互作用,i 和j ,如图Fig.2所示。对于i 桩来说,在深度z 处周围土的竖向位移,命为w i (z ),被分为三部分:第一,命名为w ii (z ),是由在深度z 处i 桩本身的桩身摩阻力

所产生的;第二是由于在相同深度z 处j 桩的桩身摩阻力产生,w ij (z );第三是由j 桩的加强效应所诱发的减少部分,w '

ij (z )。同样,弹簧的等效刚度

值也是由相同的三部分组成的。计算每一部分的土的竖向位移和弹簧的等效刚度的步骤介绍如下。

图2 群桩中两桩之间的相互作用

2.1 w ii (z )的计算

根据由RANDOLPH 和WROTH 提出的公式来估算承受桩身摩阻力τiz 的桩周土的剪切变形机制,一点处土的位移表示为:

m 0s m 0,)

/ln()(r r r G r r r z w iz i ≤≤=τ

(1)

m ,0)(r r z w i >=

式中r 0=d /2,是桩的半径;r 是从土的一点到桩中心的距离;G s 是桩周土的剪切模量,这个表达式考虑土的分层性质,被写成以下形式:

L h

G G n i i i ∑==01,s s (2)

式中G i ,s 和h i 分别是第i 层土的剪切模量和厚度;r m 是从桩中心到一点的径向距离,在这一点上由桩所诱发的桩身剪应力可以忽略不计。r m 的值可视为r m = 2.5ρL (1-0.5μs ),式中参数ρ是在L /2深度处土的剪切模量和在L 深度处土的剪切模量之比,μs 为土的泊松比。

所以,w ii (z )的表达式是:

s 0m 0)/ln()(G r r r z w iz ii τ=

(3)

弹簧的相对等效刚度为: )

/ln(20m s r r G w k iiz iz iiz πτ==

(4)

2.2 w ij (z )的计算 对于j 桩来说,在深度z 处也有一个桩身摩阻力来抵抗在桩顶的竖向荷载τjz 。同样,根据剪切变形公式,w ij (z )可被写为:

s m 0)

/ln()(G S r r z w ij jz ij τ= (5)

明显地,考虑其他桩的所有行为,弹簧的相对等效刚度可被写为:

∑≠==

n

i j j ij ijz S r G k ,1m s )/ln(2π (6)

2.3 w '

ij (z )的计算 在i 桩周围的土的这部分位移是由j 桩的加强效应所诱发的。在深度z 处j 桩的应力值是由τiz 的传播所引起的,可被表达为:

ij iz jiz S r ,a 0

ττ= (7)

对于j 桩来说,τjiz 可看成是使j 桩下降的一个负摩擦阻力,而j 桩产生

一个名为ijz

τ'的大小相等、方向相反的一个反力,这个反力减少了i 桩周围土的竖向位移。因此,w '

ij (z )的值为:

)ln()(m s 20ij

ij iz ij S r S G r z w τ=' (8) 考虑其他所有桩的行为,弹簧的相对等效刚度可被写为:

)

/ln()/(2m ,10s

ij n i j j ij ij S r S r G k ∑≠=='π (9) 所以,沿着i 桩的弹簧的总的有效刚度可以很容易的获得:

ijz

ijz iiz iz k k k k '++=1111 (10)

3 计算群桩沉降的步骤

3.1 群桩中基桩的荷载传递函数的发展

这种分析方法,最初是由COYLE 和REESE 提出的,因为它的简便性和结合土的非线性性质的能力,是一种预测受竖向荷载单桩的荷载与沉降的关系的有效方法。然而,由于桩与桩之间的相互作用对桩周土变形的影响的释放,将其扩展到群桩分析方法是比较困难的。在这项工作中,在群桩中基桩的上述相互作用分析的基础上,发展了一个荷载传递函数。 用来抵抗作用在桩顶的竖向荷载P i 的,被沿着桩身或桩底的一系列非线性弹簧所支持的i 桩,被拿出来单独分析,如图Fig.3(a)所示。桩底弹簧的刚度用Ref 建议的以下公式可以很方便的表达:

)

1(4sb 0sb μπ-=r G k b (11) 式中G sb 和μsb 是桩底土的剪切模量和泊松比。

图3 群桩中基桩荷载沉降分析方法

(a) i 桩荷载分析;(b) j 桩荷载分析

考虑到在深度z 处i 桩的有有限长度dz 的一个元素,作用在这个有限元素上的所有荷载可被分为两部分:作用在桩顶和桩底的竖向荷载,P (z ) 和P (z )+dP (z ),桩身摩阻力τ(z )。在竖直方向上,根据平衡条件,相对差分方程可被建立为:

dz z dp z )(1)(?-

=μτ (12) 式中u 是桩的周长。除此之外,有限元素的弹性压缩量可被表达为:

dz A E z P z dw p

p p )()(-

= (13) 式中A P 是桩的横截面积。 如果假设在桩土界面上没有滑移,用Eq.(13) 替换Eq.(12),因此,承受竖向荷载的i 桩的荷载传递函数可被写为:

