文档库 最新最全的文档下载
当前位置:文档库 › 运动控制系统 复习知识点总结

运动控制系统 复习知识点总结

运动控制系统 复习知识点总结
运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图)

2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。

第1章可控直流电源-电动机系统内容提要

相控整流器-电动机调速系统

直流PWM变换器-电动机系统

调速系统性能指标

1相控整流器-电动机调速系统原理

2.晶闸管可控整流器的特点

(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。

晶闸管可控整流器的不足之处

晶闸管是单向导电的,给电机的可逆运行带来困难。

晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。

在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。

3.V-M系统机械特

4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。

5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类

(2)简单的不可逆PWM变换器-直流电动机系统

(3)有制动电流通路的不可

逆PWM-直流电动机系统

(4)桥式可逆PWM变换器

(5)双极式控制的桥式可逆PWM变换器的优点

双极式控制方式的不足之处

(6)直流PWM变换器-电动机系统的能量回馈问题

”。(7)直流PWM调速系统的机械特性

6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)

当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。

D与s的相互约束关系

对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。

当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统

内容提要

?转速单闭环直流调速系统

?转速、电流双闭环直流调速系统

调节器的设计方法

1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

态性能要求不高,例如转速开环的变压变频调速系统和转速闭环的转差频率控制系统。而另一类则基于动态模型,动态性能要求高,例如矢量控制系统和直接转矩控制系统。

同步电动机的调速:同步电动机的转差率恒为零,从定子传入的电磁功率全部变为机械轴上输出的机械功率,只能是转差功率不变型的调速系统。同步电动机的调速只能通过改变同步转速来实现,由于同步电动机极对数是固定的,只能采用变压变频调速。

2.反馈控制的基本思想

3.开环与闭环调速系统的区别:

1差率约束下,闭环系统的调速范围为开环系统的(1+K)倍

4.反馈控制规律

5..电流截止负反馈。

6.积分控制规律和比例控制规律的区别在于:

。7.在阶跃输入作用之下,比例调节器的输出可以立即响应,而积分调节器的输出只能逐渐地变化,调速系统一般应具有快与准的性能,即系统既是静态无差又具有快速响应的性能。实现的方法是把比例和积分两种控制结合起来,组成比例积分调节器(PI)。

8..对于经常正、反转运行的调速系统,应尽量缩短起、制动过程的时间,完成时间最优控制。即在过渡过程中始终保持转矩为允许的最大值,使直流电动机以最大的加速度加、减速。到达给定转速时,立即让电磁转矩与负载转矩相平衡,从而转入稳态运行。

9.(1)双闭环直流调速系统起动过程的转速和电流波

(2)双闭环系统在起、制动过程中,电流闭环起作用,保持电流恒定,缩小系统的过渡过程时间。一旦到达给定转速,系统自动进入转速控制方式,转速闭环起主导作用,而电流内环则起跟随作用,使实际电流快速跟随给定值(转速调节器的输出),以保持转速恒定。

(3)系统的静特性

当转速调节器不饱和时表现出来的静特性是转速双闭环系统的静特性,表现为转速无静差;

转速调节器饱和时表现出来的静特性是电流单闭环系统的静特性,表现为电流无静差,电流给定值是转速调节器的限幅值。

(4)转速调节器的作用归纳为

电流调节器的作用归纳为

10 香农(Shannon)采样定理规定:如果随时间变化的模拟信号的最高频率为fmax ,只要按照f>2fmax采样频率进行采样,则取出的样品序列就可以代表(或恢复)模拟信号

11.常用的阶跃响应跟随性能指标有上升时间、超调量和调节时间,

12.为了使系统对阶跃给定无稳态误差,不能使用0型系统,至少是Ⅰ型系统;

当给定是斜坡输入时,则要求是Ⅱ型系统才能实现无稳态误差。

两种系统的比较

?典型I型系统和典型Ⅱ型系统在稳态误差上有区别。

?典型I型系统在跟随性能上可以做到超调小,但抗扰性能稍差。

?典型Ⅱ型系统的超调量相对较大,抗扰性能却比较好。

?这些是设计时选择典型系统的重要依据。

电流调节器的设计(采用I 型系统)

设计分为以下几个步骤:

1.电流环结构图的简化

简化内容

?忽略反电动势的动态影响

?等效成单位负反馈系统

?小惯性环节近似处理

2.电流调节器结构的选择

3.电流调节器的参数计算

4.电流调节器的实现

设计举例:

1.电流环的设计

① 确定时间常数

整流装置滞后时间常数T s

电流滤波时间常数T oi

电流环小时间常数之和T i

②选择电流调节器结构

? 要保证稳态电流无差,可按典型I 型系统设计电流调节器。

? 电流环控制对象是双惯性型的,用PI 型电流调节器。

③计算电流调节器参数

电流调节器超前时间常数

电流环开环增益K I

ACR 的比例系数Ki

④校验近似条件

电流环截止频率

满足晶闸管整流装置传递函数的近似条件:

满足忽略反电动势变化对电流环动态影响的条件:

满足电流环小时间常数近似处理条件

12. 异步电动机T

型等效电路

异步电动机简化等效电路

27(A) 异步电动机的机械特性

28.变压变频调速是改变同步转速的一种调速方法,同步转速随频率而变化

基频以下调速原理:

恒压频比控制:基频以上调速

28基频以下电流补偿控制:基频以下运行时,采用恒压频比的控制方法具有控制简便的优点,但负载的变化将导致磁通的改变,因此采用定子电流补偿控制,根据定子电流的大小改变定子电压,可保持磁通恒定。 e T n s 1n 10em T m s 0

小结:

