文档库 最新最全的文档下载
当前位置:文档库 › 镍矿精选工艺流程

镍矿精选工艺流程

镍矿精选工艺流程
镍矿精选工艺流程

红土镍矿全球分布

世界上红土镍矿分布在赤道线南北30度以内的热带国家,集中分布在环太平洋的热带―亚热带地区,主要:有美洲的古巴、巴西;东南亚的印度尼西亚、菲律宾;大洋洲的澳大利亚、新喀里多尼亚、巴布亚新几内亚等。

我国镍矿资源储量中70%集中在甘肃,其次分布在新疆、云南、吉林、四川、陕西和青海和湖北7个省,合计保有储量占全国镍资源总储量的27%。我国的红土镍矿主要从菲律宾进口。由于自1970年起日本与菲律宾开始进行合作,成立合资矿业公司开采含镍2%以上的高品位镍矿,运送回新日铁和住友商社进行冶炼,导致菲律宾的高品位镍矿砂被日本企业垄断,而我国只能进口镍含量在0.9%~1.1%的低品位镍矿砂。

我国周边国家有镍矿储量1125万吨,只分布在少数国家。包括俄罗斯(660万吨)、印度尼西亚(320万吨)、菲律宾(41万吨)、缅甸(92万吨)和越南(12万吨)。

但占世界总储量比例较大,约占23%。其中,红土镍矿主要分布在印度尼西亚、菲律宾以及缅甸。印度尼西亚镍资源主要为基性、超基性岩体风化壳中的红土镍矿,分布在群岛的东部。矿带可以从中苏拉威西追踪到哈尔马赫拉、奥比、瓦伊格奥群岛,以及伊利安查亚的鸟头半岛的塔纳梅拉地区。由于印度尼西亚超基性岩带风化壳广泛分布,因此其红土型镍钴矿有良好的找矿前景。菲律宾也以红土镍为主,主要分布在诺诺克岛。缅甸也有红土型硅酸镍矿,受印缅山脉超基性岩带控制,分布在中部盆地西缘。俄罗斯的镍资源分布在西伯利亚地台西北缘诺里尔斯克硫化铜镍矿区。越南镍矿为铜镍硫化物型,分布在西北部,已知有山萝省的班福矿床,赋存在黑水河裂谷塔布蛇绿岩带内,有探明储量12万吨。

世界红土镍矿资源开发及湿法冶金技术的进展

摘要:随着硫化镍矿资源口趋枯竭,高效开发占全球镍资源72%的红土镍矿日益迫切。文章介绍了世界红土镍矿资源特点、国内外的开发现状,并阐述了其传统湿法生产工艺及进展。认为常压浸出和细菌浸出等新湿法流程具有工艺简单、能耗低、操作易于控制、投资少等优点,将会有很好的发展前景。

关键词:红土镍矿湿法冶金技术开发现状

按照地质成因来划分,镍矿床主要有两类:岩浆型硫化镍矿和风化型红土镍矿,其中红土镍矿资源储量占全球镍资源的72%。近年来,由于不锈钢行业的带动,全世界镍需求量在不断上升,2008年我国不锈钢产能达到1000万t,而实际产量仅为535万t,镍供应不足是重要原因之一。

目前约有60%的镍从硫化矿中提取,而硫化矿资源急剧减少,品位下降,开采深度增加,开采难度加大,成本升高。红土镍矿资源具有勘查、采矿成本低,可以直接生产氧化镍、镍锍、镍铁等产品的优点,因此,高效开发红土镍矿资源十分迫切。在20世纪50年代,从红土镍矿中提取镍金属仅占世界镍量的10%;而到2008年,该比例则达到45%,约5l万t预计到2012年,该比例将增长到5l%。

红土镍矿生产镍工艺可以简单地分为火法和湿法。火法工艺由于冶炼过程中能耗高、成本高等原因,所以目前主要用于处理高品位的红土镍矿。湿法工艺虽然存在着工艺复杂、流程长、对设备要求高等问题,但它与火法相比,具有能耗低、金属回收率高等优势。特别是湿法工艺发展的几十年来,加压浸出技术的进步和新的湿法流程的出现,使红土镍矿开发利用重心由火法转为湿法。

一、世界红土镍矿资源分类和特点

氧化镍矿床的上部为褐铁型红土矿,适合于湿法工艺处理;下部为镁质硅酸镍矿(蛇纹岩为主),适合用火法工艺处理。中间过渡段同时适于两种方法。据估计,适合用湿法处理的红土镍矿储量(褐铁矿、绿脱石、蒙脱石)是适合火法(硅镁镍矿、腐植矿)的两倍多。

随着红土镍矿资源的不断开发利用,人们对其利用性能和类型又有了新的认识:一类称为“湿型”,主要分布于近赤道地区,如新喀里多尼亚、印尼、菲律宾、巴布亚新几内亚和加勒比海地区,其品位较高,粘土少,易于处理;一类称为“干型”,主要分布于距赤道较远的南半球大陆,其成分复杂,粘土含量高,不易处理。

虽然红土镍矿有不同类型之分,但从总体上来看,它们都具有以下特点:

1.含镍1.0~3%,品位较低且组成比硫化镍矿复杂得多,很难通过选矿获得较高(6%以上)的镍精矿,同时

含镍太低也难以直接用简单的冶金工艺富集。

2.成分含量波动大,不仅镍等有价元素的含量变化大,而且脉石成分如SiO2、MgO、Fe2O3、Al2O3和水分波

动也很大,即使是在同一矿床,红土矿成分(Ni,Co,Fe和MgO等)也随着不同的矿层的深度而不断变化。

3.矿石中仅伴生有少量的钴,无硫,无热值。

4.矿石储量大,而且赋存于地表,易采,可露天操作,具有开发的优越条件。

二、世界红土镍矿的开发现状

以新喀里多尼亚红土矿开发为标志,从红土矿中生产金属镍迄今已经有100多年的历史了。近年来,由于不锈钢行业对镍的巨大需求,很多产镍大国都积极加大对红土矿的开发利用。较有影响的有菲律宾住友/三井公司2005年开始的Coral Bay项目;2007年Inco在新喀照多尼亚正式启动的Goro镍项目,预计年产镍5.4万t;此外,在澳大利亚、印度尼西亚、巴西等国的一些镍矿资源的开发也在实施和研究中,详情列于表l。

表1 国外在建的主要红土镍矿项目

由于我国红土镍矿资源较少,国内的一些大型企业看准时机,加大对国外红土镍矿项目的投资。目前已经或正在进行的国外红土镍矿项目有:

1)宝钢集团同金川集团联手,投资l0亿美元用于菲律宾诺克岛镍矿资源的开发,菲方的合作伙伴是该矿的业

主Philnico公司;

2)中国五矿集团与古巴合作在Moa建设年产2.25万t镍的生产工厂,其中中国公司持股 49%;

3)中国有色矿业集团开发缅甸达贡山镍矿,该矿的镍平均品位为2%,约含镍金属量70万t;

4)中国冶金建设集团同吉恩镍业公司合作在开发位于巴布亚新几内亚的瑞木镍矿,该矿的镍平均品位约l%;

5)中国金宝矿业公司与缅甸矿业部所属公司签署了缅甸莫苇塘镍矿的合作勘探及可行性研究协议等等。

在未来的红土矿项目中,湿法项目会占据很大的比例,预计到2012年,以湿法生产镍的量占总镍产量的比例将由目前的62%增长到80%。

三、红土镍矿的湿法冶金技术的现状

1.还原焙烧-氨浸工艺(RRAL)

还原焙烧-氨浸工艺是Caron教授发明的,所以又叫做Caron流程。古巴尼加罗镍厂用还原焙烧-氨浸法处理高氧化镁红土镍矿已达半个多世纪,适合采用这种氨碱浸出方法处理的矿典型成分为1.4%Ni,8%MgO,14%SiO2。基本流程为粒度小于74μm的矿石放在多膛炉内进行还原焙烧。红土矿中的镍和钴基本上呈铁酸盐形式存在,经还原焙烧后,镍、钴转变为金属或合金。焙砂用氨-碳酸铵混合溶液浸出,经浓密机处理,溢流为富液,净化、蒸氨后产出碳酸镍浆料,经回转窑干燥和煅烧后,得到氧化镍产品,并用磁选法从浸出渣中选出铁精矿。为此,还原焙烧时既要使与铁结合的镍和钴充分还原,又要防止铁过分还原。我国在20世纪70年代援助阿尔巴尼亚爱尔巴桑钢铁联合企业项目中,首先在世界上完成从红土矿还原焙烧-氨浸提取镍钴-浸出渣磁选-铁精矿炼钢铁的研究,并成功地应用于工业生产。

为了提高镍钻浸出率,美国矿物局发展了还原焙烧-氨浸法处理红土矿的新流程,简称USBM法。该法的要点在于还原焙烧前加入了黄铁矿(FeS2)进行制粒,还原时用的是纯一氧化碳。浸出液用LIX64-N作为萃取剂实现钴镍的分离,整个系统为闭路循环,有效地利用了资源。据报道,用该法处理含镍1%、钴0.2%的红土矿时,镍、钴的回收率分别为 90%和85%。若处理含镍0.53%和钴0.06%的低品位红土矿时,钴的回收率亦能达到76%。与原来的氨浸工艺相比较,大大提高了镍钴的回收率,降低过程的能耗。

奥托昆普-鲁奇公司(Outokumpu-Lurgi)正在开发处理工艺为:焙烧和流化床预还原褐铁矿或腐殖土矿,还原后矿石分别用于后一步的Caron法处理。

在产品工艺方面,还原焙烧-氨浸法可产出烧结氧化镍(99%)、电镍、镍粉或镍块。典型生产厂家的工艺流程和产品列于表2。

表2 还原焙烧一氨浸法生产工艺典型厂家和产品

2.硫酸加压酸浸工艺(HPAL)

硫酸加压酸浸工艺适合处理含氧化镁低的褐铁矿型红土矿,加压酸浸原则流程如图一所示,此流程最大的优势在于金属的回收率都能达到90%以上,加压酸浸法的原则工艺流程如图一所示。该技术始于20世纪50年代,首次用于古巴Moa Bay矿,称A-MAX-PAL技术。此后,70年代澳洲QNI公司建成Yabula镍厂,酸浸处理新喀里多尼亚、印尼及澳州昆士兰州的红土型镍矿。1998年下半年澳大利亚的莫林莫林(Murrin Murrin)、科斯(Cawse)和布隆(Bulong)三个公司采用加压酸浸新工艺的红土矿开发项目陆续投入生产运营,引起很大的关注。这三个工艺中的酸性加压浸出技术与古巴莫奥公司生产中应用的工艺相近,只不过用卧式高压釜取代了莫奥公司的立式高压釜而已。然而,回收步骤却有以下区别:

1.在Cawse工艺中,混合氢氧化物是从高压浸出液中沉淀出来的,然后用氨浸出它们,接着再进行溶剂萃取和

电积。

2.在Bulong工艺中,用H2S从高压浸出液中沉淀出混合硫化物,然后在有氧条件下浸出硫化物,接着再进行

溶剂萃取、氢还原、压片等作业。

3.在Murrin工艺中,直接对高压浸出液进行溶剂萃取和电积。

图一加压酸浸原则流程图

这三个红土型镍厂的资源、年产量、达产率以及设计产能列于表3。从表3可以看出,澳大利亚这三个红土矿HPAL项目的进程并不十分令人满意,仅Cawse达到设计产能的74%,生产成本从4.1美元/磅镍降至1.54美元/磅镍;Murrin Murrin为设计的1/3,并且是在原计划一推再推的情况下达到的,Bulong厂就因为技术和资金问题而被迫在2004年进入破产清算。

表3 西澳的三家HPAL镍厂的简况

这三个项目在技术、机械设计以及成本计算上存在着不少的问题,如设备选材不当、配套脱节等等。尽管这三个项目没有达到所期望的目标,但它们的建立为今后的加压酸浸技术的发展提供了宝贵的经验。

由于约70%的红土矿资源是褐铁矿型的,高压酸浸技术受到了最大的关注,在技术上得到了很多的改进。从1998年以来,几家大公司,包括BHPB、巴西国有矿业公司(CVRD)、加拿大的鹰桥公司(Falcon bridge)等都进行了技术开发项目。BHPB公司和CVRD公司都倾向于用新流程生产混合硫化物或氢氧化物。Inco公司采用了两步溶剂萃取法,镍从硫酸介质转入盐酸介质,然后将溶液高温水解,得到氧化镍产品和盐酸,盐酸可循环利用。

SGS Lakefileld公司研究出一种高压酸浸方案,其特点为:在高压釜内加入元素硫和氧,就地产生硫酸。这可使矿浆进入高压釜前的预热变得没有必要,从而显著节约设备成本。

3、其他的湿法流程

常压浸出(AL):适合处理那些铁含量低和镁含量高的红土型镍矿石。目前Skye资源公司正在研究用于开发危地马拉红土矿矿床的常压浸出法,该法把褐铁矿浸出后的剩余酸和以针铁矿形式沉淀后释放的酸用于浸出大量的腐殖土组份。

堆浸:主要适合于腐植土矿。大量的研究结果表明,采用堆浸技术,3个月内镍的浸出率可以达到75%以上,钴的浸出率可达到60%以上。欧洲镍公司(European Nickel)目前正在土耳其进行大规模浸试验,有望建成世界上第一座采用堆浸技术提取镍和钴的工厂。