0)()(2

2P P =-z w k dz z w d A E i iz i (14) 3.2 群桩沉降的计算方法

如果i 桩桩顶的轴向荷载假设为P i ,Eq.(14)的边界条件可被很容易的表达为:

i z i P dz

z dw A E -==0P

P |)( (15)

)(|)(b P P L w k dz z dw A E i L z i -== 所以Eq.(14)的计算方法可被简化为:

z z i i i e c e c z w λλ-+=21)( (16)

式中

iz i k A E P P =λ

)]

cosh()sin([2)]/(1[P P P P b 1L L A E A E k e P c i i i i L i i λλλλλ+-?=- )]

cosh()sin([2)]/(1[P P P P b 2L L A E A E k e P c i i i i L i i λλλλλ++?= 明显地,当z =0时Eq.(16)的值是i 桩的沉降,这也可被看作为第n 个桩群的沉降,因为刚性桩顶使群桩中所有基桩同时变形,可被表达为:

)0()0()0(21n w w w =???==

(17)

Q P P P P n =+???+++321 式中Q 是桩顶中心的所有荷载。

4 验证模型试验

进行一个在两层土中承受轴向荷载的3×3群桩的模型试验来验证上面讨论的方法。一个基础的布局如图Fig.4所示。每一个混凝土试验桩的弹性模量E p 为20 GPa ,直径为62.5 mm ,长度为2000 mm 。所有桩都具有相同的间距4d (d 为桩的直径),在桩顶被弹性模量E c =60 GPa 的高强度有机玻璃

所制成的刚性帽所连接。土包括粉砂性黏土层和黏土层,其基本性质列于表1,其中w,γ,c, ,u分别代表含水量、重度、内部黏聚力、摩擦角和泊松比。

图4 3×3群桩的试验模型

(a)平面图;(b)横截面图

表1 模型试验中土的基本性质

桩帽的竖向位移可被定义为群桩的沉降量,它可被在加载过程安装在桩帽中心的四个位移千分表所测得,其平均值可被认为是群桩的沉降量。在桩帽中心上的多样的竖向荷载下做了一系列群桩的试验。图5为群桩的测量沉降值和在先前提出的方法上计算出来的预测沉降值之间的比较。由

2.英文翻译格式和要求

英文 小四号字,单倍行距,首行缩进2个字符,不能定义文档网格。约3千英文单词。 MCU Description SCM is also known as micro-controller (Microcontroller Unit), commonly used letters of the acronym MCU MCU that it was first used in industrial control. Only a single chip by the CPU chip developed from a dedicated processor. The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which. INTEL's Z80 is the first designed in accordance with this idea processor, then on the development of microcontroller and dedicated processors have parted ways. 一、SCM history SCM was born in the late 20th century, 70, experienced SCM, MCU, SoC three stages. SCM the single chip microcomputer (Single Chip Microcomputer) stage, mainly seeking the best of the best single form of embedded systems architecture. "Innovation model" success, laying the SCM and general computer completely different path of development. In the open road of independent development of embedded systems, Intel Corporation contributed. MCU the micro-controller (Micro Controller Unit) stage, the main direction of technology development: expanding to meet the embedded applications, the target system requirements for the various peripheral circuits and interface circuits, highlight the object of intelligent control.It involves the areas associated with the object system, therefore,the development of MCU's responsibility inevitably falls on electrical, electronics manufacturers. From this point of view, Intel faded MCU development has its objective factors. In the development of MCU, the most famous manufacturers as the number of Philips Corporation. Philips company in embedded applications, its great advantage, the MCS-51 single-chip micro-computer from the rapid development of the micro-controller. Therefore, when we look back at the path of development of embedded systems, do not forget Intel and Philips in History. 二、Embedded Systems Embedded system microcontroller is an independent development path, the MCU important factor in the development stage, is seeking applications to maximize the solution on the chip; Therefore, the development of dedicated single chip SoC trend of the natural form. As the microelectronics, IC design, EDA tools development, application system based on MCU SoC design have greater development. Therefore, the understanding of the microcontroller chip microcomputer can be, extended to the single-chip micro-controller applications. 三、MCU applications SCM now permeate all areas of our lives, which is almost difficult to find traces of the field without SCM. Missile navigation equipment, aircraft, all types of instrument control, computer network communications and data transmission, industrial automation, real-time process control and data processing, extensive use of various smart IC card, civilian luxury car security system, video recorder, camera, fully automatic washing machine control, and program-controlled toys, electronic pet, etc., which are inseparable from the microcontroller. Not to mention the area of robot control, intelligent instruments, medical equipment was. Therefore, the MCU learning, development and application of the large number of computer applications and