A.恒压频比控制最容易实现,它的变频机械特性基本上是平行下移,硬度也较好,能够满足一般的调速要求,低速时需适当提高定子电压,以近似补偿定子阻抗压降

B.恒定子磁通、恒气隙磁通和恒转子磁通的控制方式均需要定子电流补偿,控制要复杂一些。

C.恒定子磁通和恒气隙磁通的控制方式虽然改善了低速性能。但机械特性还是非线性的,产生转矩的能力仍受到限制。

D.恒转子磁通的控制方式,可以得到和直流他励电动机一样的线性机械特性,性能最佳。

29.异步电动机变频调速需要电压与频率均可调的交流电源,常用的交流可调电源是由电力电子器件构成的静止式功率变换器,一般称为变频器。

间接变频:先将恒压恒频的交流电整成直流电,再将直流电逆变成电压与频率均可调的交流, 直接变频;将恒压恒频的交流电直接变换为电压与频率均可调的交流电,无需中间直流环节

30.交-直-交变频器主回路结构图

30.PWM 基本思想:控制逆变器中电力电子器件的开通或关断,输出电压为高度相等 、宽度按一定规律变化的脉冲序列,用这样的高频脉冲序列代替期望的输出电压

31.以频率与期望的输出电压波相同的正弦波作为调制波(Modulation wave ),以频率比期望波高得多的等腰三角波作为载波(Carrier wave ),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得高度相等、宽度按正弦规律变化的脉冲序列,这种调制方法称作正弦波脉宽调制(Sinusoidal pulse Width Modulation ,简称SPWM )

32.三相PWM 逆变器双极性SPWM 波形 ~

2d U 2d

U A C B 'O O M ~++

34 电流跟踪PWM (CFPWM ,Current Follow PWM )的控制方法是:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值,在稳态时,尽可能使实际电流接近正弦波形,这就能比电压控制的SPWM 获得更好的性能。它是以正弦波电流为控制目标的

4-13电流滞环跟踪控制的A 相原理

-12d U +2d

U --*A i A i h 2A 1V D 4V D 1VT 4VT H BC

图4-14 电流滞环跟踪控制时的三相电流波形与相电压PWM 波形

电流跟踪控制的精度与滞环的宽度有关,同时还受到功率开关器件允许开关频率的制约。当环宽选得较大时,开关频率低,但电流波形失真较多,谐波分量高;如果环宽小,电流跟踪性能好,但开关频率却增大了。实际使用中,应在器件开关频率允许的前提下,尽可能选择小的环宽

35.把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,这种控制方法称作“磁链跟踪控制”,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的,所以又称“电压空间矢量PWM (SVPWM ,Space V ector PWM )控制”。

(1)电压与磁链空间矢量的关系

图4-17 旋转磁场与电压空间矢量的运动轨迹 图4-18 电压矢量圆轨迹

(2)零矢量的插入有效地解决了定子磁链矢量幅值与旋转速度的矛盾。

(3).按空间矢量的平行四边形合成法则,用相邻的两个有效工作矢量合成期望的输出矢量,这就是电压空间矢量PWM (SVPWM )的基本思想。所谓等效是指在一个开关周期内,产生的1s ψ2s ψ3s ψ1s u 2s u 3

s u 1ω4s ψ4s u O 1s u 2s u 3s u 1ω4s u O

定子磁链的增量近似相等。

通常以开关损耗较小和谐波分量较小为原则,安排基本矢量和零矢量的作用顺序,一般在减少开关次数的同时,尽量使PWM输出波型对称,以减少谐波分量。

(4)零矢量集中的实现方法

按照对称原则,将两个基本电压矢量的作用时间、平分为二后,安放在开关周期的首端和末端,把零矢量的作用时间放在开关周期的中间,并按开关次数最少的原则选择零矢量。

(5)零矢量分布的实现方法

将零矢量平均分为4份,在开关周期的首、尾各放1份,在中间放两份,将两个基本电压矢量的作用时间、平分为二后,插在零矢量间。

按开关损耗较小的原则,选取零矢量

(6)会根据要求判别期望定子磁链的轨迹P161

(8)SVPWM的实现

(7)SVPWM控制模式的特点

36.转差频率控制的基本思想

若能够保持气隙磁通不变,且在s值较小的稳态运行范围内,异步电动机的转矩就近似与转差角频率成正比。

也就是说,在保持气隙磁通不变的前提下,可以通过转差角频率来控制转矩,这就是转差频率控制的基本思想。

第5章

内容提要

?异步电动机动态数学模型

?异步电动机按转子磁链定向的矢量控制系统

?异步电动机按定子磁链控制的直接转矩控制系统

?直接转矩控制系统与矢量控制系统的比较

1.异步电动机是一个高阶、非线性、强耦合的多变量系统。异步电动机无法单独对磁通进行

控制,在数学模型中就含有两个变量的乘积项,因此,即使不考虑磁路饱和等因素,数学模型也是非线性的。

2.三相异步电动机定子三相绕组在空间互差,转子也可等效为空间互差三个绕组,各绕组

间存在严重的交叉耦合。此外,每个绕组都有各自的电磁惯性,再考虑运动系统的机电惯性,转速与转角的积分关系等,动态模型是一个高阶系统。

3.矢量控制和直接转矩控制是两种基于动态模型的高性能的交流电动机调速系统

4.异步电动机变压变频调速中,输入时电压(或电流)和频率,输出是转速和磁通

5.异步电动机动态模型由电压方程、磁链方程、转矩方程和运动方程组成。

6.3/2变换:三相绕组可以用相互独立的对称两相绕组等效代替,等效的原则是产生的磁动势

相等。所谓独立是指两相绕组间无约束条件,即不存在约束条件,所谓对称是指两相绕组在空间互差90°。

2s/2r变换:两相静止绕组,通以两相平衡交流电流,产生旋转磁动势。如果令两相绕组转起来,且旋转角速度等于合成磁动势的旋转角速度,则两相绕组通以直流电流就产生空间旋转磁动势

41 按转子磁链定向:(1)令dq坐标系与转子磁链矢量同步旋转,且使得d轴与转子磁链矢量重合,即为按转子磁链定向同步旋转坐标系mt。由于m轴与转子磁链矢量重合,则