微波烧结-加压浸出法:将红土矿进行微波烧结以破坏矿物晶格,再在低温下加压浸出,使铁离子以赤铁矿的形式析出沉淀,达到强化浸出,降低高压酸浸温度和压力的目的。

氯化离析-氨浸:在矿石中加入一定量的碳质还原剂和氯化剂(氯化钠或氯化钙),在中性或弱还原性的气氛下加热,使有价金属从矿石中氯化挥发,并同时在碳粒表面还原成金属颗粒。随后焙砂直接氨浸。王成彦采用此法处理元江贫氧化镍矿,实验结果为:镍浸出率大于80%,钴浸出率大于50%。

生物浸出:通过微生物催化的氧化-还原作用能使金属从低品位矿石中有效溶解出来。Castro等研究了异养微生物从硅镁镍矿中浸出镍。矿样取自巴西Acesita矿业公司,化学成份为43.2%SiO2、0.09%Ni。磨至粒度为147μm以下,浸矿用了5种异养微生物。浸出条件为:矿样重5g(事先在12l℃下灭菌),含微生物的培养基1000mL,温度30℃,摇瓶速率200r/min,Ni浸出率大于80%。

四、红土镍矿湿法冶金技术的展望

传统的加压酸浸工艺越来越受重视,在未来几年新建的红土镍矿项目中,此法占了很大的比例。这是由于与火法和氨浸法相比较,加压酸浸在技术和经济上都占有优势。但是该技术也存在很多的问题,如一次性设备投入大;只适合处理含镁低的褐铁型矿石,且对矿石的品位有要求;同液废料多,污染环境等等,这些难题一直限制着该工艺的发展。人们在完善加压酸浸技术的同时也在不断地开发新的红土镍矿湿法流程,如常压浸出、生物浸出等技术。近年来这些新流程备受关注,与加压酸浸工艺相比较,它们具有以下优点:

1)常压浸出、生物浸出技术能处理含镁比较高的红土镍矿,都适合处理低品位的矿石。

2)常压浸出、生物浸出可以在常温常压的条件下进行,对设备要求低、工艺简单、操作方便,因而投资少,生

产成本低。

3)加压酸浸法固液废料多,污染环境。而新的流程如生物浸出不会产生SO2气体,产生的固液废弃物也能为

环境所接受,十分环保。

但是这些新流程还不成熟,还存在一些技术难题,如常压浸出中浸出液分离困难,生物浸出也存在有机酸不能循环的问题,且从目前的报道可知,常压和生物浸出技术处理红土镍矿时镍、钴的浸出率一般都低于加压酸浸。虽然存在的难题多,但相信通过技术不断的改进,终将会被解决,常压浸出和生物浸出一定会有很好的发展。

镍矿精选工艺流程

镍矿石主要分硫化铜镍矿和氧化镍矿,两者的选矿和加工方法完全不同。

硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。浮选硫化铜镍矿石时,常采用浮选硫化铜矿物的捕收剂和起泡剂。确定浮选流程的一个基本原则是,宁可使铜进入镍精矿,而尽可能避免镍进入铜精矿。因为铜精矿中的镍在冶炼过程中损失大,而镍精矿中的铜可以得到较完全的回收。铜镍矿石浮选具有下列四种基本流程。

直接用优先浮选或部分优先浮选流程:当矿石中含铜比含镍量高得多时,可采用这种流程,把铜选成单独精矿。该流程的优点是,可直接获得含镍较低的铜精矿。

1)混合浮选流程:用于选别含铜低于镍的矿石,所得铜镍混合精矿直接冶炼成高冰镍。

2)混合—优选浮选流程:从矿石中混合浮选铜镍,再从混合精矿中分选出含低镍的铜精矿和含铜的镍精矿。该

镍精矿经冶炼后,获得高冰镍,对高冰镍再进行浮选分离。

3)混合—优先浮选并从混合浮选尾矿中再回收部分镍:当矿石中各种镍矿物的可浮性有很大差异时,铜镍混合

浮选后,再从其尾矿中进一步回收可浮性差的含镍矿物。

铜是镍冶炼的有害杂质,而在铜镍矿石中铜品位又具有工业回收价值,因此铜镍分离技术是铜镍矿石选矿中的一个重要课题。铜镍分离技术分为铜镍混合精矿分离和高冰镍分离工艺两种。通常,前者用于铜镍矿物粒度较粗且彼此嵌布关系不甚紧密的矿石,后者用于铜镍矿物粒度细且彼此嵌布十分致密的矿石。

金川铜镍矿是大型金属共生硫化铜镍矿。其第一选矿厂选矿工艺流程主要包括:破碎为三段一闭路流程;磨矿和浮选工序改造为三段磨矿、三段浮选流程。

目前铜镍硫化物矿石主要采用火法冶炼。金川镍矿也不例外,其基本流程分备料(焙烧)—熔炼—吹炼—精炼(电解)等环节。由于该矿属于蛇纹石类型矿石,铜镍矿物彼此致密嵌布,直接采用机械选矿方法进行铜镍分离有困难,因此采用高冰镍浮选分离技术。铜镍混合精矿经转炉熔炼成高冰镍,然后经破碎和磨浮工艺,最后电解成最终产品——电解镍。

吉林磐石矿也是铜镍矿,其选矿工艺流程采用三段一闭路碎矿,阶段磨矿,铜镍混合—分离浮选,镍精矿三段脱水、铜精矿两段脱水的工艺流程。

氧化镍矿目前多采用破碎、筛分等工序预先除去风化程度弱、含镍低的大块基岩。由于氧化镍矿中的镍常以类质同象分散在脉石矿物中,且粒度很细,因此不能用机械选矿方法予以富集,只能直接冶炼。

氧化镍矿的冶炼富集方法,可分为火法和湿法两大类。前者又可分为造硫熔炼、镍铁法和粒铁法;后者又有还原焙烧-常压氨浸法、高压酸浸法等。

红土镍矿有几种提取技术及冶炼方法?

2008年02月27日星期三 16:12

目前世界上氧化镍矿的处理工艺归纳起来大致有三种,即火法工艺、湿法工艺和火湿法结合工艺。火法工艺还可以按其产出的产品不同分为还原熔炼生产镍铁的工艺和还原硫化熔炼生产镍锍的工艺;湿法工艺可以按其浸出溶液的不同分为氨浸工艺和酸浸工艺;火湿法结合工艺是指氧化镍矿经还原焙烧后采用选矿方法选出有用产品的工艺。

1.火法工艺

(1)还原熔炼生产镍铁

火法处理工艺中世界上用得最多的是还原熔炼生产镍铁。目前,至少有14家工厂使用还原熔炼法处理氧化镍矿生产镍铁。镍铁年产量(含镍计)在25万吨左右,大都采用电炉熔炼,采用鼓风炉熔炼的只有几个规模较小的工厂。

电炉熔炼生产镍铁的工艺则适合处理各种类型的氧化镍矿,生产规模则可依据原料的供应情况、矿石的贮量等决定,可大可小,对入炉炉料的粒度也没有严格的要求,粉料以及较大块料都可直接处理。电炉熔炼生产镍铁的唯一缺点就是能耗大。

鼓风炉熔炼生产镍铁其优点是投资小、能耗较低,适合生产规模小、电力供应困难以及氧化镍矿含镍低的地区。它的缺点是对矿石适应性差、对镁含量有较严格的要求,另外也不能处理粉矿、对入炉炉料也有严格要求。

(2)还原硫化熔炼生产镍锍

还原硫化熔炼处理氧化镍矿生产镍锍的工艺最早用来处理氧化镍矿,早在上世纪二三十年代就得到了应用,当时采用的都是鼓风炉熔炼。该工艺与鼓风炉还原熔炼生产镍铁的工艺存在相同的缺点。上世纪70年代以后建设的大型工厂均采用了电炉熔炼的技术处理氧化镍矿生产镍锍。目前,几个最大的、年产镍量大于4万吨的工厂分别在印度尼西亚和新喀里多尼亚。全世界由氧化镍矿生产镍锍的镍量在12万吨左右。

还原硫化熔炼的硫化剂可供选择的有黄铁矿、石膏、硫磺和含硫的镍原料。采用硫磺作硫化剂的优点是简单易行,而且对熔炼过程不产生负面影响(即不影响渣成分、不影响处理能力、不增加电耗),但它价格较贵,硫的有效利用率不高,而且要有一套硫磺熔化和输送喷洒的设施。国际镍公司(INCO)所属的印度尼西亚、新喀里多尼亚的工厂均采用硫磺作硫化剂。将硫磺熔化后有控制地喷洒在回转窑焙烧出来的尚处于一定温度下的焙砂上,使铁、镍转化为硫化物,而后送入电炉熔炼生产低镍锍。据说其硫磺的来源是火山口的天然硫磺,其价格较低。

采用还原硫化熔炼处理氧化镍矿生产镍锍的工艺,其产品高镍锍具有很大的灵活性:经焙烧脱硫后的氧化镍可直接还原熔炼生产用于不锈钢工业的通用镍;也可以作为常压羰基法精炼镍的原料生产镍丸和镍粉;由于高镍锍中不含铜,还可以直接铸成阳极板送硫化镍电解精炼的工厂生产阴极镍。总之,可以进一步处理,生产各种形式的镍产品,并可以回收其中的钴。

2.湿法工艺

(1)氨浸法(Caron法)

和还原焙烧后进行多段常压氨浸出,其代表性的工厂是美国建设的古巴尼加罗镍厂。氨浸法处理氧化镍矿,其产品可以是镍盐、氨浸法处理工艺不适合处理含铜和含钴高的氧化镍矿以及硅镁镍烧结镍、镍粉、镍块等。型(新喀里多尼亚)的氧化镍矿,只适合于处理表层的红土矿,这就极大地限制了氨浸工艺的发展。此外,氨浸工艺镍钴回收率偏低,全流程镍回收率仅为75~80%,钴约为40~50%。到目前为止,世界上只有四家工厂采用氨浸法处理氧化镍矿,而且都是在上世纪70年代以前建设的,三十多年来没有一家新建工厂采用氨浸工艺。

(2)酸浸法

在250~270℃,4~5 MPa的高温高压条件下,用稀硫酸将镍、钴等有价金属和铁、铝矿物一起溶解,在随后的反应中,控制一定的pH值等条件,使铁、铝和硅等杂质元素水解进入渣中,镍、钴选择性进入溶液,从溶液中采用溶剂萃取、硫化沉淀等技术回收。

湿法工艺处理氧化镍矿的工业始于上世纪40年代。最早采用的是氨浸工艺,即氧化镍矿经干燥。

酸浸法工艺处理氧化镍矿的工业生产始于上世纪的50年代。当时代表性的工厂是古巴毛阿镍冶炼厂,它也是由美国设计建设的。酸浸工艺适合于处理低镁含量的氧化镍矿,矿石中镁含量过高会增加酸的消耗,提高操作成本,对工艺过程也会带来影响。如果矿石中的钴含量高,更适合采用酸浸工艺,不仅钴的浸出率比氨浸工艺高,而且由于钴的价值比镍高,使酸浸工艺的单位生产成本大幅度降低。虽然高压酸浸镍浸出率可达90%以上,但由于酸浸工艺也受到矿石条件的制约,目前世界上采用酸浸法处理氧化镍矿的工厂只有三家,且由于高温高压的处理条件对设备要求苛刻,运转均不十分正常。总体而言,酸浸工艺发展尚不成熟。

3.火湿法结合工艺

火法-湿法相结合的工艺处理氧化镍的工厂,目前世界上只有日本冶金(Nippon Yakim)公司的大江山冶炼厂(Oyama Smelter)。主要工艺过程为:原矿磨细与粉煤混合制团,团矿经干燥和高温还原焙烧,焙烧矿团再磨细,矿浆进行选矿(重选和磁选)分离得到镍铁合金产品。该工艺的最大特点是生产成本低,能耗中的85%能源由煤提供,吨矿耗煤160-180kg。而火法工艺电炉熔炼的能耗80%以上由电能提供,吨矿电耗560-600 kWh,两者能耗成本差价很大,按照目前国内市场的价值计算,两者价格相差3-4倍。但是该工艺存在的问题还比较多,大江山冶炼厂虽经多次改进,工艺技术仍不够稳定,经过几十年其生产规模仍停留在年产镍1万t左右。该工艺的技术关键是还原焙烧过程的温度控粉煤与矿石混合和制等。从节能、低成本和综合利用(处理低品位氧化镍矿)镍资源的角度出发,这一工艺是值得进一步研究和推广的。俄罗斯的研究人员对乌拉尔氧化镍矿采用离析焙烧进行浮选或磁选等方面进行了试验研究后认为,它是目前唯一能降低成本,节约能源和增加镍产量的方法,适合于处理任何类型的氧化镍矿。

火法工艺处理氧化镍矿生产镍铁合金具有流程短、效率高等优点,但能耗较高,其操作成本中的最大构成项是能源消耗,如采用电炉熔炼,仅电耗就约占操作成本的50%,再加上氧化镍矿熔炼前的干燥、焙烧预处理工艺的燃料消耗,操作成本中的能耗成本可能要占65%以上,用火法工艺处理中低品位的镍红土矿由于冶炼矿石量大能耗高,冶炼成本较高,所以目前火法工艺主要处理高品位的镍红土矿。目前处理中低品位镍红土矿的主要方法是湿法工艺,虽然成本上比火法低,但湿法处理氧化镍矿工艺复杂、流程长、工艺条件对设备要求高。综上所述,解决火法工艺能耗高的难题以及开发新的湿法工艺处理中低品位镍红土矿将是今后镍冶炼的发展方向。

