文档库 最新最全的文档下载
当前位置:文档库 › MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序

MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序

MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序
MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序

%模拟2ASK

% Pe=zeros(1,26);

jishu=1;

forsnr=-10:0.5:15

max = 10000;

s=round(rand(1,max));%长度为max的随机二进制序列

f=100;%载波频率

nsamp = 1000;每个载波的取样点数

tc=0:2*pi/999:2*pi;tc的个数应与nsamp相同

cm=zeros(1,nsamp*max);

cp=zeros(1,nsamp*max);

mod=zeros(1,nsamp*max);

for n=1:max;

if s(n)==0;

m=zeros(1,nsamp);

b=zeros(1,nsamp);

else if s(n)==1;

m=ones(1,nsamp);

b=ones(1,nsamp);

end

end

c = sin(f*tc);

cm((n-1)*nsamp+1:n*nsamp)=m;

cp((n-1)*nsamp+1:n*nsamp)=b;

mod((n-1)*nsamp+1:n*nsamp)=c;

end

tiaoz=cm.*mod;%2ASK调制

t = linspace(0,length(s),length(s)*nsamp);

tz=awgn(tiaoz,snr);%信号tiaoz中加入白噪声,信噪比为SNR=10dB jiet = 2*mod.*tz; %相干解调

[N,Wn]=buttord(0.2,0.3,1,15);

[b,a]=butter(N,Wn);

dpsk=filter(b,a,jiet);%低通滤波

% 抽样判决,判决门限为0.5

depsk = zeros(1,nsamp*max);

for m = nsamp/2:nsamp:nsamp*max;

ifdpsk(m) < 0.5;

fori = 1:nsamp

depsk((m-500)+i) = 0;

end

else if dpsk(m) >= 0.5;

fori = 1:nsamp

depsk((m-500)+i) = 1;

end

end

end

end

wrong=0;

fori=1:length(cp);

ifcp(i)~=depsk(i);

wrong=wrong+1;

end

end

Pe(jishu)=wrong/length(cp);

jishu=jishu+1;

end

snr=-10:0.5:15;

semilogy(snr,Pe,'*');

%理论计算

snr=-10:0.1:15;

Pet=0.5*erfc((10.^(snr/10)/4).^0.5); hold on;

semilogy(snr,Pet);

xlabel('SNR/dB');ylabel('P_e'); legend('模拟结果','理论值');

Matlab频谱分析程序

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中 ()/2 /2 lim N j n n N N X x e N ωω=-=∑ πωπ -<≤。 其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,

其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωππ ωωπ- -= =?? 序列n x 在整个Nyquist 间隔上的平均功率可以 表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f ππ ωωπ- -= =?? 上式中的 ()()2xx xx S P ωωπ = 以及()()xx xx s S f P f f = 被定义为平稳随机信号n x 的power spectral density (PSD)(功率谱密度) 一个信号在频带[]1 2 1 2 ,,0ωωωω π ≤<≤上的平均功率 可以通过对PSD 在频带上积分求出 []()()2 1 121 2 ,xx xx P P d P d ωωωωωω ωωωω-- = +?? 从上式中可以看出()xx P ω是一个信号在一个无 穷小频带上的功率浓度,这也是为什么它叫做功率谱密度。

不同调制模式下的误码率与信噪比关系

不同调制模式下的误码率与信噪比关系 SANY GROUP system office room 【SANYUA16H-

不同调制模式下的误码率与信噪比的关系一.原理概述 调制(modulation)就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。而解调则是将基带信号从载波中提取出来以便预定的接收者(也称为信宿)处理和理解的过程。 调制的种类很多,分类方法也不一致。按调制信号的形式可分为模拟调制和数字调制。用模拟信号调制称为模拟调制;用数据或数字信号调制称为数字调制。按被调信号的种类可分为脉冲调制、正弦波调制和强度调制(如对非相干光调制)等。调制的载波分别是脉冲,正弦波和光波等。正弦波调制有幅度调制、频率调制和相位调制三种基本方式,后两者合称为角度调制。此外还有一些变异的调制,如单边带调幅、残留边带调幅等。脉冲调制也可以按类似的方法分类。此外还有复合调制和多重调制等。不同的调制方式有不同的特点和性能。 本文简单介绍了数字正弦波调制的误码率与信噪比的关系。