(2)为了保证m轴与转子磁链矢量始终重合,必须使

50 通过按转子磁链定向,将定子电流分解为励磁分量和转矩分量,使转子磁链仅由定子电流励磁分量产生,而电磁转矩正比于转子磁链和定子电流转矩分量的乘积,实现了定子电流两个分量的解耦。

因此,按转子磁链定向同步旋转坐标系中的异步电动机数学模型与直流电动机动态模型相当。根据定子磁链幅值偏差的符号和电磁转矩偏差的符号,再依据当前定子磁链矢量所在的位置,直接选取合适的电压空间矢量,减小定子磁链幅值的偏差和电磁转矩的偏差,实现异步电动机电磁转矩与定子磁链的控制。

可以通过控制定子磁链的旋转角速度,进而控制电磁转矩。

按定子磁链定向将定子电压分解为两个分量,控制定子磁链幅值的变化率,控制定子磁链矢量旋转角速度,再通过转差频率控制定子电流的转矩分量,最后控制转矩。

结合表5-1,5-2.5--24综合分析

同步电动机变频调速的电压频率特性与异步电动机变频调速相同,基频以下采用带定子压降补偿的恒压频比控制方式,基频以上采用电压恒定的控制方式

同步电动机的稳定运行分析

高一运动的描述基础知识点归纳

运动的描述基础知识点归纳质点1.,而具有(质量)的点。)没有(体积)、(大小)(1 。(2)质点是一个(理想化)的物理模型,实际(并不存在)而是看在所研究的问题中物体的形状、并不取决于这个物体的大小,3)一个物体能否看成质点,(大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。参考系2.,叫做机械运动,简称运动。1)物体相对于其他物体的(位置变化)(。2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做(参考系)(对参考系应明确以下几点:。①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往(不同)②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的(简,能够使解题显得简捷。化)③因为今后我们主要讨论地面上的物体的运动,所以通常取(地面)作为参照系路程和位移3.)位移是表示质点(位置变化)的物理量。路程是质点(运动轨迹)的长度。(1)位移是(矢)量,可以用以(初位置)指向(末位置)的一条有向线段来表示。因此,位移2(的大小等于物体的(初位置)到(末位置)的直线距离。路程是(标)量,它是质点运动(轨迹)的长度。因此其大小与(运动路径)有关。)一般情况下,运动物体的路程与位移大小是(不同)的。只有当质点做(直线)运动时,路(3 是(位移)。ACB的长度是(路程),AB 程与位移的大小才相等。图1-1中质点轨迹 C C B B A A 1-1 图 (路程)不能用来表达物体)在研究机械运动时,(位移)才是能用来描述位置变化的物理量。(4 路,我们就说不出终了位置在何处。O点起走了50m的确切位置。比如说某人从、速度、平均速度和瞬时速度4)跟发生这S(1)速度是表示物体运动快慢的物理量,可以理解为位移变化快慢。它等于(位移,其方向就。速度是(矢)量,既有(大小)也有(方向))的比值。即v=s/tt段位移所用(时间。m/s)是(物体运动的方向)。在国际单位制中,速度的单位(米/秒)平均速度是描述作变速运动物体运动(快慢)的物理量。一个作变速运动的物体,如果在一2()为物体在这段时间(或这段位移)上的平均速度。平(s/t内的位移为s, 则我们定义v=段时间t 均速度也是(矢)量,其方向就是(物体在这段时间内的位移的方向)。)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某(3 。,简称(速率)一时刻附近极短时间内的平均速度。瞬时速度的大小叫(瞬时速率)、匀速直线运动5定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运(1)质点在相等时间内通过的,质点在相等时间内通过的位移(相等)动。根据匀速直线运动的特点,,质点在相等时间内的位移大小和路程(相等)。路程(相等),质点的运动方向(相同)图象图象和v-t—)(2 匀速直线运动的xt图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体运动规律的x-t)位移图象((1 。数学图象,匀速直线运动的位移图线是(通过坐标原点的一条直线)图象是一条平行于横轴(时间轴)的直线,如图所示。v-t)匀速直线运动的2(.由图可以得到速度的(大小和方向),如v1=20m/s,v2=-10m/s,表明一个质点沿(正)方向以(20m/s)

运动控制系统课程总结2word文档良心出品

现代运动控制已成为电机学,电力电子技术,微电子技术,计算机控制技术,控制理论,信号检测与处理技术等多门学科相互交叉的综合性学科。课上老师简单介绍了运动控制及其相关学科的关系,随着其他相关学科的不断发展,运动控制系统也在不断发展,不断提高系统的安全性,可靠性,在课上跟随老师的思路,使我对运动控制系统有了更深刻的理解。 运动控制系统也叫做电力拖动控制系统。运动控制系统的任务是通过对电动机电压,电流,频率等输入电量的控制,来改变工作机械 的转矩,速度,位移等机械量,使各种机械按人们期望的要求运行以满足生产工艺及其他应用的需要。工业生产和科学技术的发展对运动控制系统提出了日益复杂的要求,同时也为研制和生产各类新型的控制装置提供了可能。在前期课程控制理论、计算机技术、数据处理、电力电子等课程的基础上,学习以电动机为被控对象的控制系统,培养学生的系统观念、 运动控制系统的基本理论和方法、初步的工程设计能力和研发同类系统的能力。 课堂上老师全面、系统、深入地介绍了运动控制系统的基本控制原理、系统组成和结构特点、分析和设计方法。 运动控制内容主要包括直流调速、交流调速和伺服系统三部分。 直流调速部分主要介绍单闭环、双闭环直流调速系统和以全控型功率器件为主的直流脉宽调速系统等内容;交流调速部分主要包括基于异步电动机稳态模型的调速系统、基于异步电动机动态模型的高性能调速系统以及串级调速系统;随动系统部分介绍直、交流随动系统的性能分析与动态校正等内容。此外,书中还介绍了近几年发展起来的多电平逆变技术和数字控制技术等内容。《运动控制系统》既注重理论基础,又注重工程应用,体现了理论性与实用性相统一的特点。书中结合大量的工程实例,给出了其仿真分析、图形或实验数据,具有形象直观、简明易懂的特点。 第一部分中主要介绍直流调速系统,调节直流电动机的转速有三种方法:改变电枢回路电阻调速阀,减弱磁通调速法,调节电枢电压调速法。 变压调速是是直流调速系统的主要方法,系统的硬件结构至少包含了两部分:能够调节直流电动机电枢电压的直流电源和产生被调节转速的直流电动机。随着电力电子技术的发展,可控直流电源主要有两大类,一类是相控整流器,它把交流电源直接转换成可控直流电源;另一类是直流脉宽变换器,它先把交流电整流成不可控的直流电,然后用PWM 方式调节输出直流电压。本章说明了两类直流电源的特性和数学模型。当用可控直流电源和直流电动机组成一个直流调速系统时,它们所表现车来的性能指标和人们