我国火法冶炼红土镍矿进展

一、国内外镍矿资源、生产、供需、价格的背景述评

(一)资源/储量

2006年底,全国查明资源储量801.39万吨。查明资源储量中基础储量272.72万吨(其中储量231.87万吨),资源量528.67万吨。

新中国成立以来至2006年累计查明镍金属资源/储量972.29万吨,其中基础储量433.33万吨。查明资源/储量数量增长最快的时期是1962年到1975年。1976年到2005年期间查明资源/储量数量增长减缓。20世纪80年代以后找矿难度加大。根据对国内基性-超基性岩体区域调查和普查找矿的结果,近期难以在近地表发现大批新的大型铜镍矿床。

(二)产量

从1955年至2007年,中国矿山共生产镍82.78万吨,冶炼厂共生产精炼镍90.73万吨(图1),它们都产自硫化铜镍矿床。2004年以前矿山产量和冶炼生产能力相当,主要使用国内矿山生产的原料冶炼镍,2005年开始从国外进口原料以满足冶炼生产能力的需求(表l)。

(三)消费

2006年中国镍消费量达到19.29万吨。2000年以前国内原料可满足国内消费的需求,从2001年开始由于国内不锈钢和电池产量快速增加,国内原料不能满足国内消费的需求,2000~2006年间消费量的年均增长率为23.75%,国内原料的自给率从90%决速下降到40%左右,缺口靠进口补充(表2)。

(四)需求

1990~1999年中国不锈钢产量始终徘徊在25万~40万吨,镍/钢比值为0.04%,与世界平均镍/钢比值0.11%和工业发达国家的比值0.16%~0.23%有很大差距。新世纪伊始中国开始进人规模化生产不锈钢阶段,产量快速增长,2002年120万吨,2003年180万吨,2004年275万吨,2005年387万吨,2006年536万吨。根据目前国内钢铁厂发展规划的统计,2010年我国不锈钢产量将可能达到600万~900万吨。仅根据中国不锈钢产量数据测算,2010年中国镍的消费量将达到24万~36万吨。

(五)世界镍矿资源储量

2006年世界镍储量为6400万吨,储量基础为14000万吨。目前世界陆地探明的镍储量可以满足未来几十年内生产的需求。

世界镍储量主要集中分布在古巴、加拿大、俄罗斯、新喀里多尼亚、印度尼西亚、南非、澳大利亚、中国和巴西等国家,它们约占世界镍总储量的91%。

世界陆地已查明镍平均含量接近(或大于)1%的镍矿资源量为1.30亿吨。其中60%属于红土型镍矿床,其中、伴生矿产主要是钴和铁,主要分布在赤道附近的古巴、新喀里多尼亚、印度尼西亚、菲律宾、巴西、哥伦比亚和多米尼加等国家;40%属于岩浆型铜镍硫化物矿床,其共、伴生矿产较多,主要有铜、钴、铂族、金、银、镓、钢、锗、硫、硒、蹄等,主要分布在欧、亚、非、澳和北美洲的古老地盾区、中生代凹陷区和古生代地槽褶皱带的岩浆侵入岩体中,这些侵入体多受旁侧的深大断裂控制,如加拿大、俄罗斯、澳大利亚、中国、南非、津巴布韦和博茨瓦纳等国家的铜镍矿床。另外,大洋深海底和海山区的锰结核和锰结壳中还含有大量镍资源,其主要共、伴生矿产是铜、钴和锰,主要分布于太平洋海底。

(六)世界镍矿生产

2006年世界矿山的镍产量为141.69万吨,精炼镍产量为133.01万吨。其中约有60%产于岩浆型铜镍硫化物矿床,大多为坑采,采用火法冶炼,由于其中可供当前工业综合回收利用的共、伴生矿产多,主要铜、铂族、金、银和硫等,故生产成本较低;另外的40%产自于红土镍矿床,为露采,无需选矿,采用高压酸浸或氨浸法冶炼,由于其中可供当前工业综合回收利用的共,伴生矿产只有钴,因此目前生产成本普遍高于前者。

现今世界镍的消费量增长速率高于矿山产量的增长速率。尽管目前世界陆地探明的镍储量可以行满足未来几十年内生产的需求,但2007年没有大型镍矿投产。亚洲矿产资源公司(Asian Mineral Resources)控股90%和机械工程(Mechanica Engineering)控股10%的越南Ban Phuc镍矿预计采矿许可证将在2007年1季度颁发,在5年的矿山寿命期内可产镍2.12万吨、铜0.99万吨,选出的精矿用卡车运至海防港。2008~2010年全球计划开发的镍矿7处,合计约有镍储量/资源量1400万吨,倘若都能如期开工,总生产能力为镍28万吨/年,详见表3。

(七)国外红土镍矿的开发利用现状

目前国外利用湿法冶炼红土镍矿,鉴于红石的成分不同,往往采用不同的方法和流程,还原焙烧-氨浸、高压酸浸、常压浸出、堆浸等。

到目前为止,古巴Moa Bay红土镍矿是利用浸法提取镍最成功的实例。西澳大利亚建设的3个高压酸浸红土镍矿项目都在1998年晚期投产。1期生产能力分别为:Murrin Murrin 45000吨镍/年;Cawse8000吨镍/年;Bulong9000吨镍/年;2期生产能力为:Murrin Murrin吨镍/年。但目前生产技术难关尚未完全解决,只有解决了生产技术问题后,3个矿山的产量才能达到设计生产能力。巴布亚新几内亚的Ramu是我国正在投资建设的大型红土镍矿项目,此外正在建设的矿山还有新喀里多尼亚的Goro和澳大利亚的Ravensthorpe。

(八)消费和价格

2006年世界精炼镍消费量为137.67万吨。由于不锈钢和耐热钢约占镍消费量66%(世界不锈钢产量增加10%,镍消费量增加1%),因此不锈钢产量是镍需求量的标志之一。2005年世界不锈钢产量为2432万吨,2006年为2836万吨。其中中国产量快速增长,2005年中国产量为387万吨,2006年为536万吨。

2003年世界经济开始复苏,2004~2006年持续向好,不锈钢产量持续上升,特别是中国,镍消费量快速增加。近年来由于航天、航空器制造业和电子制造业的快速发展,镍基合金、铜基合金和镍电池(NiCad和NiMH)领域镍的消费量快速增加。因此从长期趋势看,S世界镍消费量仍将呈增长态势。

2004~2006年世界镍需求量快速增加,市场供应不足。国际市场镍价持续大幅上扬(图2),引起生产者和消费者的高度关注。2006年产量增加,基本上已经和消费量持平,但是由于2007年可增加的产量有限,在这种供应预期的情况下,2007年5月镍价飘升至25美元/磅。业内人士惊呼:“镍已跻身于贵金属行列!”参照同期生产成本(硫化镍矿生产镍的经营成本为2~3美元/磅,红土镍矿则为3~5美元/磅),市场镍价已处于疯狂炒作的浪尖上。

二、我国火法冶炼红土镍矿的崛起

(一)我国火法冶炼红土镍矿的现状

拥有自主知识产权的红土镍矿经高炉冶炼镍铬生铁的发明专利及生产出大批镍生铁的实际成效是我国和世界镍金属生产技术的重大突破。技术变革及其快速进人生产应用领域,成功狙击了国际市场的疯狂炒作,2007年6月国际市场镍价大幅下降(图2)。

在市场高镍价的情配下,2005年开始,国内民营企业开始利用炼钢高炉转产冶炼红土镍矿矿石生产镍生铁。经过10年试验,2006年3月由刘光火先生发明,并以其儿子刘沈杰名字向我国国家知识产权局申请的发明专利—红土镍矿经高炉冶炼镍生铁工艺技术的全部资料,由国家知识产权局予以公开发布。从海关进出口统计资料看,同年1月和2月红土镍矿进口量分别只有1.8万吨,3月以后我国民营企业开始大规模利用从菲律宾和印度尼西亚进口的红土镍矿矿石冶炼镍生铁,此后进口矿石量逐月增加,到年底利用进口矿石约300多万吨,产出镍生铁的含镍量约3万吨。2007年全国生产镍生铁的中小企业达到100多家,1~9月进口矿石1200万吨左右,目前许多矿石积压在港。

(二)我国火法冶炼红土镍矿现存问题和发展

目前我国中小企业生产的镍生铁的含镍量多在4%~8%,只能用作冶炼不锈钢的配料,在冶炼不锈钢时,尚需加人一定量的精炼纯镍。只有提高技术使镍生铁中的含镍量达到12%~15%,才能在冶炼不锈钢时完全替代纯镍。这就是产生矿石积压在港口的原因,也是今后民营企业需要攻克的技术难关。据最新资料,个别技术先进的企业已经可以生产出镍含量10%以上的镍生铁了。

在众多的民营企业中,最大的、技术水平最高的企业是浙江青山控股集团。浙江青山控股集团的青浦镍生铁项目使用的生产流程为:矿石→矿石+生水→烧结→烧结矿石冷却破碎→烧结破碎矿石+石灰石+焦炭→高炉冶炼→铸锭→铸锭精整包装。产品为镍铁(镍含量4%~7%),产量18万吨/年。另外,该集团正在印尼OBI 岛筹建镍生铁新项目,图谋在海外创业和发展。

三、结语

我国使用火法利用红土镍矿冶炼镍生铁,使不锈钢生产原料构成发生了重大变革,改变了全球不绣钢生产原料镍的供需格局,也改变了世界不锈钢产业的格局。低成本利用矿石质量较差的红土镍矿资源,符合资源节约型的历史发展趋势,翻开了我国不锈钢生产史的新篇章。

目前高炉法的低品位产品市场容量已经饱和,加快发展10%以上品位的回转窑+矿热炉工艺,可以进一步扩大红土矿火法镍的市场容量。到周边红土镍矿资源国家建立镍生铁冶炼企业,可降低运输成本,降低国内能耗,减少国内工业污染。

用红土镍矿提取镍金属三种主要工艺

我国钢铁年产量已连续多年居世界第一,成为名副其实的世界钢铁大国。作为衡量世界钢铁强国标志之一的高性能、高附加值的我国不锈钢年产量2007年已达到720万吨左右,已连续3年居世界首位,其中含高镍的300系列不锈钢产量约占58%左右。

我国是一个镍资源相对贫乏的国家,相当大部分依赖进口。传统的从硫化镍矿中提取镍金属已有近百年历史,工艺成熟,但经百年开采,地球上硫化镍矿资源日渐枯竭,因此用氧化镍矿(俗称:红土镍矿)提取镍金属正逐步成为世界提取镍金属的主流。

我国作为世界镍矿与镍金属进口的第一大国,针对从镍矿中提取镍金属不同工艺的特点,研究并探索一条适合我国国情的镍金属生产发展道路,建议政府有关部门制定相应的战略与策略,对确保我国不锈钢与特钢产业持续健康发展必须的镍资源供应具有重大现实意义。

用红土镍矿提取镍金属有三种主要工艺,即湿法冶炼(电解法),火法冶炼(电炉法),火法冶炼(高炉法)。目前我国新设工业项目已实行环保评估一票否决制度,因此首先从环保与循环经济方面进行比较:

湿法冶炼:一般红土镍矿含Ni在0.8~3.0%之间,含Co在0.02~0.3%之间,湿法冶炼仅提取其中的Ni和Co,其余近97%部分包含含量较高的Fe(占总量的10~45%%)和少量的Cr全部作为固体废弃物废弃,需建专门场地堆集;湿法冶炼采用液态酸或氨作为Ni、Co的浸出剂,使用后除部分回收利用外,其余均以液态经处理后排放江河或汇入废液潭;湿法冶炼中还会产生大量的CO2气体排放。由于生产中产生的固体、液体、气体废弃物不能被循环利用,从而对环境造成极大危害,属三废全排放,因此,在我国没有发展前途。

火法冶炼:无论是电炉还是高炉,生产中产生的固体炉渣因已经高温煅烧,经干燥研磨即成为低强度的水泥,是水泥生产厂家生产标准水泥时最佳的填充剂,也是砖瓦厂生产砖瓦的优质原料,可100%得到循环使用;另外,高炉生产中使用的冷却水,可建封闭冷却水池循环使用;高炉冲渣水也可沉淀后循环使用。因此火法冶炼产生的固体、液体废弃物几乎全部得到循环回收利用,在三废中彻底解决了二废,因此是我国镍金属提炼工业发展的方向。但无论是电炉还是高炉,对生产中产生的CO2排放尚没有彻底解决的办法,国际上也没有解决此难题的报导。由于红土镍矿与一般铁矿相比硫含量较低,因此生产中SO2排放较一般生铁冶炼大大减少,但火法冶炼中对煤气的回收利用,对粉尘的回收利用则是重点。其中电炉占地面积小,较易处理;高炉则相对工程与投资量较大。我们应密切结合我国的实际,加速研究、制定整套火法冶炼镍铁的符合环保生产和循环经济需要的设备、标准和工艺是当务之急。