数字调制即基于调制器输入信息比特,从一组可能的信号波形(或符 号)组成的有限集中选取特定的信号波形 。如果共有M 种可能的信号,则调制信号集S 可表示为 对于二进制调制方案,一个二进制信息比特之间映射到信号,S 就只包含两种信号。对于更多进制的调制方案(多进制键控),信号集包含两种以上的信号,每种信号(或符号)代表一个比特以上的信息。对于一个大小为M 的信号集,最多可在每个符号内传输2log M 个比特信息。 1. 二进制相移键控(BPSK ) 在二进制相移键控中,幅度恒定的载波信号随着两个代表二进制 数据1和0的信号1m 和2m 的改变而在两个不同的相位间跳变,通常这 两个相位差为180°,如果正弦载波的幅度为c A ,每比特能量21=2 b c b E A T ,则传输的BPSK 信号为: 2(t)=t+) 0t (1)b BPSK c c b b E s f T T πθ≤≤二进制的或者 我们将1m 和2m 一般化为二进制数据信号(t)m ,这样传输信号可表示为:2(t)=m(t)t+)b BPSK c c b E s f T πθ 对于AWGN (加性高斯白噪声)信道,许多调制方案的比特差错率用 信号点之间的距离(星座图中相邻点的欧几里得距离)的Q 函数得到。对于BPSK ,距离为2b E 其中Q 函数与互补误差函数erfc 的关系为:1()=22 Q erfc α,其中()=1-()erfc erf ββ,而误差函数erf 的表达式为:

信号检测与估值matlab仿真报告

信号检测与估值 仿真报告 题目信号检测与估值的MATLAB仿真学院通信工程学院 专业通信与信息系统 学生姓名 学号 导师姓名

作业1 试编写程序,画出相干移频键控、非相干移频键控(无衰落)和瑞利衰落信道下非相干移频键控的性能曲线。 (1)根据理论分析公式画性能曲线; (2)信噪比范围(0dB-10dB),间隔是1dB; (3)信噪比计算SNR=10lg(Es/N0) 一、脚本文件 1、主程序 %******************************************************** %二元移频信号检测性能曲线(理论分析) %FSK_theo.m %******************************************************** clear all; clc; SNRindB=0:1:20; Pe_CFSK=zeros(1,length(SNRindB)); Pe_NCFSK=zeros(1,length(SNRindB)); Pe_NCFSK_Rayleigh=zeros(1,length(SNRindB)); for i=1:length(SNRindB) EsN0=exp(SNRindB(i)*log(10)/10); Es_aveN0=exp(SNRindB(i)*log(10)/10); Pe_CFSK(i)=Qfunct(sqrt(EsN0));%相干移频键控系统 Pe_NCFSK(i)=0.5*exp(-EsN0/2);%非相干移频键控系统(无衰落) Pe_NCFSK_Rayleigh(i)=1/(2+Es_aveN0);%非相干移频键控系统(瑞利衰落)end semilogy(SNRindB,Pe_CFSK,'-o',SNRindB,Pe_NCFSK,'-*',SNRindB,Pe_NCFSK_Rayleigh ,'-'); xlabel('Es/No或平均Es/No(dB)'); ylabel('最小平均错误概率Pe'); legend('相干移频','非相干移频(无衰落)','非相干移频(瑞利衰落)'); title('二元移频信号检测性能曲线'); axis([0 20 10^-7 1]); grid on; 2、调用子函数 %******************************************************** %Q函数 %Qfunct.m %********************************************************