运动与能量知识点总结

第二章运动与能量 一、运动得描述 1、物理学就是研究自然界得物质结构、相互作用与运动规律得自然科学. 2、物质由分子组成,分子由原子组成,原子由原子核与核外电子组成,原子核由质子与中子组成。 3、机械运动 (1)定义:物理学里把物体位置变化叫做机械运动。 (2)特点:机械运动就是宇宙中最普遍得现象。 (3)机械运动:(三种运动:分子运动、机械运动、天体运动) (4)分类:(根据运动路线)①曲线运动②直线运动 4、参照物 (1)定义:判断物体就是否运动与如何运动,要选择另一个物体作为标准,这个被选作标准得物体叫参照物。 (2)参照物选取得原则: ①假定性:参照物就是假定不动得 ②任意性:参照物得选取就是任意得 ③不唯一性:可以选择不同得物体作为参照物 ④排己性:一般不取自身为参照物 ⑤方便性:生活中大部分时候都选择地面为参照物 5、运动与静止得相对性 (1)总结:同一个物体选取得参照物不同,运动状态不同。 (2)例如:坐在行驶汽车中得乘客,以司机为参照物,乘客就是静止得;以地面为参照物,乘客就是运动得。 (3)练习 ①诗句“满眼风光多闪烁,瞧山恰似走来迎,仔细瞧山山不动,就是船行”其中“瞧山 恰似走来迎”与“就是船行”所选得参照物分别就是船与山。 ②坐在向东行使得甲汽车里得乘客,瞧到路旁得树木向后退去,同时又瞧到乙汽车也 从甲汽车旁向后退去,试说明乙汽车得运动情况。 分三种情况:①乙汽车没动②乙汽车向东运动,但速度没甲快③乙汽车向西运动。 ③解释毛泽东《送瘟神》中得诗句“坐地日行八万里,巡天遥瞧一千河" 第一句:以地心为参照物,地面绕地心转八万里。 第二句:以月亮或其她天体为参照物在那可瞧到地球上许多河流. 二、运动得速度 1、比较物体运动快慢得方法: I、观众法:相同时间比路程,路程越长,运动越快。(同时启程得步行人与骑车人快慢) II、裁判方法:相同路程比时间,时间越短,运动越快(百米运动员快慢) III、综合法:时间、路程都不同,比单位时间内通过得路程。 (百米赛跑运动员同万米运动员比较快慢)

匀变速直线运动知识点总结

第一章匀变速直线运动的规律及其应用 一.匀变速直线运动 1.匀速直线运动:物体沿直线且其速度不随时间变化的运动。 2.匀变速直线运动: 3.匀变速直线运动速度和时间的关系表达式:at v v t +=0 位移和时间的关系表达式:202 1 at t v s += 速度和位移的关系表达式:as v v t 22 02=- 1.在匀变速直线运动中,下列说法中正确的是( ) A. 相同时间内位移的变化相同 B. 相同时间内速度的变化相同 C. 相同时间内加速度的变化相同 D. 相同路程内速度的变化相同 2.在匀加速直线运动中,( ) A .速度的增量总是跟时间成正比 B .位移总是随时间增加而增加 C .位移总是跟时间的平方成正比 D .加速度,速度,位移的方向一致。 3.做匀减速直线运动的质点,它的位移随时间变化的规律是s=24t-1.5t 2(m),当质点的速度为零,则t 为多少( ) A .1.5s B .8s C .16s D .24s 4.某火车从车站由静止开出做匀加速直线运动,最初一分钟内行驶540m ,那么它在最初10s 行驶的距离是( ) A. 90m B. 45m C. 30m D. 15m 5.汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显的看出滑动的痕迹,即常说的刹车线,由刹车线长短可以得知汽车刹车前的速度大小,因此刹车线的长度是分析交通事故的一个重要依据。若汽车刹车后以7 m/s 2的加速度运动,刹车线长14m 。则汽车在紧急刹车前的速度的大小是 m/s 。 6.在平直公路上,一汽车的速度为15m /s 。,从某时刻开始刹车,在阻力作用下,汽车以2m/s 2的加速度运动,问刹车后10s 末车离开始刹车点多远?