另外,电炉冶炼主要以电为主要能源。一般人都认为电能清洁、方便,冶炼时不排放CO2,符合环保。我们应了解,如果所用的电是核电、风电、太阳能电,这观点当然不错。但事实是我国电炉冶炼绝大部分使用煤电,发电过程中产生大量CO2与废气,煤燃烧经锅炉将水变成高温、高压蒸汽以气体能带动气轮机转动形成机械能,汽轮机的机械能再带动发电机转动形成电能。能量的形式每转换一次,效率就降低一次;加之电能远距离输送的损耗,因此经层层损耗,电能至用户电炉时每消耗一度电发出的热量远低于将发这一度电的煤炭直接投入高炉产生的热量。因为投入高炉的焦炭是直接燃烧不经能量转换而效率高。由于用电能和电炉冶炼同高炉相比必须达到同样的温度才能出铁水,因此用电能与电炉冶炼耗电转化为电煤的用量将高于用高炉用焦炭的用量,推而论之,用电能经电炉冶炼排放CO2总量将超过高炉冶炼。其次,高炉冶炼时以焦炭为能源,而将煤炼成焦炭过程可从煤中提取几百种化工原料,公认是最经济合理综合利用煤资源的有效途径。最后,电力生产投资大,焦炭生产投入少。因此,高炉生产镍铁比电炉生产在能源消耗与环保上更胜一筹。

从不同工艺的产品质量、价格与市场需求比较,湿法冶炼:能分别提炼出含量99.9%的镍和钴金属,这是湿法冶炼最大的优势。其产品纯镍是电镀、电池、化工催化设备与特种不锈钢特钢的主要原料;纯钴是耐高强、高温、高耐磨特钢的主要原料。

湿法冶炼在我国历史比较长,占我国镍金属产量比例较高。但纯镍的年产量已远超过以上用途的年市场需求量。因此,目前相当大部分被转用于300系列含镍不锈钢的冶炼。这真是高射炮打蚊子,有大材小用之嫌。由于湿法冶炼生产工艺投资大,周期长,工艺复杂,成本较高而售价较高,使不锈钢与特钢生产企业对其是又爱又恨。爱其纯度高,使用方便,产品质量有保证;恨其价格太高,使产品成本上升盈利降低,减少市场竞争能力,但这种状态一时尚难以改变。

火法冶炼的电炉工艺:能提炼出含镍10~25%,含少量钴与铬的镍铁,可以代替纯镍成为冶炼300系列不锈钢的镍原料。因其以电作为主要热能(一般需消耗7000~8000度电生产一吨镍铁),它不像高炉用焦炭作为热源同时也把焦炭中的磷带入产品中,因此电炉产的镍铁磷含量应比高炉低,对缩短冶炼不锈钢时间有利,因此广受市场欢迎。但美中不足的是,我国电力供应持续紧张,我国对高耗电行业管制很严,而且生产企业所在地区一旦用电紧张,首当其冲是断用电大户电炉的电,使生产不正常。其次,电炉炼镍铁产量较低,单台2.5万KW的电炉,每年产含镍14%的镍铁为2.5万吨左右,远远不能满足近几年我国不锈钢产业井喷式发展对镍金属的大量需求;最后要说明,电炉冶炼含镍15~25%,甚至更高含镍量的镍铁并不是通过提高入炉镍矿的镍含量来实现,相反是通过减少镍矿中铁的还原来实现,这样大量的未经还原的氧化铁以炉渣排出(有时炉渣中铁的含量竟高达20%以上),炉渣又被运到水泥厂做水泥或制砖厂做砖瓦。考虑到目前含铁量65%的进口铁矿市场价已达到一千几百元一吨,大量的含铁炉渣去做水泥或砖瓦实在是对资源的极大浪费。

电炉工艺生产的镍铁销售价以含镍量计,在市场纯镍价基础上打一定折扣,其余铁、钴、铬奉送不计价,冶炼300系列不锈钢相比用纯镍冶炼,每吨可下降成本3000~4000元。

火法冶炼高炉法:能冶炼出含镍1.5~10%并含少量铁与铬的镍铁,可以成为冶炼含镍不锈钢的基础原料。由于矿价与海运费高和镍铁销售仅以含镍量计价的原因,除非客户特别要求并给于升价,一般含镍4%以下的镍铁已很少有厂家冶炼,市场上最受欢迎的是含镍10%,含磷≤0.035%的镍铁,不锈钢厂家只需要加入一定量铬铁即可冶炼成300系列的产品(低于镍含量10%的镍铁去冶炼300系列不锈钢还需加入一定量的纯镍或电炉产高镍镍铁作调节)。因技术、矿的成分等原因,目前能生产以上成分的高炉不多。高炉冶炼镍铁的最大特点是产量高。一座208m3高炉年产量可达到4万吨以上,由于需加入铬铁与高镍铁,6座这样的高炉可满足一家年产30万吨304不锈钢厂的基本镍与铁需求。

不锈钢冶炼脱磷最难,高炉镍铁控制磷含量达到0.035%以下是关键。目前本公司已基本掌控了高炉内脱磷技术,我们的产品甚至比一些电炉冶炼厂家的产品镍更高,磷更低。由于产量比较高,镍含量一般比电炉冶炼低,销售计价方式同电炉镍铁,但折扣系数更大些,每个镍略低于电炉镍价。综上所述,以高炉镍铁为基本原料,以电炉镍铁为调节原料,是组成300系列不锈钢原料的成本最低,供应量最有保障的最佳组合,是今后发展的方向。

高炉能炼生铁,也能炼镍铁。镍铁和生铁虽一字之差,却分属于铁合金与普铁二个行业,其所用矿成分、配方及冶炼工艺等有相当大的区别,将冶炼生铁的一套观念生搬硬套到镍铁冶炼上去是绝对错误的。

1、矿的金属含量有天壤之别:高炉冶炼生铁如用进口含铁65%矿,出一吨铁产几百公斤的渣;如炼含镍7%的镍铁,一般需要消耗含镍1.5%、含铁20%左右的干矿5吨,湿矿为7.7吨左右,矿总金属含量在21.5%左

右,因此出1吨镍铁产4吨炉渣,几乎是生铁冶炼出渣的近十倍。渣口打开与出渣耗时、出渣次数明显增加,工艺等必须作大的调整。

目前盛行炼生铁大高炉是先进生产力,符合环保,小高炉是落后生产力,是污染大户,必须淘汰,并把这一观点生搬硬套到冶炼镍铁上来,其实这是天大的误解。由于炼镍铁出渣是炼生铁的很多倍,因此大型高炉不宜转炼镍铁,因为出渣量实在太大,出渣口开放时间太长,影响炉温,影响生产顺行。从高炉每立方米炉容每天出铁吨数来比较,一般100~200立方米的小高炉出铁系数在3.4,即每立方米每天产铁3.4吨,炉型、炉料和技术如果配合好,还可超过这一系数。相反,近年国内外大量投产的几千立方米高炉,其出铁系数仅在2左右徘徊,原因何在?

原来高炉大小是按炉容来衡量的,而炉容是长宽高的三维立体空间,是以长度单位米的3次方计量的,但高炉以顶部加入烧结矿与焦炭后逐步下降并燃烧,温度逐步上升,直至某一个高度层面温度才达到矿中氧化铁在此温度环境下还原流出铁水,即主要的产铁量主要是由层面面积大小决定的,而层面面积是以长度单位米的2次方计量,在米的数字大于1以后,米的二次方永远小于米的三次方。因此说大高炉一定比小高炉好,在出铁比上却恰恰相反,虽然大高炉上环保设备比较经济,人力成本分摊相对较低,但如果大高炉不装节能环保设备同样是污染大户。

目前国内冶炼镍铁高炉一般均从炼铁高炉改造而来,最大炉容没有超过400m3,生产尚正常,但我们已发现炉容越大,生产越困难,单位容积每天出镍铁量越少的规律。实践是检验真理的唯一标准,科学发展观首先必须建立在科学的客观的在实践基础上的调查研究上,才能保证在实事求是的基础上制定新的政策。因此就高炉冶炼镍铁这一特定项目而言,说大高炉一定比小高炉好,甚至不经调查研究,拍脑袋下达新建镍铁高炉必须达到1000m3以上的标准是典型的反科学的行为,而且已造成十分严重的后果。举个例子:我公司生产的产品以冷的镍铁块运至我国主要的几家不锈钢厂供冶炼300系列不锈钢用。其中一家不锈钢冶炼厂去年因新建的一座几千立方米的高炉即将投产,原有的二座各为700 多立方米的高炉将停炉,希望我公司将其改炼镍铁,本公司表示同意。

我们预计这二座完全符合国家铁合金生产标准的高炉可年生产含镍7%左右的镍铁水25万吨左右,可直接入该厂转炉及AOD炉炼成300系列不锈钢。镍铁水热装热送符合国家大力提倡的节能减排政策,与用冷的镍铁块需用中频炉熔化相比每吨可节省电费300~400元左右,以25万吨计,每年可节省近一亿元以上的电费,相当于每年节约用煤近7万余吨,可减少排放CO220万吨左右。但不久该厂说为完成节能减排指标此二座高炉必须拆除。去年年末,当一家著名报刊头版刊登该厂二座700多立方米高炉被拆除,每年可减少排放多少万吨废气时我只有痛心疾首,几亿元完全有使用价值的国家资产顷刻灰飞烟灭,而每年几十万吨冷的镍铁块仍源源不断的运往该厂加热熔化炼成不锈钢,而这一切均是在节能减排名义下进行的。

总上所述,建议制定相配套的我国镍金属产业的长期发展战略,第一点、从经济、环保性及产品市场饱和度考虑,今后应严格禁止或限制湿法冶炼镍金属生产的进一步扩张。

第二,在水力、风力、核电资源丰富的地区及煤电晚上低谷电被大量浪费的地区应保留或者新建一批火法电炉工艺的镍铁冶炼企业,主要生产高镍系列镍铁,产品主要供生产300系列不锈钢镍含量不足的调节补充使用。

第三,在符合国家钢铁产业发展政策的沿江靠海近港口且距离焦炭生产基地较近的地区,保留部分交通便利,生产与环保设施较好的小高炉,如环保不能达标则需补课;同时适当新建一批适合冶炼镍铁的专用高炉。新建高炉应优先由已被取缔高炉的业主合资组建新公司,建设新高炉,政府给与适当的补助与税收的优惠,以补偿这些业主的损失。

第四,保留或新建的规模:2007年我国不锈钢产量约为720万吨,其中含高镍不锈钢产量约占58%,约为420万吨。扣除进口废旧含镍不锈钢及不锈钢冶炼与加工企业回料约70万吨,扣除加入的铬铁与高镍50万吨,我国需高炉冶炼镍铁供300系列的基础料为250万吨左右,加上配入的铬铁与电炉高镍铁,可基本满足每年生产300系列不锈钢350万吨的用量。石油是战略物资、粮食是战略物资、金属镍更是战略物资,有必要建立镍铁的储备。

以一年储备50万吨高炉镍铁计,2008年应产高炉镍铁为300万吨左右,以含镍7%的镍铁计,全年高炉炼镍铁需要含镍1.5%以上的红土镍矿2100万吨左右;考虑到电炉冶炼,全年需要红土镍矿2500万吨左右。以小高炉每立方米每天产含镍7%镍铁0.6吨计,需保留或新建小高炉总炉容应为15000立方米。如以每座高炉200

立方米计,需高炉75座。这15000立方米炉容如炼生铁,以3.4计,年产量约为1700万吨左右。希望政府各级部门根据我国的实际需求予以及时批准,以便刀下留炉。

如政府各主管单位仍坚持对小高炉实行赶尽杀绝而不是适当精选保留一批的政策,将人为造成我国不锈钢与特钢冶炼企业镍金属供应不足的局面。供求关系决定价格,当小高炉被消灭殆尽之日,即是纯镍生产垄断企业大举涨价与影响我国不锈钢产量之时。

今天的世界十分清楚:谁掌握资源,谁拥有未来。近期石油疯涨到100美元以上一桶,铁矿石连年百分之几十的暴涨,我国企业只有被迫接受的命运,根本没有话语权。因此当小高炉全部消灭之日,纯镍暴涨到5万甚至10万美元一吨的一天迟早会到来,到时我国从世界钢铁大国迅速成长为世界钢铁强国的美梦将断送在错误政策制定者的手中,谓予不信,让历史来证明。

我国企业应在政府的大力扶持下尽早在东南亚红土镍矿产地建设一批矿产基地,以确保红土镍矿长期稳定的供应;进一步,我们可与有关国家的企业合资或独资组建矿业与冶炼公司,直接生产镍铁或不锈钢,走与资源国人民共同富裕的道路。

第六点,不锈钢与特钢行业是高技术、高投入、高附加值的产业。长期来世界钢铁强国均千方百计打入我国市场,以求分享利益。我们认为我国应逐步减少生铁、焦炭、普通钢材这些资源性低技术、低附加值产品的出口,而应大力提倡不锈钢、特钢这些高技术、高附加值产品的出口。目前不管高技术还是低技术、高附加值还是低附加值产品,对钢铁类产品一律给予减少出口退税,甚至课以高额出口关税以遏制外汇顺差增长过快的政策,是削足适履的愚人政策,有关部门应在不锈钢及其制品等高附加值产品出口上实行放足换履的政策,以促进我国不锈钢产业的健康与持续发展。(摘自联合钢铁网)

红土镍矿处理工艺介绍:火湿法结合工艺(三)

1、还原焙烧-磁选工艺

火法-湿法相结合的工艺处理氧化镍的工厂,目前世界上工业化生产的只有日本冶金(Nippon Yakim)公司的大江山冶炼厂,原矿磨细后与粉煤混合制团,团矿经干燥和高温还原焙烧,焙砂球磨后得到的矿浆进行选矿重选和磁选分离得到镍铁合金产品。