简历的英文翻译1

简历的英文翻译 Richard Anderson, 1234, West 67 Street, Carlisle, MA 01741, (123)-456 7890. Qualifications: Enterprising business student with high GPA, growing professional experience, and desire to move into consulting and investment banking. Professional achievement include developing marketing campaigns, streamlining procedures, researching corporate strategy, and managing staff. Reduced salary expenses by 14% in MDDT Call Center. Received outstanding Performance and Human Relations Awards at Dale Carnegie Training. Fluent in verbal and written English, Mandarin, and Cantonese. Technical proficiency includes, MS Excel, Word, PowerPoint, SPSS, FrontPage, and HTML. Education: Indiana State University, Terre Haute, Indiana Bachelor of Science in Business Administration, expected 2004 Academic and Professional Experience ITMT University, Terre Haute, Indiana 2001 - Present Research Assistant, Corporate Strategy and International Business ?Explore firm attributes and market-specific factors influencing globalization process of Chit Chat Corporation. ?Charted Chit Chat's expansion into Asia by analyzing global franchising industry in eight Asian countries. ?Researched expansion patterns and governance mechanisms of other globalization franchises. All Talk Radio, Terre Haute, Indiana 2000 - Present Vice President of Marketing ?Developed publicity and promotional campaigns to support market initiatives.

学士学位证书及毕业证英文翻译模板

学士学位证书及毕业证英文翻译模板 附录:今天老师给我们留了个作业,让我们把本科毕业证书翻译成英文的,怎么翻译啊~所以请大家帮帮忙吧~谁能给我提供一个毕业证书的英文模版啊~本科毕业证书的啊~越快越好,如果老师满意,多少钱我都不在乎~包括专升本证书,能有工商管理硕士的最好!学士学位证书英语翻译与毕业证英文翻译模板,为爱大学本科生及研究生提供英文毕业证翻译样本。首先请看《办理中英文成绩单、英文毕业证学位证书的须知》。涉及中文或英文成绩单翻译,含英文毕业证书学位证书的证明。学生学位证书英文翻译模板BACHELOR’S DEGREE CERTIFICATE This is to certify that Ms. Wang Danli, born in October 1977, has studied in the Department of Law, xxx University with a specialty of Law from September 1996 to June 2000. Upon completing and passing all the required courses of the 4-year undergraduate program, she is granted graduation. In accordance with the academic degree act of the People’s Republic of China, the aforesaid student is awarded the Bachelor’s Degree in Law. xxx Chairman of Degree Appraising Committee of xx University June 30, 2000 Certificate No.: 103354003888 本科毕业证书翻译模板DIPLOMA This is to certify that Ms. Wang Lan, born on February 29, 1980, has studied in the Department of Foreign Languages,xxxUniversity with a specialty of English from September 1997 to June 2000. Upon completing and passing all the required

各种职业英文翻译1

精品文档
各种职业英文翻译 职职高职客职职理 客职职理 Senior Account Account Manager 职算机行职 Manager: 行政职职,职主管 售职用职件程序职 Sales AdministratorApplications 首席职 行官 地职职职理 区售 Chief Executive Regional Sales Programmerb5E2RGbCAP 职职操作主管 OfficerManagerComputer Operations 部职职理 地客职职理 区 Branch ManagerRegional Account Supervisorp1EanqFDPw 市职行政职职 职职技职职 Executive Marketing ManagerComputer TechnicianDXDiTa9E3d 房地职职职 估职职工程职 DirectorReal Estate AppraiserDevelopmental Engineer 国职职管 采职职理 信息服职主管 Controller(International)Merchandising ManagerDirector of 运职职职 市职职职 Director of OperationsMarketing ConsultantInformation Services 职出口职理 市 职助理 信息分析 Import/Export ManagerMarketing AssistantInformation Analyst 商店职理助理 市职职职职职 与售局域管理职 网 Assistant Store Marketing and Sales LAN AdministratorRTCrpUDGiT 网职管理职理 ManagerDirectorManager of Network 操作职理 市职职职分析职 Operations ManagerMarket Research Administration 房地职职理 职品支持职理 Property ManagerAnalystProduct Support 首席职官 运厂家代表 Chief Operations Manufacturer's Manager5PCzVD7HxA
1欢迎。下载