不同调制模式下的误码率与信噪比关系

不同调制模式下的误码率与信噪比的关系 一.原理概述 调制(modulation )就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。而解调则是将基带信号从载波中提取出来以便预定的接收者(也称为信宿)处理和理解的过程。 调制的种类很多,分类方法也不一致。按调制信号的形式可分为模拟调制和数字调制。用模拟信号调制称为模拟调制;用数据或数字信号调制称为数字调制。按被调信号的种类可分为脉冲调制、正弦波调制和强度调制(如对非相干光调制)等。调制的载波分别是脉冲,正弦波和光波等。正弦波调制有幅度调制、频率调制和相位调制三种基本方式,后两者合称为角度调制。此外还有一些变异的调制,如单边带调幅、残留边带调幅等。脉冲调制也可以按类似的方法分类。此外还有复合调制和多重调制等。不同的调制方式有不同的特点和性能。 本文简单介绍了数字正弦波调制的误码率与信噪比的关系。 数字调制即基于调制器输入信息比特,从一组可能的信号波形(或符号)组成的有 限集中选取特定的信号波形。如果共有M 种可能的信号,则调制信号集S 可表示为 对于二进制调制方案,一个二进制信息比特之间映射到信号,S 就只包含两种信号。对于更多进制的调制方案(多进制键控),信号集包含两种以上的信号,每种信号(或符号)代表一个比特以上的信息。对于一个大小为M 的信号集,最多可在每个符号内传输2log M 个比特信息。 1. 二进制相移键控(BPSK ) 在二进制相移键控中,幅度恒定的载波信号随着两个代表二进制数据1和0的信号1m 和2m 的改变而在两个不同的相位间跳变,通常这两个相位差为180°,如果正弦载波的幅度为c A ,每比特能量21=2 b c b E A T ,则传输的BPSK 信号为: t+) 0t (1)BPSK c c b s f T πθ≤≤二进制的或者 t++t+) 0t (0)BPSK c c c c b s f f T ππθπθ≤≤二进制的 我们将1m 和2m 一般化为二进制数据信号(t)m ,这样传输信号可表示为:

music 方位估计 实验报告三 MATLAB 代码

实验报告三 实验目的: 实现常规波束形成及基于MUSIC 方法的方位估计。 实验内容: 1)若干阵元的接收阵,信号频率为10KHz ,波束主轴12度,仿真给出常规波束形成的波束图。 2)16个阵元的均匀线列阵,信号频率为10KHz ,信号方位为12度,用MUSIC 方法完成目标定向,信噪比-5dB ,0dB ,5dB 。 i) 波束形成时的阵型设计为两种,一种是均匀线列阵,阵元16个;一种是均匀圆阵,阵元数为16个,比较这两种阵型的波束图。 ii )比较不同信噪比下MUSIC 方法估计的性能(统计100次)。 实验原理: i)常规波束形成: 如图所示,基阵的输出),(θt v 。 ∑∑=*=* ==M m i i M m i i w t x t x w t v 1 1 ) ()()()(),(θθθ 采用向量符号则有, )()()()(),(H H θθθw x x w t t t v == 式中,x(t)和w(q )分别为观测数据向量和加权系数向量, ) ,(θt v 图 1 波束形成器基本原理图

T M 21])()()([)(t x t x t x t Λ=x T M 21])()()([)(θθθθw w w Λ =w 基阵输出端的空间功率谱表示为: ) ()( )()]()([)( )]()()()([ )],(),([ ] ),([)(H H H H H *2 θθθθθθθθθθRw w w x x w w x x w =====t t E t t E t v t v E t v E P 式中,R 为观测数据的协方差矩阵。 ii )基于MUSIC 方法的方位估计: )()()()(1 t n t s a t x i d i +=∑=θ T M 21])()()([)(t x t x t x t Λ =x )()()()(t n t s A t x +=θ 假设: (1 ) 信号源的数目d 是已知的, 且d < M ; (2 ) 各信号的方向矢量是相互独立的, 即)(θA 是一个列满秩矩阵; (3 ) 噪声)(t n 是空间平稳随机过程, 为具有各态历经性的均值为零、方差为σ2n 的高斯过程; (4 ) 噪声各取样间是统计独立的。 在上述假设条件下, 基阵输出的协方差矩阵可表示为: I A AR t x t x E R H s H 2])()([α+== 其中, R s 为信号的协方差矩阵;I 为单位矩阵。对R 进行特征分解, 并以特 征值降值排列可得 H m m M d m m H m m d m m e e e e R ∑∑+==+ =1 1λ λ 信号子空间与噪声子空间正交。 若噪声子空间记为E N , 即 ∑+== M d m H m m N e e E 1