运动和力知识点总结

一式三份运动和力 一、运动的描述 1、机械运动:在物理学中,我们把物体位置的变化叫机械运动。 2、参照物:判断一个物体是运动的,还是静止的,要看是以哪个物体作标准,这个被选作标准的物 体叫参照物。 3、运动和静止的相对性:研究物体时,如果选择的参照物不同,对其运动的描述不一定相同,可见物 体的运动和静止是相对的 二、运动的快慢 1、定义:运动物体单位时间内通过的路程的多少。 2、物理意义:速度是表示物体运动快慢的物理量。 3、公式:v=s/t 4、单位:国际单位是m/s,常用单位是km/h. 换算关系:1m/s=3.6km/h 5、运动的分类 (1)匀速直线运动:速度不变,沿着直线的运动。匀速直线运动的速度是一个定值,与路程无关,与时间无关。 (2)变速运动:变速运动的速度只做粗略研究,通过公式计算出的速度叫平均速度。说一个物体的平均速度必须指明某段路程或某段时间的平均速度,否则毫无意义;s和t有严格的对应关系,必须对应同一运动过程 三、长度、时间的测量 1、长度的测量 (1)单位:米 (2)测量工具:刻度尺 正确使用刻度尺:刻度尺的使用要做到会观察、会放置、会读数、会计录。 会观察——刻度尺的量程、分度值和零刻度是否磨损。 会放置——刻度尺要沿着被测物体的长度,刻度线要紧靠被测物体,找准零刻度线或选取一个整刻度线和被测物体一端对齐。 会读数——视线要和尺面垂直,读数时要估读到分度值的下一位。 会记录——测量结果应由数字和单位组成。 2、时间测量

(1)单位:秒 (2)测量工具:表 3、误差:测量值与真实值之间的差异 四、力 1、力的概念 (1)力是物体对物体的作用。力不能脱离物体而存在,在力的作用中必定存在着施力物体和受力物体,受力物体就是我们分析物体受力情况的研究对象 (2)物体间力的作用是相互的,因此施力物体与受力物体是相互对的,施力物体同是也是受力物体。 两者同时出现同时消失。 2、力的作用效果 (1)力能使物体的运动状态发生改变,物体的运动状态是用物体运动速度和方向和速度的大小来描述的,只要其中之一发生了变化,我们就说物体的运动状态发生了变化。 (2)力能使物体发生形变,即能使物体的形状或体积发生改变。 3、力的三要素:力的大小、方向、作用点叫做力的三要素,它们都影响力的作用效果。 4、力的单位:牛顿,简称牛,用符号N表示。 5、力的示意图:在物理学中,通常用一根带箭头的线段形象地表示力;在受力物体上,沿力的方向画一条线段,在线段的末端画一个箭头表示力的方向;用线段的起点或终点表示力的作用点;在箭头的旁边标出力的符号和大小,这种表示力的方法叫力的示意图。 五、弹力 1、弹性:物体受力时发生形变,不受力时又恢复原状的性质叫弹性 2、弹力:物体由于发生弹性形变而产生的力叫弹力。如绳子的拉力、物体对桌面的压力、桌面对物体的支持力、弹簧的弹力都属于弹力 3、测量力的工具:弹簧沿力计 制作原理:在弹性限度内,弹簧受到的拉力越大,它的伸长量就越长。 六、重力 1、重力:地面附近的的物体,由于地球的吸引而受到力的。用符号G表示,重力的施力物体是地球 2、重力的三要素 (1)大小:物体所受的重力跟它的质量成正比。 表达式:G=mg 其中,g为常数,大小为9.8N/kg,它表示质量是1kg的物体所受的重力是9.8N。

运动控制系统实验报告

运动控制系统实验报告 专业班级 学号 姓名 学院名称 运动控制仿真实验报告 一、实验内容与要求 1.单闭环转速负反馈 2.转速电流双闭环负反馈

3.晶闸管相控整流双闭环直流调速系统仿真模型搭建 具体要求:针对1 2 (1)仿真各环节参数 (2)仿真模型的建立 (3)仿真结果,分为空载还是负载,有无扰动 (4)仿真结果分析 二、Simulink 环境下的仿真 1.单闭环转速负反馈 1.1转速负反馈闭环调速系统仿真各环节参数 直流电动机:额定电压N U =220V ,额定电流dN I =55A ,额定N n =1000r/min ,电动机电动 势系数e C =0.192V ·min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数s K =44,滞后时间常数 s T =0.00167s 。 电枢回路总电阻R=1.0Ω,电枢回路电磁时间常l T =0.00167s ,电力拖动统机电时间 常数m T =0.075s 。 转速反馈系数α=0.01V ·min/r 。 对应额定转速是的给定电压 n U =10V 。

1.2仿真模型的建立 图1-1单闭环转速负反馈直流调速系统的仿真模型 PI 调节器的值定为 =0.56, = 11.43。 图1-2单闭环转速负反馈直流调速系统加入扰动负载时的仿真模型 1.3仿真结果 p K 1

图1-3空载启动不加扰动转速和电流波形 图1-4空载启动加负载扰动转速和电流波形 1.4仿真结果分析 (1)空载启动无扰动:由空载启动不加扰动转速和电流波形可知,当 =0.56, = 11.43。系统转速有较大的超调量,但快速性较好的。空载启动电流的最大值有230A 左右,而额定电流 dN I =55A ,远远超过了电动机承受的最大电流。 (1)空载启动加负载扰动:由空载启动加负载扰动转速和电流波形可知,在空载启动1S 后加负载扰动,在1S 到1.5S 时间段,转速和电流有明显的下降,但系统马上进行了调节。 p K 1