火法-湿法结合工艺的最大特点是生产成本低,能耗中能源由煤提供,吨矿耗煤160~180Kg。而火法工艺电炉熔炼的能耗80%以上由电能提供,吨矿电耗560~600kWh,两者能耗成本差价很大,按照目前国内市场的价值计算,两者价格相差3~4倍。但是该工艺存在的问题仍较多,大江山冶炼厂虽经多次改进,工艺技术仍不够稳定,经过几十年其生产规模仍停留在1万t Ni/a左右。

有关专利公开了一种从红土镍矿中回收镍的技术,红土镍矿经破磨后按一定比例加入碳质还原剂、复合添加剂与红土镍矿混磨,用球蛋成型机制成球团中φ15~20mm,在200~400℃下干燥4~6h,采用回转窑还原焙烧,温度控制在950~1300℃。还原焙烧后,焙砂进行粗破后湿式球磨,然后采用摇床进行重选,获得的镍精矿采用3000~5000高斯的磁选机再进行磁选选别,得到高品位的镍铁混合精矿,含镍可达到7%~15%。

专利披露了红土镍矿熔融还原制取镍铁合金工艺,将红土镍矿中的氧化镍和赤铁矿预还原转化为金属镍和金属铁或四氧化三铁,然后利用湿式磁选,使镍铁大幅度富集的同时,脉石及硫、磷等有害元素被脱除,最后将预还原得到的镍铁精矿进行熔融还原制备含镍6%~10%、铁85%~90%的镍铁合金,镍收率大于85%,硫磷含量均低于0.03%。

还原焙烧-磁选工艺流程简单,原料适应性强,镍回收率较高,但得到的镍铁品位不是很理想(最高均不超过15%)。

2、还原焙烧-浮选工艺

关于金属镍的浮选方法尚未有类似自然铜浮选的研究报告。自然铜用黄药进行浮选,可以获得较好的结果;但镍的可浮性不佳,因此,为有效地浮选回收金属镍颗粒,必须进行活化处理。浮选过程是基于以下原理:加入水玻璃,抑制石英类脉石矿物的可浮性;加入硫酸铜,从而使镍颗粒上覆盖有自然铜。利用自然铜的可浮性,在捕收剂磺原酸醋等作用下进入泡沫产品,从而达到Ni分离与富集目的:

Ni+Cu2+→Ni2++Cu

将红土镍矿(含镍在1%左右)磨至-0.074 mm占95%的矿石,加5%氯化钙和2%还原剂混合制粒,在1 000℃的条件下焙烧1h,焙烧后将焙砂破碎至2 mm以下,然后进行细磨再浮选,镍的回收率可达到88.8%,精矿中镍品位达到14.1%。通过对矿石焙烧前后含镍品位的分析,焙烧过程中镍由于挥发所引起的损失不超过2%。

火法-湿法结合工艺的技术关键是粉煤与矿石混合及还原焙烧过程的温度控制等。从节能、降低成本和综合利用(处理低品位氧化镍矿)镍资源的角度出发,这一工艺是值得进一步研究和推广的。俄罗斯的研究人员对乌拉尔氧化镍矿采用离析焙烧进行浮选或磁选等方面进行了试验研究后认为,它是目前唯一能降低成本、节约能源和增加镍产量的方法,适合于处理任何类型的氧化镍矿。

火法工艺处理氧化镍矿生产镍铁合金,具有流程短、效率高等优点,但能耗较高,其操作成本中最大构成项是能源消耗,如采用电炉熔炼,仅电耗约占操作成本的50%,再加上氧化镍矿熔炼前的干燥、焙烧预处理,使能耗成本超过65 %。

选矿实验流程

选矿试验的要求 选矿试验资料是选矿工艺设计的主要依据。选矿试验成果不仅对选矿设计的工艺流程、设备选型、产品方案、技术经济指标等的合理确定有着直接影响,而且也是选矿厂投产后能否顺利达到设计指标和获得经济效益的基础。因此,为设计提供依据的选矿试验,必须由专门的试验研究单位承担。选矿试验报告应按有关规定审查批准后才能作为设计依据。在选矿试验进行之前,选矿工艺设计者应对矿床资源特征、矿石类型和品级、矿石特征和工艺性质、以及可选性试验等资料充分了解,结合开采方案,向试验单位提出试验要求,在“要求”中,一般不必详述试验单位通常都应做到的内容,而应着重提出需要试验单位解决的特殊内容和主要问题。 一、选矿试验类型的划分 选矿试验按研究的目的可分为可选性试验、工艺流程试验和选矿单项技术试验三种,按试验规模可分为试验室试验、半工业试验和工业试验三种。为便于明确选矿试验要求和叙述的方便,概括上述两种分类,将选矿试验类型划分为可选性试验、试验室小型流程试验、试验室扩大连续试验、半工业试验、工业试验和选矿单项技术试验六种。 (1)可选性试验。一般由地质勘探部门完成。在地质普查、初勘和详勘阶段,应循序渐进地提高和加深可选性试验研究深度。可选性试验着重研究和探索各种类型和品级矿石的性质与可选性差别,基本选矿方法与可能达到的选矿指标,有害杂质剔除的难易,伴生成分综合回收的可能性等。试验研究的内容和深度应能判定被勘探的矿床矿石的利用在技术上是否可行、经济上是否合理,能为制订工业指标和矿床评价提供依据。可选性试验是在试验室装置或小型试验设备上进行的,一般只作矿床评价用。 (2)试验室小型流程试验。试验室小型流程试验是在矿床地质勘探完成之后,可行性研究或初步设计之前进行。它着重对矿石矿物特征和选矿工艺特性、选矿方法、工艺流程结构、选矿指标、工艺条件及产品(包括某些中间产品)等进行试验研究和分析,并应进行两个以上方案的试验对比。试验研究的内容和深度。一般应能满足设计工作中初步制订工艺流程和产品方案、选择主要工艺设备及进行设计方案比较的要求。由于试验室小型流程试验规模小、试料少、灵活性大、入力物力花费较少,因此允许在较大范围内进行广泛的探索,又因它的试料容易混匀,分批操作条件易于控制,因此是各项试验的最基本试验。但是,它是在试验室小型非连续(或局部连续)试验设备上进行的,其模拟程度和试验结果的可靠性虽优于可选性试验,但不及试验室扩大连续试验。 (3)试验室扩大连续试验。试验室扩大连续试验是在小型流程试验完成之后,根据小型流程试验确定的流程,用试验室设备模拟工业生产过程的磨矿、选别乃至脱水作业的连续试验。它着重考察流程动态平衡条件下(包括中矿返回)的选矿指标和工艺条件。各试验研究单位连续试验设备的能力很不一致,一般为 40 一 200kg/h。试验室扩大连续试验比小型流程试验的模拟性较好,可靠性较小型流程试验高些。 (4)半工业试验。半工业试验是在专门建立的半工业试验厂或车间进行的,试验可以是全流程的连续,也可以是局部作业的连续或单机的半工业试验。试验的目的主要是验证试验室试验的工艺流程方案,并取得近似于生产的技术经济指标,为选矿厂设计提供可靠的依据或为进一步做工业试验打下基础。半工业试验所用的设备为小型工业设备,试验厂的规模尚无明确的规定,一般为 1~5t/h。 (5)工业试验。工业试验是在专门建立的工业试验厂或利用生产选矿厂的一个系列甚至全厂进行的局部或全流程的试验,由于其设备、流程、技术条件与生产或今后的设计基本相同,故技术经济指标和技术参数比半工业试验更为可靠。

白钨矿黑钨矿的浮选药剂方案精选.

白钨矿、黑钨矿的浮选药剂方案实例 钨的矿物可分为白钨矿和黑钨矿两大类。一般来说白钨矿要比黑钨矿易浮得多。 A 白钨矿浮选 (1)白钨矿的浮选方法。白钨矿的分子式为CaWO4,由于分子式中含有钙,对脂肪酸类容易发生化学吸附和化学反应。常用的捕收剂为植物油酸和731氧化石蜡皂。植物油油酸中山苍子油酸有优良的选择性和捕收性。731氧化石蜡皂有较好的选择性,但是捕收力较差。近年来生产的白钨矿新药剂中南选钨剂ZN633具有耐低温、选择性和捕收性能好的特点,大大提供品位和回收率。 白钨矿由于常和各种钙镁的磷酸盐、硫酸盐、碳酸盐、氟化物共生,它们的可浮性相似,往往难以选出合格精矿。为了加强过程的选择性,可以使用下列方法: 1)用硫化钠、氰化物、铬酸盐等抑制其伴生硫化矿物(硫化矿物多时,必须先单独浮选);用水玻璃、单宁、多聚偏磷酸钠、铬酸盐等抑制其脉石矿物:用水玻璃或碳酸钠将矿浆的PH值调至9.5~10,精选时可为11~12。 2)“石灰—浮选”法。其要点是:用石灰(约0.5kg/t)调浆,再加入碳酸钠(约0.15kg/t)和水玻璃(约2.2kg/t),最后用油酸和环烷酸(二者之比为1:1)捕收。该法的特点是使矿浆中的Ca2+先吸附在脉石矿物的表面,当加入碳酸钠以后,吸附在脉石表面的Ca2+就变成较易被抑制的CaCO3薄膜。因而能大大地提高精矿品位。 3)采用大量水玻璃加温精选法(即彼得罗夫法)。即将低品位的粗精矿,加入40~90kg/t的水玻璃,升温到60~90℃煮一段时间,搅拌,脱水(实质上脱去了脉石表面过量的药剂),然后调浆,再精选4~8次,即可得到品位较高的精矿。如果精矿中还含有较多的重晶石,可用烷基硫酸盐或磺酸盐在PH值等于1.5~3以下反浮选重晶石,当精矿含磷不合格时,可以用盐酸浸出精选精矿,以溶解其中的磷酸盐矿物,固液分离和洗涤以后,白钨精矿中的含磷量,即可合格。 在白钨矿床中,往往也有一些共生矿物(如锡、钼等),这些共生矿物在重选过程中都会进入到白钨精矿,影响精矿的质量,因此,在白钨矿浮选时,也有钨锡和钨钼分离的问题。白钨矿与锡石的分离,可以用电选也可以用浮选。浮选分离时,用脂肪酸捕收白钨矿,用水玻璃抑制锡石。当白钨矿含有铝时,由于钼的可浮性好,因此可先浮钼矿,然后再浮白钨矿。 (2)白钨矿浮选实例。某钨矿原矿中主要金属矿物有自然金、辉锑矿、白钨矿、含金黄铁矿,其次是黄铁矿、黑钨矿、闪锌矿等。主要脉石矿物有石英,其次有方解石、磷灰石、叶蜡石等。白钨矿一般呈粗粒状和不规则块状产于石英脉中,有时也呈薄层状及片状赋存于辉锑矿中,还有少量呈细线状产于围岩中。 该厂用重-浮联合流程,重选与浮选均产白钨精矿。重选所产白钨精矿质量较高,接近特级品,浮选所得白钨精矿质量稍低,常与重选产品混合出厂。浮选作业的给矿为重选(摇床)尾矿。浮选原则流程如图1所示。

镍矿精选工艺流程

红土镍矿全球分布 世界上红土镍矿分布在赤道线南北30度以内的热带国家,集中分布在环太平洋的热带―亚热带地区,主要:有美洲的古巴、巴西;东南亚的印度尼西亚、菲律宾;大洋洲的澳大利亚、新喀里多尼亚、巴布亚新几内亚等。 我国镍矿资源储量中70%集中在甘肃,其次分布在新疆、云南、吉林、四川、陕西和青海和湖北7个省,合计保有储量占全国镍资源总储量的27%。我国的红土镍矿主要从菲律宾进口。由于自1970年起日本与菲律宾开始进行合作,成立合资矿业公司开采含镍2%以上的高品位镍矿,运送回新日铁和住友商社进行冶炼,导致菲律宾的高品位镍矿砂被日本企业垄断,而我国只能进口镍含量在0.9%~1.1%的低品位镍矿砂。 我国周边国家有镍矿储量1125万吨,只分布在少数国家。包括俄罗斯(660万吨)、印度尼西亚(320万吨)、菲律宾(41万吨)、缅甸(92万吨)和越南(12万吨)。 但占世界总储量比例较大,约占23%。其中,红土镍矿主要分布在印度尼西亚、菲律宾以及缅甸。印度尼西亚镍资源主要为基性、超基性岩体风化壳中的红土镍矿,分布在群岛的东部。矿带可以从中苏拉威西追踪到哈尔马赫拉、奥比、瓦伊格奥群岛,以及伊利安查亚的鸟头半岛的塔纳梅拉地区。由于印度尼西亚超基性岩带风化壳广泛分布,因此其红土型镍钴矿有良好的找矿前景。菲律宾也以红土镍为主,主要分布在诺诺克岛。缅甸也有红土型硅酸镍矿,受印缅山脉超基性岩带控制,分布在中部盆地西缘。俄罗斯的镍资源分布在西伯利亚地台西北缘诺里尔斯克硫化铜镍矿区。越南镍矿为铜镍硫化物型,分布在西北部,已知有山萝省的班福矿床,赋存在黑水河裂谷塔布蛇绿岩带内,有探明储量12万吨。 世界红土镍矿资源开发及湿法冶金技术的进展 摘要:随着硫化镍矿资源口趋枯竭,高效开发占全球镍资源72%的红土镍矿日益迫切。文章介绍了世界红土镍矿资源特点、国内外的开发现状,并阐述了其传统湿法生产工艺及进展。认为常压浸出和细菌浸出等新湿法流程具有工艺简单、能耗低、操作易于控制、投资少等优点,将会有很好的发展前景。 关键词:红土镍矿湿法冶金技术开发现状 按照地质成因来划分,镍矿床主要有两类:岩浆型硫化镍矿和风化型红土镍矿,其中红土镍矿资源储量占全球镍资源的72%。近年来,由于不锈钢行业的带动,全世界镍需求量在不断上升,2008年我国不锈钢产能达到1000万t,而实际产量仅为535万t,镍供应不足是重要原因之一。