(完整版)MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序

%模拟2ASK % Pe=zeros(1,26); jishu=1; for snr=-10:0.5:15 max = 10000; s=round(rand(1,max));%长度为max的随机二进制序列 f=100;%载波频率 nsamp = 1000;每个载波的取样点数 tc=0:2*pi/999:2*pi;tc的个数应与nsamp相同 cm=zeros(1,nsamp*max); cp=zeros(1,nsamp*max); mod=zeros(1,nsamp*max); for n=1:max; if s(n)==0; m=zeros(1,nsamp); b=zeros(1,nsamp); else if s(n)==1; m=ones(1,nsamp); b=ones(1,nsamp); end end c = sin(f*tc); cm((n-1)*nsamp+1:n*nsamp)=m; cp((n-1)*nsamp+1:n*nsamp)=b; mod((n-1)*nsamp+1:n*nsamp)=c; end tiaoz=cm.*mod;%2ASK调制 t = linspace(0,length(s),length(s)*nsamp); tz=awgn(tiaoz,snr);%信号tiaoz中加入白噪声,信噪比为SNR=10dB jiet = 2*mod.*tz; %相干解调 [N,Wn]=buttord(0.2,0.3,1,15); [b,a]=butter(N,Wn); dpsk=filter(b,a,jiet);%低通滤波 % 抽样判决,判决门限为0.5 depsk = zeros(1,nsamp*max); for m = nsamp/2:nsamp:nsamp*max; if dpsk(m) < 0.5; for i = 1:nsamp depsk((m-500)+i) = 0; end

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中( )/2 /2 lim N j n n N n N X x e ωω=-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ--= =? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ--= =? ?

信噪比SN、载噪比CN与EbN0之全方位区别

信噪比S/N、载噪比C/N与Eb/N0之全方位区别: Eb的单位是J,定义是接收端的平均比特能量,N0的单位是W/Hz(J),也是在接收端定义的平均功率谱密度。S和N的单位是W。简单的换算,是(Eb/N0)=(S/N)/f,其中f是系统的频谱效率(Gp=WPR处理增益的倒数),这个值是与编码、调制方式有关的,比如1/2的编码,16QAM,f=1/2*4=2(bits/symbol)。信息论中的定义是(Eb/N0)=(S/N)/(R/W),这与上面是一样的。首先,必须弄清单位!按照信息论中对Eb的定义,应该和信号的调制方式无关。Eb=S/C,其中C为信道容量。这样若设r为信噪比,则由信道容量的定义有Eb /No=r/log(1+r)。这里是认为C=log(1+r)推出来的。信噪比( S/N )是指传输信号的平均功率与加性噪声的平均功率之比。载噪比(C/N )指已经调制的信号的平均功率与加性噪声的平均功率之比。它们通常都以对数的方式来计算,单位为dB。 信噪比与载噪比区别在于,载噪比中已调信号的功率包括了传输信号的功率和调制载波的功率,而信噪比中仅包括传输信号的功率,两者之间相差一个载波功率。当然载波功率与传输信号功率相比通常都是很小的,因而载噪比与信噪比在数值上十分接近。对抑制载波的调制方式来说,两者的值相等。信噪比和载噪比可以在接收端直接通过测量得到。在调制传输系统中,一般采用载噪比指标;而在基带传输系统中,一般采用信噪比指标。实际数字通信系统的可靠性性能常以一个载噪比对误码率的关系曲线来描述的,曲线的横坐标为C/N,纵坐标为BER。Eb表示信道内单位比特码的功率,N0代表噪声谱密度,Eb/N0实际上就是一种信噪比,因为通常讲的SNR是信号和噪声功率的比值,是单位时间内的信号和噪声能量的比值,但是在通信中计算单位时间内的SNR是相对笼统的,Eb/NO取单位比特码的SNR 就比较科学,和一般的信噪比一样,用它来表征无线信道的质量是理所当然的。Eb/N0SNR 之间的关系在仿真中信号能量绝对是非常非常重要的问题,但是一直有扰于一些概念没有理清楚,现在理一理。 SNR信噪比,信号平均能量与噪声平均能量的比值,将噪声能量设置为1,信号能量可以由信噪比和噪声能量求得,S=10^(SNR/10)*N。 传信率为Rb(比特/秒),带宽W(赫兹),S/N=Eb*Rb/N0*W=(Eb/N0)*(Rb/W),Rb/W就是频谱效率,所以在这SNR与Eb/N0就是一个线性的关系,仿真时可以将Eb/N0与S/N统一看待,然后将S/N用db形式的SNR反映出来。 由于严格意义上讲E是信号能量,而不是信号功率,所以信号能量与时间长度还有关系,一个符号的时间长度是一个比特时间长度的log2(M)的关系,即Es/N0=log2(M)*Eb/N0. 所以如果信号能量加在比特上用Eb/N0的形式转化,如果能量加在符号级上,就按照Es/N0的形式转化。 Eb/N0 Ec/N0 Es/N0 (一)比特信噪比Eb/ N0:Eb是比特能量, (一般来说,一个Bit是有很N个chip组成的,所以它的能量=N×Ec); (二)Ec/ N0:Ec是指一个chip的平均能量; (三)符号信噪比Es/ N0:Es是符号能量; Es/N0=log2(M)*Eb/N0。