高中物理匀加速直线运动知识点汇总

高中物理匀加速直线运动知识点汇总 一、机械运动 一个物体相对于另一个物体的位置的改变,叫做机械运动,简称运动,它包括平动、转动和振动等运动形式.①运动是绝对的,静止是相对的。②宏观、微观物体都处于永恒的运动中。 二、参考系 在描述一个物体运动时,选作标准的物体(假定为不动的物体) ①描述一个物体是否运动,决定于它相对于所选的参考系的位置是否发生变化,由于所选的参考系并不是真正静止的,所以物体运动的描述只能是相对的。②描述同一运动时,若以不同的物体作为参考系,描述的结果可能不同③参考系的选取原则上是任意的,但是有时选运动物体作为参考系,可能会给问题的分析、求解带来简便, 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体. 用来代替物体的有质量的点叫做质点. 质点没有形状、大小,却具有物体的全部质量。质点是一个理想化的物理模型,实际并不存在,是为了使研究问题简化的一种科学抽象。 把物体抽象成质点的条件是: (1)作平动的物体由于各点的运动情况相同,可以选物体任意一个点的运动来代表整个物体的运动,可以当作质点处理。 (2)物体各部分运动情况虽然不同,但它的大小、形状及转动等对我们研究的问题影响极小,可以忽略不计(如研究绕太阳公转的地球的运动,地球仍可看成质点).由此可见,质点并非一定是小物体,同样,小物体也不一定都能当作质点. 【平动的物体不一定都能看成质点,{物体的形状与运动的距离相比不能忽略};转动的物体可能看成质点来处理{研究绕太阳公转的地球的运动},也就是研究的问题不突出转动因素时。】 【能否看成质点一看研究问题,二看物理的形状与研究物体的关系】 【一个实际物体能否看成质点,决定于物体的尺寸与物体间距相比的相对大小】 四、位置、位移与路程 1、位置:质点的位置可以用坐标系中的一个点来表示,在一维、二维、三维坐标系中表示为s(x) 、s (x,y) 、s (x,y,z) 2、位移:【矢量】 ①位移是表示质点位置的变化的物理量.用从初位置指向末位置的有向线段来表示,线段的长短表示位移的大小,箭头的方向表示位移的方向。 ②位移是矢量,既有大小,又有方向。它的方向由初位置指向末位置. 注意:位移的方向不一定是质点的运动方向。如:竖直上抛物体下落时,仍位于抛出点的上方; ③单位:m 3、路程【标量】: 路程是指质点所通过的实际轨迹的长度.路程是标量,只有大小,没有方向; 路程和位移是有区别的:一般地路程大于位移的大小,只有做直线运动的质点始终向着同一个方向运动时,位移的大小才等于路程. 五、速度 速度:表示质点的运动快慢和方向,是矢量。它的大小用位移和时间的比值定义,方向就是物体的运动方向;轨迹是曲线,则为该点的切线方向。 速率:在某一时刻物体速度的大小叫做速率,速率是标量. 瞬时速度:由速度定义求出的速度实际上是平均速度,它表示运动物体在某段时间内的平均快慢程度,它只能粗略地描述物体的运动快慢,要精确地描述运动快慢,就要知道物体在某个时刻(或经过某个位置)时运动的快慢,因此而引入瞬时速度的概念。瞬时速度的含义:运动物体在某一时刻(或经过某一位置)时的速度,叫做瞬时速度 平均速度:运动物体位移和所用时间的比值叫做平均速度。定义式: x v t == 位移 时间 平均速率:平均速率等于路程与时间的比值。 s v t == 路程 时间 (当物体做单向直线运动时,二者相等) v1,队伍全长为L.一个通讯兵从队尾以速度v2(v1小于v2)赶到队前然后立即原速返回队尾。这个全过程中通讯兵通过的位移为。 专业技术分享

运动控制系统课程仿真课程设计报告书

目录 一、课程设计系统概述 (1) 1.1课程设计项目参数 (1) 1.2课程设计要求: (1) 1.3课程设计设计任务 (2) 1.4.稳态分析及参数设计计算 (2) 1.4.1静态参数计算 (2) 1.4.2.动态参数计算 (3) 1.4.3稳定性分析 (4) 1.4.4系统校正 (4) 1.4.5.控制结构图 (5) 二、MATLAB仿真设计 (6) 三、总结 (10) 四、参考文献 (10)

一、课程设计系统概述 1.1课程设计项目参数 1)电动机:额定数据为PN=10kW,UN=220v,IN=52A,nN=1460r/min,电枢电阻RS=0.5Ω,飞轮力矩GD2=10N.m2。 2)晶闸管装置:三相桥式可控整流电路,整流变压器Y/Y联结,二次线电压U2l=230v,触发整流环节的放大系数Ks=40。 3)V-M系统主电路总电阻R=1Ω。 4)测速发电机:永磁式,ZYS231/110型;额定数据为23.1w,110v,0.18A,1800r/min。 5)系统静动态指标:稳态无静差,调速指标D=10,s≤5% 6)电流截止负反馈环节:要求加入合适的电流截止负反馈环节,使电动机的最大电流限制(1.5-2)I N。(选座) 7)给定电压Un*=15V。 1.2课程设计要求: (1)根据题目要求,分析论证确定系统的组成,画出系统组成的原理框图; (2)对转速单闭环直流调速系统进行稳态分析及参数设计计算; (3)绘制系统的动态结构图; (4)动态稳定性判断,校正,选择转速调节器并进行设计; (5)绘制校正后系统的动态结构图; (6)应用MATLAB软件对转速单闭环直流调速系统进行仿真,验证所设计的调节器是否符合设计要求; (7)加入电流截止负反馈环节;(选做) (8)应用MATLAB软件对带电流截至负反馈的转速单闭环直流调速系统进行仿真,完善系统;

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

高一年级物理运动学知识点总结

高一年级物理运动学知识点总结 【一】 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。 7.质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动 8.动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等。 9.质点动力学有两类基本问题:一是已知质点的运动,求作用于质点上的力;二是已知作用于质点上的力,求质点的运动。 【二】 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的

描述就会不同,通常以地球为参照物来研究物体的运动. 2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。 3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程. 4.速度和速率 (1)速度:描述物体运动快慢的物理量.是矢量. ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述. ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述. (2)速率:①速率只有大小,没有方向,是标量. ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等. 5.加速度 (1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率. (2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示. (3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致. 【三】 6.匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直