英文翻译格式要求

河北建筑工程学院 毕业设计(论文)外文资料翻译 系别:机械工程系 专业:机械电子工程 班级:机电(本)091 姓名:张少强 学号: 2009322110 外文出处:English in Mechanical and Electrical Engineering 附件:1、外文原文;2、外文资料翻译译文。 指导教师评语: 签字: 年月日 金属热处理 普遍接受的金属和金属合金的热处理定义是“在某种程度上加热和冷却金属或金属合金,以获得特定的条件和属性。”加热的唯一目的是进行热加工,锻造操作是被排除在这个定义之外的。热处理有时候也用产品表示,同样玻璃和塑料也被排除在这个定义之外。 变换曲线 热处理的基础是在一个单一的图表上绘制的包含三个所有的等温转变曲线或TTT曲线。因为曲线的形状,他们有时候也称为c曲线或s曲线。 TTT曲线绘制,特定的钢在给定的条件下和预定的时间间隔内记录以检查的组织结构转换的

数量。众所周知共析钢(T80)在超过723℃形成的是奥氏体,在此温度下形成的是珠光体。为了形成珠光体碳原子应该分散形成渗碳体。扩散是一个过程需要足够的时间来完成奥氏体向珠光体的转变。我们可以注意到在不同的样本内在任何的温度下数量都在发生变化。这些点被绘制在以时间和温度为轴的坐标内。通过这些点共析钢的变换曲线如图1所示。曲线的左极端代表在任何给定的温度下奥氏体向珠光体的转变。同样的右极端代表完成所需要的时间。这两个曲线之间转换的点代表部分转换。水平线条s M和f M发代表开始和完成的马氏体转变。 热处理工艺的分类 在某些情况下,热处理在技术和使用程序上是分开的。而在其他情况下,,描述或简单的解释是不够的,因为相同的技术常常可以获得不同的目标。例如,应力消除和回火需要相同的设备和利用相同时间和温度循环。然而这是两个不同的过程。 图8.1 T80钢在等温间隔下的热处理图 以下对热处理的描述主要是根据他们之间的关系来安排的。正火指加热铁合金到高于它转变温度上的一个合适温度(通常是50°F到100°F或28℃到56℃)。接下来是在精致空气至少是在低于其转变温度范围下冷却。由此产生的结构和性能和通过完全退火是一样的。对大多数铁合金来说正火和退火是不一样的。 正火通常被用作调节处理,尤其是没有经过高温锻造或其他热加工的精炼粒钢。正火的成功通常由另一个热处理来完成如奥氏体化的淬火、退火或回火。 退火是一个通用术语,它表示一个热处理,包括加热和保持在一个合适的温度后以一个合适的冷却速度冷却。它主要用来软化金属材料,但它同时也会产生其他属性或期望的微观结构。

汉译英格式规范

汉译英翻译格式规范 I 格式规范 1. 正文标题、机构名称、图表格名称和表头中所有单词(除虚词外)的首字母均大 写;但标题为句子的情况除外; 2. 译文中出现的标准、规范名称,单独出现时每个单词首字母均应大写并斜体,不 加引号;在表格中出现时不用斜体; 3. 摄氏度符号统一从“符号”“Times new roman”中找到“°”(位于最右一列)插 入,然后在后面加上大写“C”,即“°C”; 4. 排比和并列的内容,标点应统一。一般做法是中间采用“;”,最后一个采用“.”, 最后一个与倒数第二个之间用“; and”; 5. 数值范围的表示形式应是:110-220 kV,而不是110 kV~220 kV;注意:数字和 连字符之间没有空格,数字和单位之间有空格数字与单位之间要加一个空格,但“°C”、“°F”和“%”除外; 6. 在英文中,百分号应采用英文半角“%”,而不可采用中文全角“%”; 7. 公式中的符号从“插入公式”中选择; 8. 文本框中第一个单词首字母大写; 9. 1号机组和2号机组、一期和二期的表示方法:Unit 1 & 2;Phase I & II; 10. 第x条(款、项)和第y条(款、项)的表示方法:Article x and Article y,即表 示条(款、项)的词不能省略; 11. 文件中出现公式时,公式后说明性文字的“其中”、“式中”统一译为“Where:”, 注意其后加冒号;对公式中的字母和符号进行解释时,采用“-”,其前后均不空格,“-”后的首字母为小写;公式后的说明要用分号,最后采用句号。例如: Where: F sc-short circuit current force (lb/ft); V-velocity; P-gas density. 12. 冒号后首字母小写; 13. 大于号、小于号、等号两边均有空格; 14. 表格的标题和标题栏字体加粗; 15. 注意上下标与原文一致; 16. 直径符号φ的输入方法:插入,符号,字体选择Symbol,然后选择输入φ,并采用 斜体;