钼矿选矿工艺

钼矿常规选矿工艺 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。 辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的S—Mo—S 结构和层内极性共价键S—Mo形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明:在合适的磨矿细度下,辉钼矿晶体解离发生在S—Mo—S层间,亲水的S—Mo面占很小比例。但过磨时,S—Mo面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。 钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15毫米。 磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。 钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。 为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离: 一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁;用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量标准,尚需辅以化学选矿处理:次生硫化铜用氰化物浸出;黄铜矿用三氯化铁溶液浸出; 方铅矿用盐酸和三氯化铁溶液浸出,均可达到标准含量。 含氧化钙的脉石易泥化,因此,对于含此类脉石的矿石切忌过磨。生产上往往添加水玻璃,六聚偏磷酸钠或有机胶作脉石抑制剂或分散

选矿工艺流程修订稿

选矿工艺流程 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

工艺流程试验是为选矿厂设计(或现有选矿厂的技术改造)提供依据,在选矿厂初步设计(或拟定现场技术改造方案)前进行。一般选进行试验室试验,然后在试验室试验的基础上,根据情况决定是否进行半工业或工业试验。 选矿工艺流程试试验内容和必要的资料收集,一般由试验研究单位负责制订,有条件的可由试验、设计和生产部门三结合洽商确定。 一、收集资料的一般内容如下,但具体工程需根据条件的不同,区别对待 (一)了解上级机关下达任务的目地和委托单位提出的要求,例如:选矿厂规模、服务年限;主要有用成分和伴生成综合利用问题;试验阶段的划分;要求试验完成日期;选矿厂处理单一矿床的矿石还是几个矿床、不同类型的矿石;用户对精矿化学成分的特殊要求以及对精矿等级和粒度的要求;建厂地区的水源,选矿药剂,焙烧用燃料等的供应情况和性能分析资料等。 (二)了解有关地质资料,例如:矿床类型;地质储量;矿体产状;矿石类型;品位特征;嵌布特性;围岩脉石等变化情况;远景评价;采样设计等。 (三)了解采矿设计方面的资料,例如:采矿的开拓方案和采矿方法;不同类型矿石的混采、分采;围岩混入率和矿石采出品位;开采设计矿区的矿石类型配比和平均品位;开采设计5-10年内逐年开采的矿石类型配比和平均品位等。 (四)了解选矿方面资料,例如:选矿设计对试验的特殊要求。国内外类似矿石的试验研究和生产实践情况,可能应用的选进技术等。 二、选矿工艺流程试验主要内容有 (一)矿石性质研究 是选择选矿方案和确定选厂设计方案时与类似矿石生产实践作对比分析的依据,其中某些数据是选厂具体设计中必不可少的原始数据。 矿石性质研究包括:光谱定性和半定量,化学全分析,岩矿鉴定,物相分析,粒度分析,磁性分析,重液分析,试金分析,磨矿细度,矿石可磨度,及各种物理性能(比重、比磁化系数、导电率、水分、真比重和假比重、堆积角和摩擦角、硬度、粘度等)。 (二)选矿方法、流程结构,选矿指标和工艺条件 直接关系到选矿厂的设计方案和具体组成,是选厂设计的主要原始资料,必须慎重考虑,要求选矿方法、流程结构合理,选矿指标可靠。

镍矿石选矿流程

镍矿石主要分硫化铜镍矿和氧化镍矿,两者的选矿和加工方法完全不同。 硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。浮选硫化铜镍矿石时,常采用浮选硫化铜矿物的捕收剂和起泡剂。确定浮选流程的一个基本原则是,宁可使铜进入镍精矿,而尽可能避免镍进入铜精矿。因为铜精矿中的镍在冶炼过程中损失大,而镍精矿中的铜可以得到较完全的回收。铜镍矿石浮选具有下列四种基本流程。 直接用优先浮选或部分优先浮选流程:当矿石中含铜比含镍量高得多时,可采用这种流程,把铜选成单独精矿。该流程的优点是,可直接获得含镍较低的铜精矿。 1)混合浮选流程:用于选别含铜低于镍的矿石,所得铜镍混合精矿直接冶炼成高冰镍。 2)混合—优选浮选流程:从矿石中混合浮选铜镍,再从混合精矿中分选出含低镍的铜精矿和含铜的镍精矿。该镍精矿经冶炼后,获得高冰镍,对高冰镍再进行浮选分离。 3)混合—优先浮选并从混合浮选尾矿中再回收部分镍:当矿石中各种镍矿物的可浮性有很大差异时,铜镍混合浮选后,再从其尾矿中进一步回收可浮性差的含镍矿物。 铜是镍冶炼的有害杂质,而在铜镍矿石中铜品位又具有工业回收价值,因此铜镍分离技术是铜镍矿石选矿中的一个重要课题。铜镍分离技术分为铜镍混合精矿分离和高冰镍分离工艺两种。通常,前者用于铜镍矿物粒度较粗且彼此嵌布关系不甚紧密的矿石,后者用于铜镍矿物粒度细且彼此嵌布十分致密的矿石。 金川铜镍矿是大型金属共生硫化铜镍矿。其第一选矿厂选矿工艺流程主要包括:破碎为三段一闭路流程;磨矿和浮选工序改造为三段磨矿、三段浮选流程。 目前铜镍硫化物矿石主要采用火法冶炼。金川镍矿也不例外,其基本流程分备料(焙烧)—熔炼—吹炼—精炼(电解)等环节。由于该矿属于蛇纹石类型矿石,铜镍矿物彼此致密嵌布,直接采用机械选矿方法进行铜镍分离有困难,因此采用高冰镍浮选分离技术。铜镍混合精矿经转炉熔炼成高冰镍,然后经破碎和磨浮工艺,最后电解成最终产品——电解镍。 吉林磐石矿也是铜镍矿,其选矿工艺流程采用三段一闭路碎矿,阶段磨矿,铜镍混合—分离浮选,镍精矿三段脱水、铜精矿两段脱水的工艺流程。 氧化镍矿目前多采用破碎、筛分等工序预先除去风化程度弱、含镍低的大块基岩。由于氧化镍矿中的镍常以类质同象分散在脉石矿物中,且粒度很细,因此不能用机械选矿方法予以富集,只能直接冶炼。 氧化镍矿的冶炼富集方法,可分为火法和湿法两大类。前者又可分为造硫熔炼、镍铁法和粒铁法;后者又有还原焙烧-常压氨浸法、高压酸浸法等。

钨矿选矿废水利用

世上无难事,只要肯攀登 钨矿选矿废水利用 钨废水主要分为洗矿废水、破碎系统废水、选矿废水和冲洗废水,并具有以下特点:①水量大,约占整个矿山采选废水量的34%~79%,浮选用水量1t 原矿石废水排放为原矿石的3.5~4.5 倍,浮选-磁选法1t 原矿石,废水排放量为原矿石的5~10 倍;②废水的悬浮物主要是泥沙和尾矿粉,由于粒度极细,呈细分散的近胶态不易自然沉降,另外尾砂粉中含有重金属元素,在酸、碱和其他生化作用下,重金属元素易溶出,造成重金属元素污染;③选矿作业中加入大量的浮选药剂,这些药剂残留在选矿厂排出的废弃液中,部分金属离子、固体悬浮物、有机和无机药剂的分解物质等也残存在选矿废弃液中,直接排放会对流域内的土地、水体产生严重污染,对生态造成压力。因此,有效地处理选矿废水是各个矿山长期以来亟待解决的重大问题,也是选矿工艺过程中必须考虑解决的技术难题。实行选矿废水循环使用是解决该难题的重要技术措施,也是实现选矿废水资源化综合利用的重要前提。钨选矿过程中加入大量水玻璃和捕收剂,且选矿废水细粒含量多、沉降缓慢,选矿废水的直接回用将严重影响选矿指标。特别是将尾矿水直接回用到磨矿和硫化矿浮选,将对硫化矿浮选和后续钨的回收产生较大影响。生产上多采用回水分质分流回用,即回水返回到相应的作业,即硫化矿尾矿水返回磨矿和硫化矿浮选,氧化矿浮选尾矿水返回到氧化矿浮选系统;或者将总尾矿水只返回氧化矿浮选系统,在甘肃小柳沟选厂实现了选矿厂回水100%的利用。 针对选钨废水的絮凝剂和沉降技术,近年来也进行了大量的研究。 某白钨矿选矿水中含有大量的固体悬浮物,水样浑浊,COD、Cr 值较高,含有大量有机物以及还原性无机物,且含有少量的Al、As、Cu、Fe、Mn 等重金属离子。孙伟等[106]采用磁化絮凝技术大幅缩短了絮凝沉降所需的时间,且

选矿方法(基本原理、工艺流程)

1、重介质选矿法: (1)方法是基于矿石中不同的矿粒间存在着密度差,(或粒度差),籍助流体动力和各种机械力作用,造成适宜的松散分层和分离条件,使不同物料得到分离。 重介质选矿分选原理 根据阿基米德定理,小于重介质密度的颗粒将在介质中上浮,大于重介质密度的颗粒在介质中下沉。 (2)工艺流程 矿石的重选流程是由一系列连续的作业组成。作业的性质可分成准备作业、选别作业、产品处理作业三个部分。(1) 准备作业,包括a:为使有用矿物单体解离而进行的破碎与磨矿;b:多胶性的或含黏土多的矿石进行洗矿和脱泥;c:采用筛分或水力分级方法对入选矿石按粒度分级。矿石分级后分别入选,有利于选择操作条件,提高分选效率。2) 选别作业,是矿石的分选的主体环节。选别流程有简有繁,简单的由单元作业组成,如重介质分选。(3) 产品处理作业,主要指精矿脱水、尾矿输送和堆存。 2、跳汰选矿法 (1)原理:跳汰选矿是在垂直交变介质流的作用下,使矿粒群松散,然后按密度差分层:轻的矿物在上层,叫轻产物;重的在下层,叫重产物,从而达到分选的目的。介质的密度在一定范围内增大,矿粒间的密度差越大,则分选效率越高。 实现跳汰过程的设备叫跳汰机。被选物料给入跳汰机内落到筛板上,便形成一个密集的物料展,这个物料层,称为床层。在给料的同时,从跳汰机下部周期性的给入上下交变的水流,垂直变速水流透过筛孔进入床层,物料就是在这种水流中经受跳汰的分选过程。 (2)工艺过程 当水流上升时,床层被冲起,呈现松散及悬浮的状态。此时,床层中的矿粒,按其自

身的特性(密度、粒度和形状),彼此作相对运动,开始进行分层。在水流已停止上升,但还没有转为下降水流之前,由于惯性力的作用,矿粒仍在运动,床层继续松散、分层。水流转为下降,床层逐渐紧密,但分层仍在继续。当全部矿粒落回筛面,它们彼此之间已丧失相对运动的可能,则分层作用基本停止。此时,只有那些密度较高、粒度很细的矿粒,穿过床层中大块物料的间隙,仍在向下运动,这种行为可看成是分层现象的继续。下降水流结束,床层完全紧密,分层便暂告终止。水流每完成一次周期性变化所用的时间称为跳汰周期。在一个跳汰周期内,床层经历了从紧密到松散分层再紧密的过程,颗粒受到了分选作用。只有经过多个跳汰周期之后,分层才逐趋完善。最后,高密度矿粒集中在床层下部,低密度矿粒则聚集在上层。然后,从跳汰机分别排放出来,从而获得了两种密度不同,即质量不同的产物。 3、浮选 (1)原理:浮选是根据矿物表面物理化学性质的差异,而分选矿物的一种选矿方法。 (2)浮选流程包括磨矿,分级,调浆及浮选的粗选、精选、扫选作业。有一段磨浮流程;分段磨矿-浮选的阶段磨浮流程;精矿或中矿再磨再选流程。浮选产出粗精矿的作业称粗选;粗精矿再选作业称精选;尾矿再选作业称扫选。回收矿石中多种有用矿物时,不同矿物先后浮选的流程称优先浮选或选择浮选;先将有用矿物全部浮出后再行分离的流程,称混合-分离浮选。工业生产时必须针对矿石的性质和对产品的要求,采用不同的药方和浮选流程。 浮选的原则流程即浮选的骨干流程或流程的主干结构。它一般包括段数、循环和矿物的浮选顺序等内容。 3)浮选机:浮选机类型:机械搅拌式浮选机、充气式浮选机、混合式浮选机或充气搅拌式浮选机、气体析出式浮选机。