直线运动知识点详细归纳

第一章:直线运动 一.复习要点 1.机械运动,参照物,质点、位置与位移,路程,时刻与时间等概念的理解。2.匀速直线运动,速度、速率、位移公式S=υt,S~t图线,υ~t图线 3.变速直线运动,平均速度,瞬时速度 4.匀变速直线运动,加速度,匀变速直线运动的基本规律:S v t at =+ 02 1 2、at v v t + = 匀变速直线运动的υ~t图线 5.匀变速直线运动规律的重要推论 6.自由落体运动,竖直上抛运动 7.运动的合成与分解。 第一模块:描述运动和物理量 『夯实基础知识』 1、机械运动 一个物体相对于另一个物体的位置的改变,叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. ①运动是绝对的,静止是相对的。 ②宏观、微观物体都处于永恒的运动中。 2、参考系(参照物) 参考系:在描述一个物体运动时,选作标准的物体(假定为不动的物体) ①描述一个物体是否运动,决定于它相对于所选的参考系的位置是否发生变化,由于所选的参考系并不是真正静止的,所以物体运动的描述只能是相对的。 ②描述同一运动时,若以不同的物体作为参考系,描述的结果可能不同 ③参考系的选取原则上是任意的,但是有时选运动物体作为参考系,可能会给问题的分析、求解带来简便, 一般情况下如无说明,通常都是以地球作为参考系来研究物体的运动. 3、平动与转动 平动:物体不论沿直线还是沿曲线平动时,都具有两个基本特点: (a)运动物体上任意两点所连成的直线,在整个运动过程中始终保持平行 (b)在同一时刻,平动物体上各点的速度和加速度都相同,因此在研究物体的运动规律时,可以不考虑物体的大小和形状,而把它作为质点来处理。 转动:分为定轴转动和定点转动,定轴转动的特点为:(a)在转动过程中,物体上有一条直线(轴)的位置不变,其它各点都绕轴做圆周运动,且轨迹平面与轴垂直。(b)物体上各点的状态参量,除角速度之外都不相等。定点转动的特点是运动过程中,物体内某一点保持不动的机械运动,绕定点转动的物体只有一点不动,其它各点分别在以该固定点为中心的同心球面上运动。

运动的描述知识点总结

运动的描述知识点总结 一、质点参考系和坐标系 1、质点: ①定义:---------------。质点是一种理想化的模型,是科学的抽象。 ②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。 ③物体可被看做质点的几种情况: (1)平动的物体通常可视为质点. (2)有转动但相对平动而言可以忽略时,也可以把物体视为质点. (3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以. [关键一点] 不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点. 2、参考系:描述一个物体的运动时,选来作为标准的的另外的物体。 运动是---的,静止是---的。一个物体是运动的还是静止的,都是相对于参考系在而言的。 参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。选择不同的物体作为参考系,可能得出不同的结论,但选择时要使运动的描述尽量的简单。 通常以地面为参考系。 二、时间与位移 1、时间和时刻: 时刻是指-------,用时间轴上的一个--来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的------来表示,它与过程量相对应。 2.路程和位移(A) (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的大小才相等。图1-1中质点轨迹ACB的长度是路程,AB是位移S。

【VIP专享】运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间 2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博 __ 学号 41151093 指导教师潘月斗 ___ 成绩 _______

摘 要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

运动学知识点整理

运动学知识点与公式整理 一、速度、时间、加速度 1、平均速度定义式:t x ??=/υ ① 当式中t ?取无限小时,υ就相当于瞬时速度。 ② 如果是求平均速率,应该是路程除以时间。请注意平均速率是 标量;平均速度是矢量。 2、两种平均速率表达式(以下两个表达式在计算题中不可直接应用) ① 如果物体在前一半时间内的平均速率为1υ,后一半时间内的平均 速率为2υ,则整个过程中的平均速率为22 1υυυ+= ② 如果物体在前一半路程内的平均速率为1υ,后一半路程内的平均 速率为2υ,则整个过程中的平均速率为2 1212υυυυυ+= 3、加速度的定义式:t a ??=/υ ● 在物理学中,变化量一般是用变化后的物理量减去变化前的物理量。 ● 应用该式时尤其要注意初速度与末速度方向的关系。 ● a 与υ同向,表明物体做加速运动;a 与υ反向,表明物体做减速运动。 ● a 与υ没有必然的大小关系。 匀变速直线运动 1、匀变速直线运动的三个基本关系式 ① 速度与时间的关系at +=0υυ ② 位移与时间的关系202 1at t x +=υ (涉及时间优先选择,必须注意对于匀减速问题中给出的时间不一定就是公式中的时间,首先运用at +=0υυ,判断出物体真正的运动时间) ③ 位移与速度的关系ax t 2202=-υυ (不涉及时间,而涉及速度) 一般规定0v 为正,a 与v 0同向,a >0(取正);a 与v 0反向,a <0 (取负) 同时注意位移的矢量性,抓住初、末位置,由初指向末,涉及到x 的正负问题。 注意运用逆向思维: 当物体做匀减速直线运动至停止,可等效认为反方向初速为零的

高中物理必修1第二章匀变速直线运动的研究知识点总结

高中物理必修 1 第二章匀变速直线运动的研究知识点总结及例题讲解 作者:初高中物理讲解(可在微信中关注) 匀变速直线运动,即加速度不变,在v-t图像上为一条直线,直线斜率就是加速度。 1.实验,探究小车速度随时间变化的规律 a)瞬时速度的计算,(上一章内容) b)v-t图象性质,斜率就是加速度,但是正切值不是加速度;斜率可以是正,也可以 是负,所以加速度也有正负之分。正负代表什么含义? 2.匀变速直线运动的速度与时间的关系 a)v = v0+at,v0 = 0,a = 0 的含义 b)图中a、b、c三条直线的物理含义? 图中速度如何变化?