误码率和信噪比

摘要:比特误码率(RBE)是衡量一个通信系统优劣的重要指标之一。对如何利用System View仿真软件测试和生成一个通信系统的RBE测试曲线的实例进行了研究,并对此次仿真过程中的关键问题加以论述。 关键词:比特误码率;BCH码;卷积码;仿真 2误码率测试仿真原理及其仿真的关键问题 2.1误码率测试仿真原理 在仿真系统中,信道模拟成一个高斯噪声信道(AWGN),输入信号经过AWGN信道后在输出端进行硬判断,当带有噪声的接收信号大于判决电平时,输出判为1,此时的原参照信号如果为0,则产生误码。 为了便于对各个系统进行比较,通常将信噪比用每比特所携带的能量除以噪声功率谱密度来表示,即Eb/N0,对基带信号,定义信噪比为: 这里的A为信号的幅度(通常取归一化值),R=1/T是信号的数据率。在仿真过程中,为了能得到一个通信系统的RBE曲线,通常需要在信号源或噪声源后边加入一个增益图符来控制信噪比的大小,System View仿真时应用此种方法(在噪声源后面加入增益图符)。受控的增益图符需要在系统菜单中设置全局关联变量,以便每一个测试循环完成后将系统参数改变到下一个信噪比值,全局关联变量的设置方法在下述内容中介绍。 2.2全局关联变量的设置 当一个高斯噪声信道的RBE测试模型设置基本完毕后,并不能绘出完整正确的RBE/RSN 曲线,还必须将噪声增益控制与系统循环次数进行全局变量关联,使信道的信噪比(RSN)由0 dB开始逐步加大,即噪声逐步减小,噪声每次减小的步长与循环次数相关。设置的方法是:单击System View主菜单中的“Tools”选项,选择“Global Parameter Links”,这时出现如图1所示参数设置栏,在“Select System Token”中选择要关联的全局变量,图中选择了Gain 图符,如果设定每次循环后将信噪比递增1 dB,即噪声减小1 dB,则应在算术运算关系定义栏“Define Algebraic Relation F[Gi,Vi]”内将F[Gi,Vi]的值设置为-c1,这里c1为系统变量“Current System Loop”的系统循环次数。 2.3设置系统仿真时间 在进行系统仿真之前首先必须对定时参数进行设置,系统的定时设定直接影响着系统仿真的效果甚至仿真结果的正确性。同时,定时参数的设置也直接影响系统仿真的精度,因此选取定时参数必须十分的注意,这也是初学者应重点掌握的内容,采样速率过高增加仿真的时间,过低则有可能得不到正确的仿真结果。单击设计窗口工具栏上的系统定时按钮则弹出系统定时设定窗口。 在进行定时窗口设置时要注意以下几点:

OFDM误码率性能分析与研究

OFDM误码率性能分析与研究 Analysis and Study of Performance of OFDM BER 摘要:本文通过MATLAB编程实现正交频分复用(OFDM)的系统仿真,系统采用卷积码和交织码级连的差错控制编码。以高斯噪声信道和电力线信道为例,用本仿真系统分别计算出了无差错控制编码和有差错控制编码情况下误码率与信噪比的关系。结果表明,加入差错控制编码使误码率达到10-3时对信噪比的要求有很大减小。系统误码率随信噪比增加以近似二次曲线下降或部分近似二次曲线下降,以不同系数的二次曲线分别进行模拟,可以控制差值在0.005~0.02范围内。 关键词:正交频分复用(OFDM),卷积编码,交织编码,信噪比,误码率 ABSTRACT: This test realized emulational system of OFDM through MATLAB programming, adopted error control coding of concatenation of convolutional codes and interlaced codes. In Gaussian noise channel and power line channel, this emulational system calculate out relationship between bit error rates and signal to noise ratios. Result indicates, it is reduce the request of SNR when made bit error rate arrive at 10-3 that joining error control coding. The bit error rates of system decrease similar to conic drop or part of it similar to conic drop, imitate separately with the conic of different coefficient, can control difference in 0.005~0.02 ranges. KEY WORDS:OFDM,convolutional codes, interlaced codes, signal to noise ratios (SNR), bit error rates 引言 并行传送数据和正交频分复用的概念于50~60年代被提出。1970年,OFDM专利发表,其基本思想是通过允许子信道频谱重叠且不互相影响的频分复用(FDM)的方法并行传送数据,以避免使用高速均衡器,并具有较强的抗脉冲噪声及多径衰落能力。同时,因允许频率重叠,所以具有很高的频谱利用率。早期的OFDM系统中,发信机和相关接收机所需的副载波阵列是由正弦信号发生器产生的,且相关接收时各副载波要严格同步。因此,当子信道数很大时,系统是非常复杂和昂贵的。1971年,Weinstein和Ebert提出使用离散傅立叶变换(DFT)进行OFDM系统中的调制和解调功能,简化了复杂的振荡器阵列以及相关接收机中本地载波之间严格同步问题,为OFDM的全数字实现方案作了理论准备。最近,随着VLSI的迅速发展,已经出现了高速大阶数的FFT专用芯片及可用软件快速实现FFT 的数字信号处理(DSP)通用芯片,且价格低廉,从而使利用FFT实现OFDM的技术成为可能。 1.OFDM系统原理 ODFM所发送的信号就是由一组正交信号作为副载波,码元周期T,不归零方波作为基带码型调制而成的。接收机解调器也是由这样一组正交信号在[]T,0内分别与发送信号进行相关运算而解调的。

kalman滤波在不同信噪比时的误码率matlab仿真程序

-20-15-10-50510152000.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Kalman滤波器在matlab仿真程序下的不同信噪比时的误码率: %multiuser_dectect.m clc; clear all; hold on BER_sum=zeros(1,13);%设定求和误码率的零矩阵; BER_ave=zeros(1,13); %设定平均误码率的零矩阵; for m=1:10;%m的长度为1到10 间隔为1; snr_in_db=-20:3:16;%定义信噪比的长度为-20到16 间隔为3;snr_in_db是信噪比用db表示 for i=1:length(snr_in_db);%i的长度为1到信噪比的长度 BER(i)= Kalman_S1(snr_in_db(i));%卡尔曼的误码率函数; end BER_sum=BER_sum+BER;%误码率求和的算法 end; BER_ave=0.1* BER_sum ; %误码率平均值的算法 semilogy( snr_in_db,BER_ave,'rd-');%y轴维数坐标图定义横坐标为信噪比,纵坐标为误码率; %Kalman_S1.m %Kalman algorithm %synchronous CDMA同步cdma %channel: White Gaussis Noise function [p] = Kalman_S1(snr_in_dB) SNR=10^(snr_in_dB/10); %信噪比由dB形式转化 sgma=1; % noise standard deviation is fixed 定义方差 Eb=sgma^2*SNR; A=[sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqr t(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb)]; K=length(A);