英语翻译(1)

After winning the important game they hoisted their captain to their shoulders in shouting triumph. 赢得那场重要的比赛之后,他们把队长抬到肩膀上欢呼着胜利。 Anyone who picks up this novel and reads the first paragraph will be hard pressed to put it down. 任何人只要拿起这本小说读了第一段,就会发现很难把它放下。 A true hero possesses has courage, a noble purpose and a willingness to make sacrifices. 一个真正的英雄有勇气,有高尚的目标,而且乐于奉献。 For now, it remains to me to thank you once more for joining us and wish you good luck in your work. 且让我再次感谢大家的参与,祝你们工作顺利。 He took a gamble on starting a factory with all the money his parents had left him. 他孤注一郑,用父母留给他的所有钱来开一家工厂。 He decided to channel his energies into something useful, instead of being glued to sitting in front of the TV set all day long. 他决定把自己的精力用到有益的事上,而不是整天守在电视机前。 He teaches in a middle school, but he does some translation work on the side to bring in extra cash money. 他在中学教书,但也兼职做些翻译来赚取外快。 He travelled from one village to another, dropping in on families and listening to their complaints and problems. 他从一个村子来到另一个村子,走家串户,听他们诉苦。 His words were drowned out by loud cheers from the crowd. 他的话被群众的大声欢呼所淹没。 He may promise to change, but it’s the same old story of saying one thing and doing another.他也许会答应改变,但无非又是说一套做一套罢了。 I racked my brains about how to break the terrible news to him. 我苦苦思索该怎样把这可怕的消息告诉他。 It will be impossible for me to repay my parents for everything they have done for me. 我将永远无法报答父母为我所做的一切。 I said right from the beginning that he would cause us trouble. 我一开始就说过,他会给我们惹麻烦的 In a sense, life is like swimming; if you keep holding on to the sides of the pool, you (will) never learn. 从某种意义上说,生活就像游泳。如果你总是扶住池边,就永远也学不会。 I just can’t figure her out, she’s a mystery to me. 我简直摸不透他,他对我是个迷 I looked at the printed page but the words made no sense. 我看着那印满字的书页,但不知上面写些什么 In the rush to go for globalization, we should watch out for collision of cultures. 在全球化热潮中,我们要堤防不同文化的冲突 In the circumstances it was not surprising that there was trouble. 在这种情况下,出现麻烦是不足为奇的 It’s good to be confident (about yourself), but there’s a difference betwe en (self-)confidence and conceit. 自信是件好事,但自信与自负是有区别的。 Jim always sides with John in an arg ument. 在答辩中吉姆总是站在约翰那一边。 Only those who have lived through a similar experience can fully appreciate this. 只有那些有过类似经历的人,才能够完全理解这一点。 Only those who stick it out can achieve success. Those who give up halfway will never realize their dreams. 只有坚持到底的人才会成功。半途而废的人永远也无法实现梦想。

英文翻译范本(基本无格式错误)

英语专业文献翻译 题目: 基于交通服务感知质量的效用评价方法姓名: 丁贞钰 学院: 工学院 专业: 交通运输 班级: 101班 学号: 30210101 指导教师: 陈青春职称: 副教授 2013年11月25日 南京农业大学教务处制