钼矿钼矿选矿工艺钼矿浮选工艺样本

钼矿-钼矿选矿工艺-钼矿浮选工艺 一、钼矿的历史及性质 钼是18世纪后期才发现的, 而且在自然条件下没有金属形态的钼存在。尽管如此, 钼的主要矿物-辉钼矿在古代时就早已得到了应用, 只是辉钼矿和铅、方铅矿及石墨都很相似, 不易区分, "molybdos"这个词在希腊文里就是铅的意思。 曾在14世纪的一把日本武剑中发现含有钼。到1778年, 瑞典科学家卡尔.威廉.谢勒( Carl Wilhelm Scheele) 才证实了钼的存在。她将辉钼矿在空气中进行加热, 从而产生了一种白色的氧化粉末。此后不久, 到1782年, 彼得.雅各布.耶尔姆( Peter Jacob Hjelm) 用碳成功地还原了这种氧化物, 获得一种黑色金属粉末, 她称这种金属粉末为”钼”。 19世纪钼基本上是作为实验品, 后来才逐渐生产。1891年, 法国的斯奈德Schneider)公司率先有钼作为合金元素生产了含钼装甲板, 她们马上发现, 钼的密度仅是钨的一半, 这样以来, 在许多钢铁合金应用领域钼有效地取代了钨。 钼具有较高熔点(2625℃)、沸点(4600℃)、硬度(5.5)和密度(10.2g/cm3), 是电和热的良导体.相对原子量95.94g/g, 在元素周期表中为VI B 族元素, 原子序数42, 原子体积9.42 cm3/mol。 在常温下钼在空气或水中都是稳定的, 但当温度达到400℃时开始发生轻微的氧化, 当达到600℃后则发生剧烈的氧化而生成MoO3 。盐酸、氢氟酸、稀硝酸及碱溶液对钼均不起作用。钼可溶于硝酸、王水或热硫酸溶液中。

二、钼矿的用途 1、钼大量用于合金添加剂、生产不锈钢、工具钢、耐温钢等。 2、钼钢广泛用于金属压力加工行业、冶金行业、建材行业、机械行业、宇航军及工业、核工业、化工纺织工业和农业。 3、钼还可作为化工原料, 生产催化剂、润滑剂、颜料和肥料等。 4、在冶金工业中, 钼作为生产各种合金钢的添加剂, 或与钨、镍、钴, 锆、钛、钒、铼等组成高级合金, 以提高其高温强度、耐磨性和抗腐性。金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电极和栅极、半导体及电光源材料。在化学工业中, 钼主要用于润滑剂、催化剂和颜料。 三、钼资源及分布 自然界中已知的钼矿物及含钼矿物约有30种, 其中具有工业价值的是辉钼矿MoS2 , 其它较常见的还有钼华、钼铅矿、蓝钼矿、铁钼矿等。 钼在地壳中的平含量为1.1×10-4%, 属稀有金属。集中分布在美国、加拿

钨矿选矿与加工技术精编版

钨矿选矿与加工技术公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

钨矿选矿与加工技术 钨矿石含钨量低,必须经过选矿富集成精矿才能作为冶炼的原料。按矿石类型钨选矿分为黑钨矿选矿和白钨矿选矿两大类型。我国现阶段开采的以石英脉型黑钨矿为主,占采出矿石量的90%以上。因此,在原统配钨矿山中的43座钨选厂中,黑钨选厂有37座。 钨矿的主要选矿方法有手选、重介质选、重选、浮选、磁选和电选等方法。黑钨矿以重选为主,白钨矿以浮选为主。我国黑钨矿多数是易选矿石类型,而白钨矿矿石组成复杂,多数属难选矿石,加之品位低,因而未能大量开发。此外,还有钨矿石氧化物钨华等目前也尚未回收利用。 钨矿选矿方法,除上述采用的常规选矿方法之外,针对矿石组成复杂,共伴生元素繁多的难选物料,采用选—冶联合流程,但这一方法目前处于试验研究阶段,尚未工厂化。 我国钨矿的选矿,选厂大规模工厂化起步于1952年在大吉山钨矿建立 125t/d的重力选矿厂,50年代后期,由原苏联米哈诺布尔(Механобр)研究设计院为大吉山、西华山和岿美山钨矿设计的3座大型钨矿选厂相继建成投产。40多年来,在生产实践中不断总结经验,并吸收国外选矿先进技术,经过不断改进,使选矿工艺流程日臻完善,选矿技术经济指标达到了世界先进水平。如具有代表性的南昌有色金属公司的钨矿选矿指标,尽管近10年来在原矿品位逐年下降的情况下,钨矿的回收率仍保持在84%以上的高水平,精矿品位

(WO3)%~%(达到一二级钨精矿国家标准:WO3含量不小于65%),原矿品位 (WO3)%~%,尾矿品位(WO3)%~%。 选矿试验是评价矿床是否有商业开采价值的重要依据之一。因此,在详查和初期阶段应进行矿石可选性试验,对矿床物质成分复杂的大型、超大型矿床和没有选矿实践的新矿石类型,应做实验室规模的扩大试验。必要时工业部门还应做半工业试验或工业试验。在做选矿试验之前,地质勘探单位应做好矿石物质成分研究,查明有益有害元素赋存状态,鉴定矿物种类,矿石结构构造、嵌布粒度特性,为选冶试验制定合理工艺流程提供基础资料。 钨的冶炼有火法和水法冶炼两种。冶炼时使用黑钨精矿或白钨精矿,但由于冶炼工艺流程各不相同,因此矿床既有黑钨矿又有白钨矿时,要分别圈定矿体,各自计算出储量。当矿石中黑钨矿、白钨矿共生在一起,要分别选出黑钨精矿和白钨精矿,以便分别冶炼。 作为钨的冶炼矿物原料钨精矿,含WO3应达到或大于65%。经火法冶炼成钨铁合金(含W>70或>65%);经水法冶炼成正钨酸钠,仲钨酸铵或钨酸钙等。最后,进一步处理成三氧化钨(含WO3≥%),再用还原剂(通常用氢)还原成钨粉(含W≥%)等。 黑钨矿选矿生产实践 湘东钨矿位于湖南省东部,地处湘赣边境。选矿厂于1956年初投产,设计的日处理能力为250t,经过两次扩建,目前日处理能力达1000t以上。选矿工艺流程经过不断改进,日趋完善,已由投产时单一重选流程,发展成具有手选、重介质选矿、重选、浮选、磁选、焙烧和水冶等工艺的联合流程。本文根据湘东钨矿的选矿生

铜镍矿石选矿工艺常见四种基本流程介绍

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 铜镍矿石选矿工艺常见四种基本流程介绍 镍矿石主要分硫化铜镍矿和氧化镍矿,两者的选矿和加工方法完全不同。硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。浮选硫化铜镍矿.. 镍矿石主要分硫化铜镍矿和氧化镍矿,两者的选矿和加工方法完全不同。 硫化铜镍矿石的选矿方法,最主要的是浮选,而磁选和重选通常为辅助选矿方法。浮选硫化铜镍矿石时,常采用浮选硫化铜矿物的捕收剂和起泡剂。确定浮选流程的一个基本原则是,宁可使铜进入镍精矿,而尽可能避免镍进入铜精矿。因为铜精矿中的镍在冶炼过程中损失大,而镍精矿中的铜可以得到较完全的回收。 铜镍矿石浮选具有下列四种基本流程。 1.直接用优先浮选或部分优先浮选流程:当矿石中含铜比含镍量高得多时,可采用这种流程,把铜选成单独精矿。该流程的优点是,可直接获得含镍较低的铜精矿。 2.混合浮选流程:用于选别含铜低于镍的矿石,所得铜镍混合精矿直接冶炼成高冰镍。 3.混合—优选浮选流程:从矿石中混合浮选铜镍,再从混合精矿中分选出含低镍的铜精矿和含铜的 镍精矿。该镍精矿经冶炼后,获得高冰镍,对高冰镍再进行浮选分离。 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

白钨矿选矿工艺技术

书山有路勤为径,学海无涯苦作舟 白钨矿选矿工艺技术 白钨粗选通常采用常温浮选,主要是采用碱性介质-脂肪酸法,在白钨粗选中采用最多的调整剂和抑制剂组合为碳酸钠-水玻璃,其次为氢氧化钠-水玻璃以及碳酸钠-氢氧化钠-水玻璃等。以上组合中水玻璃在多种情况下单独使用,有时也与多价金属离子合用,强化抑制效果。如湖南柿竹园选厂中白钨粗选多采用氢氧化钠和水玻璃作调整剂;江西修水香炉山钨矿、甘肃小柳沟白钨矿,钨粗选采用碳酸钠和水玻璃作调整剂。有研究认为,采用碳酸钠作调整剂可以消除矿浆中金属离子的影响,又可调节矿浆pH 值,对于含可溶性或微溶性矿物较多的矿石,用碳酸钠作调整剂最佳。白钨粗精矿的精选工艺目前主要有常温法和加温法。粗选得到低品位粗精矿后,用浓浆高温法得到较高品位的白钨精矿。加温浮选对矿石的适应性较强、选别指标稳定,在白钨-方解石-萤石型矿山得到广泛应用。常温浮选在白钨-石英型矿山得到广泛利用。 A.白钨加温浮选工艺 传统的加温浮选技术彼德洛夫法系对白钨粗精矿单一添加大量水玻璃,在高浓度下加温搅拌后,利用矿物间表面吸附的捕收剂膜解析速度的不同,提高抑制的选择性,然后稀释精选。在此条件下,带正电的方解石等矿物表面所吸附的捕收剂由于高浓度脱药剂的强烈竞争吸附而充分解析并因而引起抑制作用,而表面带负电荷的白钨矿则受脱药剂的影响较小,仍可继续保持与捕收剂的化学吸附作用,故仍可保持较好的可浮性,从而达到白钨矿与脉石分离的目的。传统彼德洛夫法需多次稀释脱药再进行白钨浮选,对钨粗精矿品位高、矿物组成简单的白钨粗精矿进行精选效果很好,但对钨品位较低,含钙脉石、硫化矿含量高的粗精矿却难以奏效。 近年来,多家研究单位和企业对该方法进行了改进研究,开发出捕收剂预吸

红土镍矿处理方法综述

和Mg之后。然而,在地壳中镍的含量很低,不到0.01%,其丰度排在第24位。 地球上有四种含镍矿物: ⑴硫化镍矿——镍黄铁矿、镍磁黄铁矿和针硫镍矿等 ⑵氧化镍矿——主要指红土镍矿 ⑶含砷镍矿——红镍矿、砷镍矿和辉镍矿等 ⑷深海含镍锰结核 深海含镍锰结核的数量现在还无法估计,由于开采成本太高,暂无法利用这种含镍资源。目前,世界各国正在研制海底机器人,为开采海底锰结核做前期准备工作。 含砷镍矿在地球上的储量很少,是一种次要的含镍资源。主要的炼镍原料是硫化镍矿和红土镍矿。 根据目前的炼镍技术水准,硫化镍矿含镍高于3%的被称为富矿,可不经选矿而直接冶炼;含镍较低的硫化镍矿需经过选矿进行富集,产出品位较高的硫化镍精矿再进行冶炼。红土矿很难用选矿方法来富集,通常是用冶炼的方法直接处理。 1.3 开发和利用红土镍矿资源的重要意义 ⑴陆地上镍资源总量中硫化镍矿和红土镍矿的比例约为3:7,未来镍冶金工业的发展主要以红土矿为原料; ⑵硫化镍矿日趋枯竭,中国的硫化镍矿的年产量以10%的速度递减; ⑶红土镍矿埋藏在地表附近,开采成本低,不需要选矿,随着冶炼技术水

准的提高,处理红土镍矿的成本不断降低; ⑷选择合适的生产方法,处理红土镍矿可不产生二氧化硫烟气污染; ⑸中国是镍的消费大国,同时又是贫镍国。 由以上事实可知,我国开发红土镍矿资源有着非常重要的意义。目前,世界各国,特别是发达国家,都在积极开发或准备开发红土镍矿资源。 2 红土镍矿的特点 2.1 红土镍矿的地质结构 红土镍矿是由多雨的热带和亚热带的橄榄岩(Peridotite)和蛇纹石(Ser pentine)这样一些超级岩石的风化而形成的。红土镍矿床通常是分层存在于地表以下0~40米范围,矿床的地质结构为:覆盖层;褐铁矿层;过渡层;腐泥层;橄榄岩层。有价元素镍和钴主要分布在褐铁矿层,过渡层和腐泥土矿层。因此,人们通常将红土镍矿床分为三个矿层: ⑴褐铁矿层(Lateritic ore layer) 褐铁矿层离地表最近,主要矿物包括褐铁矿(Laterite)、针铁矿(Goet hite)、水铝矿(Gibbsite)和铬铁矿(Chromite)。矿石的化学成分和矿物组成很均匀,镍的含量较低,通常含有一定数量的钴,结晶性差,粒度较细。 ⑵腐泥矿层(Saprolitic ore layer) 腐泥矿层埋藏较深,正好在基岩之上,主要含有石英(Quartz),滑石(T alc),蛇纹石(Serpentine),橄榄石(Olivine)和硅镁镍矿(Garnierite)等矿物。矿石含镍量最高,但其化学成分和矿物组成极不均匀。 ⑶过渡矿层(Transition ore layer)