例题: 3.匀变速直线运动的位移与时间的关系 a) 注:审题时一定要注意坐标轴的单位;另外一点注意物理公式与数学所学函数图像

性质的对应关系。涉及到一次函数、二次函数;公式的矢量性; b)公式的图像含义,自己结合课本总结。

例1:

例2: 【解析】位移就是v-t图像中v与t之间的面积,但是此题中,速度的方向发生了改变, 要注意。所以x= x1 - x2 = 6-3 = 3,原坐标为5,所以运动后的坐标为5+3 = 8,所以答案是B。 例3: 【解析】错误解法,将3S带入S=24t-6t2=24×3-6×32=72-54=18m,V=S/t=18/3=6m/s,选A。 错在哪里呢?由于是做减速运动,没有考虑在3s之前汽车是否已经停了下来。这就是 物理需要经常考虑的问题。即在实际中物理意义,而非简单的套用公司解数学题。 正确的做法,首先判断在3s之前汽车是否停下来,如果停下来实际上汽车走了几秒,

运动的描述知识点总结

运动的描述知识点总结

运动的描述知识点总结 一、质点参考系和坐标系 1、质点: ①定义:---------------。质点是一种理想化的模型,是科学的抽象。 ②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。 ③物体可被看做质点的几种情况: (1)平动的物体通常可视为质点. (2)有转动但相对平动而言可以忽略时,也可以把物体视为质点. (3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以. [关键一点] 不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点. 2、参考系:描述一个物体的运动时,选来作为标准的的另外的物体。 运动是---的,静止是---的。一个物体是运动的还是静止的,都是相对于参考系在而言的。 参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。选择不同的物体作为参考系,可能得出不同的结论,但选择时要使运动的描述尽量的简单。 通常以地面为参考系。 二、时间与位移 1、时间和时刻: 时刻是指-------,用时间轴上的一个--来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的------来表示,它与过程量相对应。 2.路程和位移(A) (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的大小才相等。图1-1中质点轨迹ACB的长度是路程,AB是位移S。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O点起走了50m路,我们就说不出终了位置在何处。 三、运动快慢的描述——速度 1、速度、平均速度和瞬时速度(A) (1)表示物体运动快慢的物理量,它等于位移s 跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。 (2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t 内的位移为s, 则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。 (3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率 四、匀速直线运动(A) (1)定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。 根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。 (2)匀速直线运动的x—t图象和v-t图象(A) (1)位移图象(s-t图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。 (2)匀速直线运动的v-t图象是一条平行于横轴(时间轴)的直线,由图可以得到速度的大小和方向,。

圆周运动知识点总结

圆周运动知识点总结 1.描述圆周运动的物理量 圆周运动的定义:物体的运动轨迹是圆的运动叫做圆周运动。 (1)线速度 ①定义:质点沿圆周运动所通过的弧长Δl 与所需时间Δt 的比值,即单位时间所通过的弧长,叫做线速度。 ②物理意义:描述质点沿圆周运动的快慢。 ③定义式:v =Δl /Δt ④单位:在国际单位制中,线速度的单位是米每秒,符号是m /s 如果Δt 取得很小,v 就为瞬时线速度,此时的Δs 方向就与半径垂直,即沿该点的切线方向。 (2)角速度 ①定义:做圆周运动的质点,连接质点和圆心的半径所转过的角度与所用时间的比值,即单位时间所转过的角度就是质点的角速度。 ②物理意义:描述质点绕圆心转动的快慢。 ③定义式:ω=Δθ/Δt ④单位:在国际单位制中,角速度的单位是弧度每秒,符号是rad/s (3)周期T ,频率f 和转速n 周期:做圆周运动的物体运动一周所用的时间,用符号T 表示,在国际单位制中,周期的单位是秒(s )。 频率:做圆周运动的物体在1秒内沿圆周绕圆心转过的圈数,用符号f 表示,在国际单位制中,频率的单位是赫兹(Hz ) 转速:做圆周运动的物体在单位时间内所转过的圈数,用符号n 表示,单位有转每秒(r/s )或转每分(r/min ),其国际单位制单位为弧度每秒。当单位时间取1秒时,f =n (4)线速度、角速度、周期、转速之间的关系: ①线速度与角速度的关系: R v ω= ②角速度与周期的关系: T πω2= ③线速度与周期的关系: T R v π2= ④周期和转速的关系: n T 1= ⑤角速度与转速的关系: n πω2=

(5)向心加速度 ①定义:做匀速圆周运动的物体的加速度总指向圆心,这种加速度称为向心加速度。 ②物理意义:描述线速度方向改变的快慢。 ③大小: ④方向:总是沿着圆周运动的半径指向圆心, (6)向心力 ①定义:做匀速圆周运动的物体受到的合力方向总是指向圆心的,这个合力叫做向心力。 ②大小:R m R mv F 22 ω== ③方向:总是沿着半径指向圆心,方向时刻改变,所以向心力是变力。 对向心力的理解 (1)向心力是按力的作用效果来命名的力。它不是具有确定性质的某种力,相反,任何性质力都可以作为向心力。 (2)向心力的作用效果是改变线速度的方向。做匀速圆周运动的物体所受的合外力即为向心力,它是产生向心加速度的原因,其方向一定指向圆心,是变化的。 对于线速度大小变化的非匀速圆周运动的舞台,其所受的合外力不指向圆心,它既要改变速度方向,同时也改变速度的大小,即产生法向加速度和切向加速度。 (3)向心力可以是某几个力的合力,也可以是某个力的分力。 2.匀速圆周运动 (1)物体沿着圆周运动,并且线速度大小处处相等的运动。 (2)特点:线速度的大小不变,方向时刻改变;角速度、周期、频率都是恒定不变,向心加速度和向心力大小都恒定不变,但方向时刻改变。 (3)性质:是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变而方向时刻变化的变加速曲线运动。 (4)加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度。因此向心力就是做匀速圆周运动的物体所受的合外力。 (5)质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直并指向圆心。 3.变速圆周运动 物体运动的轨迹仍然为圆周,但速度的大小有变化,向心力和向心加速度的大小也随着变化。 匀速圆周运动的公式对变速圆周运动仍然适用,只是利用公式求圆周上某一点的向心力和向心加速度的大小时,必须用该点的瞬时速度值。 22222222444v R a R n R f R v R T πωππω======

相关文档
相关文档 最新文档