基于交通服务感知质量的效用评价方法 Hideyuki Kita a Akira Kouchi b a Department of Civil Engineering, Graduate School of Engineering, University of Kobe, 1-1, Rokkodai-cho, Nada-ku, Kobe, 658-8501, Japan b Infrastructural Planning Department, Chodai Co. Ltd., 2-20-6, Shin-machi, Nishi-ku, Osaka, 550-0013, Japan 摘要:本研究旨在开发一个通过宏观交通状态数据评价微观驾驶环境的模型,并且展示一系列基于驾驶员视觉的交通服务质量估算方法的模型。该方法由三部分组成,第一部分通过宏观数据评价行驶速度和时间间隔分配,第二部分评价作为行驶速度和时间间隔联合概率的基点效用。第三部分通过利用经验公式的基点概率分布估计基段效用。通过一个研究案列论证所提出的方法。 关键词:驾驶员感知;交通服务质量;基础效用评价;估计方法;交通调查数据;相关函数 1 引言 交通服务质量直接关系到驾驶员的利益。为了提高交通服务质量,应采取必要措施提高驾驶员对道路规划和交通管理的满意度。采取适当的基于驾驶员感知的方法来评价路用性能是必要的。弄清驾驶员服务质量感知结构对区分驾驶员感知服务质量也是必要的。 从驾驶员感知的角度对服务质量的评价已经有了很大成就,研究人员对评价驾驶员感知结构的感知服务质量做了比以前更多的尝试,但是感知服务质量的层次结构依旧很少被人认识。基于驾驶员的感知结构的层次结构,包括基点服务质量、基段服务质量和基面服务质量。通过参考感知结构的服务质量,Kita(2000)提出了测量服务质量的方法的基本框架。这个框架的基本思想是服务质量的最小单位是微观驾驶环境,比如在每个路段驾驶员的视野范围内相对速度和空间时间间隔。驾驶员对于特定路段的服务质量感知是这些基点服务质量的集合。然而关于感知服务质量的重要因素—微观驾驶环境的数据却很难获得。另一方面,宏观交通状态变量,比如由微观交通状况变量集合的数据—速率,可以很容易的通过车辆检测器。在给定宏观交通状况下,捕捉发生在什么样的微观环境和到什么程度是必要的。但是,没有研究与以上观点相关,直到本文作者对他的认识。 本研究的目的是开发一个通过宏观交通状况变量评价微观驾驶环境的方法,并提出一系列对宏观交通状态变量的基点服务质量的测量和对根据驾驶感知结构和服务质量层次结构基点服务质量的基段服务质量的测量方法。通过使用上面的方法,获得有关驾驶员感知结构的宏观交通状况数据,评价基于驾驶员感知的基段服务质量。 本文组织如下。第2部分,概括评价服务质量领域的相关文献。第3部分,表述包括提出的方法论的一系列方法的概要和基本思想。第4部分,概述运用宏观交通状态变量估计微观驾驶环境的方法。第5部分,开发了一种联系基点感知服务质量和考虑认知倾向的基段感知服务质量的模型,并对概率分布之间的关系效用进行微观分析。第6部分,通过运用从车辆检测器上获得的实际交通状况数据检测本文所表述的理论模型的有效性。第7部分,结论。 2 文献综述 已经做过很多关于驾驶员感知的服务质量评价工作。但由于篇幅有限,只把文献大纲列出如下。更多信息可以从Kita and Kouchi(2010)中获得。有一些研究阐述了交通服务质量应该基于驾驶员的微观驾驶环境的感知评价交通服务质量(Morrall and Werner (1990), Ishibashi et al. (2006))。有一些研究试图找到一个可以展现与感知交通服务质

专业英语翻译1

专业英语翻译1

Basic Chemistry 1. Atomic Structure Matter has mass and takes up space. Atoms are basic building blocks of matter, and cannot be chemically subdivided by ordinary means. Both the protons and neutrons reside in the nucleus. Protons have a positive (+) charge, neutrons have no charge --they are neutral. Electrons reside in orbitals around the nucleus. They have a negative charge (-). It is the number of protons that determines the atomic number. The number of protons in an element is constant but neutron number may vary, so mass number (protons + neutrons) may vary. 1。原子结构 物质有质量,占空间。原子是物质的基本组成物,不能用普通的方法进行化学细分。 质子和中子都驻留在原子核中。质子有一个正电荷,中子是不带电的,它们是中性的。电子在原子核周围的轨道上。他们有一个负电荷(-)。 它是确定原子序数的质子数。在一个元素中的质子的数量是恒定的,但中子数可能会有所不同,所以质量数(质子+中子)可能会有所不同。 The same element may contain varying numbers of neutrons; these forms of an element are called isotopes. The chemical properties of isotopes are the same, although the physical properties of some isotopes may be different. Some isotopes are radioactive-meaning they "radiate" energy as they decay to a more stable form, perhaps another element half-life: time required for half of the atoms of an element to decay into stable form. Another example is oxygen, with atomic number of 8 can have 8, 9, or 10 neutrons. 相同的元素可能含有不同数量的中子,这些元素