选矿工艺流程

工艺流程试验是为选矿厂设计(或现有选矿厂的技术改造)提供依据,在选矿厂初步设计(或拟定现场技术改造方案)前进行。一般选进行试验室试验,然后在试验室试验的基础上,根据情况决定是否进行半工业或工业试验。 选矿工艺流程试试验内容和必要的资料收集,一般由试验研究单位负责制订,有条件的可由试验、设计和生产部门三结合洽商确定。 一、收集资料的一般内容如下,但具体工程需根据条件的不同,区别对待 (一)了解上级机关下达任务的目地和委托单位提出的要求,例如:选矿厂规模、服务年限;主要有用成分和伴生成综合利用问题;试验阶段的划分;要求试验完成日期;选矿厂处理单一矿床的矿石还是几个矿床、不同类型的矿石;用户对精矿化学成分的特殊要求以及对精矿等级和粒度的要求;建厂地区的水源,选矿药剂,焙烧用燃料等的供应情况和性能分析资料等。 (二)了解有关地质资料,例如:矿床类型;地质储量;矿体产状;矿石类型;品位特征;嵌布特性;围岩脉石等变化情况;远景评价;采样设计等。 (三)了解采矿设计方面的资料,例如:采矿的开拓方案和采矿方法;不同类型矿石的混采、分采;围岩混入率和矿石采出品位;开采设计矿区的矿石类型配比和平均品位;开采设计5-10年内逐年开采的矿石类型配比和平均品位等。 (四)了解选矿方面资料,例如:选矿设计对试验的特殊要求。国内外类似矿石的试验研究和生产实践情况,可能应用的选进技术等。 二、选矿工艺流程试验主要内容有 (一)矿石性质研究 是选择选矿方案和确定选厂设计方案时与类似矿石生产实践作对比分析的依据,其中某些数据是选厂具体设计中必不可少的原始数据。 矿石性质研究包括:光谱定性和半定量,化学全分析,岩矿鉴定,物相分析,粒度分析,磁性分析,重液分析,试金分析,磨矿细度,矿石可磨度,及各种物理性能(比重、比磁化系数、导电率、水分、真比重和假比重、堆积角和摩擦角、硬度、粘度等)。 (二)选矿方法、流程结构,选矿指标和工艺条件 直接关系到选矿厂的设计方案和具体组成,是选厂设计的主要原始资料,必须慎重考虑,要求选矿方法、流程结构合理,选矿指标可靠。

我国钨产业及选矿工艺发展

我国钨产业及选矿工艺发展导读:近些年来,我国钨产业高速发展,钨及钨产品在国民经济各领域得到广泛应用。已成为现代社会不可或缺的支柱产业。钨是我国为数不多的的优势资源之一,然而现阶段让人堪忧。本文介绍了我国钨资源及钨产业现状,钨及钨产品发展趋势,提出了钨产业应展观点,建立科学合理的运行机制,优化产业结构,开发新产品及应用领域的发拓 钨被称为“工业味精”,是一种十分重要的稀有矿产资源。钨及钨制品具有高熔点,高密度,高硬度特点,应用广泛。自19世纪末,钨第1次被用以生产台金钢和硬化钢以来,其产品由初级到深加工品,种类已达为多种,包括钻头、切削刀具、合金、化学用品、医药、食品到电子器件、穿甲弹等。钨已是现代工业社会不可替代的材料之一。钨产业的健康发展直接影响制造业的发展和国家习家经济.、军事安全。目前,世界上很多国家非常重视钨的勘探和开麦,将钨作为战略性资源加以储备,而我国现状令人堪忧。 一、我国钨资源现状 钨属于稀有元素,在地壳中的丰度为 1.1X10-4%主要矿物为黑钨矿和白钨矿,世界已探明钨储量为290万t,储量基础620万t,中国钨储量180万t, 储量基础620万t

二、我国钨产业概况 钨产业根据钨产品划分为几个垂直关联的阶段如图一所示 三、新中国成立后的发展 中国钨业已有百年发展历史,大致分为3个阶段,如图二 前30年形成了比较完整的钨工业体系;1981-2000年,钨冶金、加工及硬质合金业发展迅速,产品结构发生很大变化,改变了单一钨精矿出口局面;21世纪后,钨业发展进入了全新时期。钨产业的快速发展显露出了越来越多的问题 1)钨矿产资源开采过度; 2)国内外钨品市场价格波动较大; 3)钨产业链中,上、中、下游产业发展不均衡; 4)整个产业分布广、规模小、集中度低; 5)产品单一,高、尖、深、细产品不多, 6)企业自主创新能力低,创新意识不强。这些问题的存在己严重影响我国钨产业的 健康、有序发展,威胁到我国制造业的发展和生产安 四、产品开发 (一)合金钢 很大一部分钨用于生产特种台金钢,其中最主要的是高速切削钢。这种钢一般w 质量分数达8%。高速切削钢可用于制造谷种工,如磨刀、铣刀、型模、压模、气动工具零件等。其他牌号铬钨钢亦有广泛应用。 钨也是磁钢的王要成分。磁钢分为钨钢和钨钻磁钢2种。 (二〕以碳化化钨为基础的硬质合金 硬质台金被誉为“工业的牙齿”,碳化钨是制备硬质台金的主要原料。纳米晶硬质合金是近年发展起来的新型工具材料,它是以纳米级的WC 粉末为基础原料,在添加适当黏结剂和晶拉长大抑制剂下,生产出且有高硬度、高耐磨性和高韧磨性的硬质台金材料。 碳化钨是一种具有高硬度、高热稳定

锑矿选矿工艺流程分析

锑矿选矿工艺流程分析 流程介绍: 提取方法: 锑矿的提取方法除应根据矿石类型、矿物组成、矿物构造和嵌布特性等物理、化学性质作为基本条件来选择外,还应考虑有价组分含量和适应锑冶金技术的要求以及最终经济效益等因素。锑矿石的选矿方法,有手选、重选、重介质选、浮选等。 手选: 锑矿石手选工艺是利用锑矿石中含锑矿物与脉石在颜色、光泽、形状上的差异进行的。该方法虽然原始,且劳动强度较大,但用于锑矿石选矿仍具有特殊意义:因为锑矿物常呈粗大单体结晶或块状集合体晶体产出,手选常能得到品位较高的块锑精矿,适合于锑冶金厂竖式焙烧炉的技术要求;手选能降低选矿生产成本和能耗,因此它在我国广泛使用。据资料统计:我国现生产的18个主要锑选矿厂中,有手选作业的有15座,占83.3%,其中单一硫化锑矿选厂4座,硫化—氧化混合锑矿选厂4座,含锑复杂多金属矿选厂7座。手选选出的块状锑精矿,只需含锑7%以上就可进入竖式焙烧炉直接挥发焙烧,以制取三氧化二锑。手选出含锑高于45%的块状硫化锑精矿,通过熔析法可制取纯净的三硫化二锑(俗称生锑),用于生产。手选除拣出高品位块状锑精矿外,也可以直接丢弃大量废石,以提高入选原矿品位。适合手选的矿石粒度,大都在28~150毫米间。大多数锑选厂采用宽级别手选,只有个别选厂如锡矿山北选厂采用分级成窄级别手选。由于原矿往往含泥,因此洗矿作业常是手选前不可缺少的预备作业。入选原矿经过洗矿然后手选,比不经洗矿直接手选效果要好。 重选: 锑矿石的重选工艺对于大多数锑矿石选厂均适用,因为锑矿物属于密度大、粒度粗的矿物,易于用重选方法与脉石分离。其中:辉锑矿密度为 4.62克/厘米3,而脉石密度介于2.6~2.65克/厘米3之间,其等沉(降)比为2.19 ~2.26,属易选矿石;黄锑华密度为5.2克/厘米3、红锑矿密度为7.5克/厘米3、锑华为5.57克/厘米3,它们与脉石的等沉(降)比分别为2.55~2.63,3.93~4.06和2.76~2.86,这三种锑矿石属于按密度分选的极易选矿石。只有水锑钙,石密度3.14克/厘米3,与脉石等沉(降)比值仅1.29,属于按密度分选较难选矿石,但它在锑矿石中并不算主要成分,不影响重选的使用。总之,不论单一硫化锑矿石或硫化( 氧化混合锑矿石,均具有较好的重选条件。且重选费用低廉,又能在较粗粒度范围内、分选出大量合格粗粒精矿,并丢弃大量脉石,因此,重选仍是当今锑选矿工作者乐于采用的选矿方法。有时,它即使不能直接选出合格锑精矿,然而作为锑浮选作业的预选作业,也常被人接受,特别是浮选在现阶段处理氧化锑矿石的困难很多的情况下,因而重选成了氧化锑矿石的主要选矿方法。 浮选: 浮选是锑矿物最主要的提取方法。硫化锑矿物属易浮矿物,大多采用浮选方法提高矿石晶位。其中:辉锑矿常先用铅盐作活化剂,也有用铜盐或铅盐铜盐兼用的,然后用捕收剂浮选。常用的捕收剂为丁黄药或页岩油与乙硫氮混合物,起泡剂为松醇油或2号油;氧化锑矿则属难浮矿石。

实用文档之钨矿选矿工艺

实用文档之"钨矿选矿工艺" 介绍了黑、白钨矿的选矿技术的现状,对其浮选的捕收剂、调整剂及选矿工艺的现状和进展进行了详细的评述,并对黑、白钨矿选矿的研究方向进行了展望。应开发高效黑、白钨矿的捕收剂和抑制剂;采用选冶联合流程;对药剂组合的规律性、组合药剂间的协同效应及药剂与矿物的作用机理需进行深入研究;开发微细粒级钨高效回收的浮选设备,并解决黑、白钨多金属矿选矿工艺流程长的现状。 关键词:黑钨矿;白钨矿;选矿药剂;选矿工艺;现状及展望 自然界已发现的钨矿物和含钨矿物有20 余种,但其中具有开采经济价值的只有黑钨矿(钨锰铁矿)和白钨矿(钙钨矿)。黑钨矿(Fe、Mn) WO4,含WO3 76%;白钨矿CaWO4,含WO3 80.6%。其他诸如钨华WO3·H2O、铜钨华CuWO4·H2O、钨铅矿PbWO4 和钨钼铅矿(Pb,Mo) WO4 等并没有太大工业价值。 钨矿是我国的优势矿产资源,中国钨矿储量居世界首位,为国外30 多个国家总储量的3 倍多。我国钨矿储量虽大,但品位低,难选矿石占相当比重。其中白钨矿和黑、白钨混合矿大部分为组分复杂、有用矿物嵌布粒度细的矿石,分选难度大,加之其与其他金属共伴生,更不易开发利用。 1黑、白钨矿选矿药剂的研究现状 1.1黑、白钨矿捕收剂研究 白钨矿与含钙脉石的矿物如方解石和萤石矿物等的分离难度也很大,因此白钨矿浮选药剂和浮选设备的研究至关重要。白钨矿捕收剂可以分为4 类:阴离子捕收剂、阳离子捕收剂、两性捕收剂以及非极性捕收剂,其中最常用的为阴离子捕收剂。另外,捕收剂的组合使用也是研究的热点。阴离子捕收剂主要包括脂肪酸类、磺酸类、膦酸类、羟肟酸以及螯合类捕收剂,阳离子捕收剂主要是

铜镍矿富氧侧吹熔池熔炼工艺

铜镍矿富氧侧吹熔池熔炼工艺 刘军1,刘燕庭2,陈文1 (1.中国铝业公司,北京100082;2.长沙有色冶金设计研究院有限公司,湖南长沙410011) 摘要:介绍了铜镍矿富氧侧吹熔池熔炼工艺、主要技术经济指标以及富氧侧吹熔池熔炼炉的结构。实践表明,采用富氧侧吹熔炼铜镍矿具有流程短、能耗低、环境好等特点。 关键词:富氧侧吹炉;铜镍矿;熔池熔炼;低冰镍 1 引言 铜镍矿传统熔炼工艺主要有电炉熔炼、反射炉以及鼓风炉熔炼,由于这些熔炼工艺能耗高、自动化水平低、环境污染严重,属于国家明确淘汰工艺。目前铜镍主要熔炼工艺有瓦纽科夫熔池熔炼、奥托昆普闪速熔炼、奥斯麦特熔炼以及我国自主开发的富氧侧吹熔池熔炼工艺,这些熔炼工艺均可以满足目前环保要求,但同样各具有优缺点,闪速熔炼备料复杂,奥斯麦特熔炼喷枪易受损,闪速熔炼与奥斯麦特熔炼属于国外引进技术,投资较高。 新疆新鑫矿业股份有限公司喀拉通克铜镍矿地处新疆北部的富蕴县,当地拥有丰富的硫化铜镍矿资源,是一家集采、选、冶为一体的大型有色企业。 1988年建厂以来一直采用密闭鼓风炉熔炼,前床沉降分离,熔炼渣水淬,低冰镍转炉吹炼,吹炼渣返回密闭鼓风炉熔炼。由于此工艺能耗高、环境污染严重,属于国家淘汰工艺。2008年,公司对目前铜镍矿主要熔炼工艺及技术经济指标进行考察对比后决定采用具有我国自主知识产权的富氧侧吹熔池熔炼技术改造老系统的密闭鼓风炉工艺。 2 富氧侧吹熔炼铜镍矿技术概述 2.1 工艺流程 富氧侧吹炉熔炼铜镍矿工艺流程见图1。 铜镍特富矿、铜镍精矿、熔剂、块煤、烟尘经计量皮带连续从炉顶加料口加入炉内,富氧空气从炉身两侧下部喷嘴鼓入炉内熔体中,富氧空气强烈搅拌熔体,物料在炉内快速熔化、反应生成低冰镍、熔炼渣以及高温烟气。低冰镍和熔炼渣流入虹吸室进一步分离,渣从放渣口放出经溜槽流入贫化电炉,低冰镍从虹吸口虹吸连续放出送转炉吹炼。熔炼产生的高温烟气从炉顶排烟口进入余热锅炉,余热锅炉产饱和蒸汽送发电车间,余热锅炉出口烟气经电收尘后送制酸系统。贫化电炉渣连续放出水淬,电炉放出低冰镍经包子送转炉吹炼。转炉产出高冰镍水淬后送阜康冶炼厂湿法处理,液态转炉渣返回富氧侧吹炉熔炼。 2.2 工艺特点

相关文档