翻译作业格式模板

翻译练习一(英译汉)小组讨论情况记录 小组成员:赵一,钱二,孙三,李四 本次讨论记录、执笔人:赵一 1.本次翻译文本的目标读者是? 2.本次翻译任务需要达成的目的是? 3.请用注释的形式写出“翻译根据”。翻译根据包括(但不限于)根据翻译目的 对翻译方法(策略)的选择;术语的出处或论证过程;译文选词、造句、结构、篇章等方面的考虑; 原文:在国内众多的历史课本或辅导爱国读本中,讲到北宋的社会经济,往往说这时期出现了中国第一个商标。这枚传说中的白兔商标现存于中国历史博物馆,中间一个白兔图,寓“玉兔捣药”之意. 译文:In various Chinese history textbooks and patriotic readings[i], one thing is always covered in the economic development[ii] of the Northern Song Dynasty—the emergence[iii] of China’s first trademark, which is now kept in the National Museum of Chinese History[iv]. This legendary trademark was designed with a white rabbit image in the middle, implying the message of the Jade Rabbit pounding medicine[v] [i]辅导爱国读本 第一步,理解中文。 所谓“辅导爱国读本”一般指供学生课下阅读的旨在培养爱国情操的材料(当然也可以面向社会读者),内容可以涵盖从古至今国家经济政治文化等各方面情况:讲成就可以培养人们的民族自尊心、自信心、自豪感等等;也可以讲失败、讲教训,激励人们奋发图强,建设祖国。…这些在中国都属于“爱国主义教育”的内容。文中要讲的是北宋出现了中国历史上第一枚商标,这是经济发展的标志之一,算是“成就”,同时此商标设计上又体现了浓郁的中国传统文化特色(玉兔捣药),因此自然会被写入爱国读本让大家了解。 第二步,理解基础上做出一个译文。

翻译时间格式新要求(必看)

一,翻译时间 1,试译文件需在发布任务的2天之内上传,我们将根据提交上来的试译文件选出中标作品,并发站内信通知,注意查收。为方便联系,可以在提交试译文件时留下联系方式(QQ,邮箱,最好是手机) 2,提交作品到指定的邮箱,不能按时交任务的话,要及时通知我。 5,如果稿件由于质量问题被退回,要求从退回日期算起一天之内发回。 二,翻译格式要求 1.应为纯文本格式,编码UTF-8, 统一使用Editplus 3。见附件 介于Editplus界面,左右宽度很大,总的拉动下面那个Bar,可以调整。找到左上Document,点击下拉出现菜单,选择Word-wrap Options...再选择enable word-wrap,然后下面那个format 选80,应该就可以了。 2.格式采用一段英文一段中文的方式(不是一句一句对应,而是一段一段),英 文下面跟中文,可以按照自然段的格式,不要把英文删掉。 使用中文标点,包括逗号(,),句号(。),省略号(……),引号(“”),破折号(——)等都用专门的全角中文标点,而不要使用英文标点。 3. <>表示一条评论的开始,要求一条一条翻译。不要搞混。<>中的内容保留, 不要做任何变动。 4,翻译文本应为纯文本格式,在保存翻译文件的时候点下拉框选编码UTF-8,不要更改原文件名。 三,翻译内容注意事项 1.TripAdvisor 一定要翻译成“到到网”,这个是网站的中文名字。 2.题目括号<>里面的酒店名不需要翻译,正文中的地名,酒店名尽量要翻译(可 在到到网和携程网上找),正文中的人名不需要翻译。 3.Review 里会有一些带感情色彩的话,特别是褒义的,在翻译的时候一定要把 这种感情给表现出来,语气也可以强烈些。比如说,“Amazing Value”有些人把它翻成“物有所值”,但也有些人把它翻成“物超所值”,肯定是后者表达的感情色彩更强烈,也更贴切。

1~100的英语翻译

1~100英语翻译 1~20: ?1 - one 2 - two 3 - three 4 - four 5 - five ?6 - six 7 - seven 8 - eight 9 - nine ?10 - ten 11 - eleven 12 - twelve ?13 thirteen 14 - fourteen 15 - fifteen ?16 - sixteen 17 - seventeen ?18 - eighteen 19 - nineteen 20twenty 21~40: ?21 twenty-one 22 twenty-two ?23 twenty-three 24 twenty-four ?25 twenty-five 26 twenty-six ?27 twenty-seven sixty ?28 twenty-eight 29 twenty-nine ?30 thirty 31thirty-one ?32 thirty-two 33 thirty-three ?34 thirty-four 35 thirty-five ?36 thirty-six 37 thirty-seven ?38 thirty-eight 39 thirty-nine 40 forty 41~60: ?41 fourty-one 42 fourty-two

?43fourty-three 44fourty-four ?45 fourty-five 46 fourty-six ?47fourty-seven48fourty-eight ?49fourty-nine50fifty51fifty-one ?52 fifty-two 53 fifty-three 54 fifty-four ?55 fifty-five 56 fifity-six 57 fifity-seven ?58 fifty-eight 59 fifity-nine 60 sixty 61~80: ?61 sixty-one 62 sixty-two ?63 sixty-three 64 sixty-four ?65 sixty-five 66 sixty-six ?67 sixty-seven 68 sixty-eight ?69 sixty-nine 70 seventy ?71seventy-one72seventy-two ?73seventy-three74seventy-four ?75seventy-five76seventy-six ?77seventy-seven78seventy-eight ?79 seventy-nine 80 eighty 81~100:

英语翻译(1)(1)

翻译: 摇头丸苦海无崖 I hear a lot of people talking about 我听到许多人谈论摇头丸,说它是一种奇妙无害的麻醉品。对此,我只能暗自感叹,"要是他们知道就好了。 I grew up in a small, rural 我是在宾夕法尼亚的一个乡间小镇长大的。在那个地方,你叫什么名字,你是干什么的,你吃的是什么,以及诸如此类的事儿别人都了如指掌。那时,我是一个门门皆优的好学生,是大家公认的一个乖孩子,人人都喜欢我。毒品与我的生活中根本不沾边,从来也没去想过--我别的事情还忙不过来咧。 I always dreamed of moving 我一直梦想到纽约市去学表演,然后从事舞台表演生涯。后来,我妈带我到那座城市去上表演艺术学校,实现了我的梦想。你能想象得到,这与家里相比可是大不一样。 I was exposed to new people, 我接触到了许多新朋友,新观念,接触到了一种全新的生活方式--这种生活方式也使我开始接触到了毒品。我在艺术学校遇到的那些人多数都已经有多年的吸毒经历。当时我觉得通过吸毒我可以真正融入他们那个世界,可以加深我与他们的友情。我试过大麻,甚至还试过一点可卡因,不过,永远改变了我的生活的是摇头丸。 I remember the feeling I 我还记得我第一次用摇头丸时的感觉:浑身上下飘然若仙。我甚至感受到了宇宙的脉搏,宛如某种神奇世界的铁锁被我豁然开启,让我顿入天界一般。我当时心想,能够让人感到如此美妙的东西怎么可能不好呢? As time went by,随着时间的推移,情况发生了变化。我毕业后开始越来越频繁地吸用毒品,尤其是摇头丸。我自己吸毒并开始看不起那些不吸毒的人。我成天与吸毒者为伍。我已经从一个不沾毒品的女孩变成了一个没有毒品就难以度日的女人。 In five months, 仅五个月的时间,我就从一个追求梦想,对生活还有些责任感的人,变成了一个对一切都无所谓的庸人。而且,我走得越远,我越发陷于黑暗孤寂的深渊。我一旦入睡,便会噩梦连连,颤抖不已。我肤色如灰,头痛欲炸,精神也开始错乱起来。对此我全然没有理会,以为这一切都是正常的,直到有一天夜晚我觉得我就要死了。 On this night, I那天夜晚,我正和几个朋友坐在长沙发上看电影,起初还感觉正常,可是突然我觉得仿佛想要从自己的躯壳里蹦出来似的,各种各样的念头、恐怖无比的景象和扑朔离迷的幻影在脑海里闪烁。当时我觉得我撞见了魔鬼。我不停地问朋友们我是不是已经死了。在发作的高峰,我感觉我仿佛象心脏病发作了一般。半夜时候,我总算拿起了电话,拨通了我妈妈的号码,叫她赶紧来接我。第二天一早她来了,把我从公寓里拽了出来。 I didn't know who I was 在我妈开车带我回宾夕法尼亚州我们的家庭医院的时候,我迷迷糊糊,忘了自己是谁,也不知道自己身在何处。路上的大部分时间,我都卷曲着身子,倒在汽车的后座上,而我妹妹一直在尽力使我安静下来。 I spent most of the 一种极度的迷茫状态之中,我在病房里度过了14天。这就是摇头丸给我带来的结果——还不止如此。医生们给我的大脑作了一次扫描检查。当我看到检查结果的时候,我简直不敢相信自己的眼睛。扫描显示我的脑电图上呈现好几处黑斑。医生们告诉我说,这些黑斑出现的区域正是大脑执行记忆功能的区域,表明我的大脑活动已经产生了某种病变。 I couldn't believe my eyes 自打我看到那张脑电图之后,我的生活就如爬坡上坎似的变得艰难起来。 I hear people say Ecstasy i 我总是听到人们说,摇头丸是一种令人愉悦的无害麻醉品。然而当这种”无害”之药一点一点地侵蚀了我的生命的时候,哪里还有愉悦。摇头丸夺走了我的体力,我的追求,我的梦想,我的朋友,我的公寓,我的钱财,而最为重要的是,它夺走了我的心灵。我每天都在担心自己的未来和健康。我的前面有许多高山险阻。但是,我要不断地翻越攀登,因为我是为数不多的幸运儿之一。 I've been given a second chance 我得到了第二次机会,而这并不是人人都能得到的。

相关文档