第七章 误码率的概率论

第七章误码率的概率论 7.1 介绍 作为数据传输超过中等,衰减,合并噪声,和抖动的来源的所有传输的比特,无论是在幅度和时间,接收曲解一些位值和他们错误地检测到这种程度的扭曲形状;也就是说,一些逻辑“的”逻辑“零”和“零”的逻辑“的一些逻辑检测。”在通信,误码传输的比特数的数量提供了一个度量性能通道,从发射到接收器。然而,这个度量需要澄清。例如,如果两个数据率是1和10 Gbit Mbit / s / s,10个错误在第二个意味着10/1,000,000(或10 - 5)和10/10,000,000,000(或10 - 9)错误。另外,10个错误1000000比特每秒传输意味着10错误为1 Mbit / s 率和100000错误以每秒10 Gbit / s的速度。 因此,这取决于性能限制设置为一个特定的应用,信道主要性能可能无法接收。因此,频率(或速度)比特的错误是非常关键的。虽然不可能预测如果某位将被接受或不正确的,它是可以预测的性能良好的信能通道的参数是众所周知的联系,以及统计行为(高斯,泊松噪声和抖动来源)。然后,发生错误位的频率和信号信噪比可以可靠地估计。我们已经无需定义所述的误比特率和误码率。它们是什么以及两者之间的区别是审查下一节。因此,一个传输信道模型。一个彻底的知识是需要的链接从发射机到接收机,包括传输介质和所有组成部分之间(图7.1),以及噪声的来源和抖动(包括线性和非线性得出交互)和激光和光电探测器的特点。 在前面的章节中,我们讨论了光源和接收器,介质损耗和增益,噪声和抖动。在本章中,我们的注意力都集中在这些有辱人格的来源如何影响一个二进制位的值改变,从“一”到“零”和“零”到“一。”我们估计错误的概率,并集成固态电路可以实现的,我们提供了一个估算方法,从而在每个端口的连续估计,并使繁琐的测量仪器只用于精密测试服务。 236 图7.1信道模型从源到接收器之间的所有障碍,包括光纤损耗,非线性,主动/被动元件,和噪声和抖动来源。 误码率和光信号质量是模拟几个练习中使用的CD-ROM,伴随着这本书(这些演习的描述见附录B)。

误码率BER与信噪比SNR的关系解析

误码率BER 与信噪比SNR 的关系解析 一、 前言 误码率(BER :bit error ratio )是衡量数据在规定时间内数据传输精确性的指标,是衡量一个数字系统可靠性的主要的判断依据。虽然现在手机系统有许多仪器都可以直接对该项作直接的测量,但是对数字对讲机以及新兴的采用新的协议模式的设备,误码率的测试就会比较繁琐。而很多现有的设备都是基于模拟指标的测量,如果能找到模拟的指标与误码率之间的关系,那么将更方便我们的调试。在之前我们已经能直观的能观察到误码率BER 与模拟的信噪比SNR 以及射频中的噪声干扰存在一种相对应的关系,以下就基于这个作更深入的分析。 二、 正文 2.1在论述这种关系之间,首先要弄清楚下面的几个基本概念: 2.1.1S/N 音频信噪比(即SNR ) 图一 信噪比SNR 示意图 我们通常指的信噪比SNR 是基带信号中有用信号功率与噪声功率的比值,如图一所示。发射一个标准调制信号,接收机接收解调后,测量音频有用信号输出功率为signal P (dBm),然后去掉调制信号,记录音频噪声输出功率为noise P (dBm),于是: )(P )(P S/N noise signal dBm dBm ?= -------- 式1

2.1.2射频C/N 载噪比 图二 载噪比C/N 示意图 载噪比指的是在解调(进入解调器的)前的射频信号频谱中有用信号功率与噪声功率的比值,如图二所示。发射一个非调制信号,结果接收机的一系列滤波等处理,在解调前用频谱仪观察频谱信号,测试它的载波功率Carrier P (dBm)以及噪声信号功率noise P (dBm) )(P )(P C/N noise Carrier dBm dBm ?= -------- 式2 2.1.3频谱仪分辨率带宽(RBW) 对于频谱分析仪,分辨率带宽(RBW :Resolution Bandwidth )实际上是频谱仪内部滤波器的带宽(决定选择性的IF 滤波器的3dB 带宽),设置它的大小,能决定是否能把两个相临很近的信号分开。比如,模拟对讲机相邻信道是25KHz ,你就必须把RBW 设置成比25KHz 小,才能把两个信道的载波分离出来,所以相同的频谱在不同的分辨率下有不同的效果,如下图:

功率谱密度估计方法的MATLAB实现

功率谱密度估计方法的MATLAB实现 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以实现各种谱估计方法的模拟仿真并输出结果。下面对周期图法、修正周期图法、最大熵法、Levinson递推法和Burg法的功率谱密度估计方法进行程序设计及仿真并给出仿真结果。 以下程序运行平台:Matlab R2015a(8.5.0.197613) 一、周期图法谱估计程序 1、源程序 Fs=100000; %采样频率100kHz N=1024; %数据长度N=1024 n=0:N-1; t=n/Fs; xn=sin(2000*2*pi*t); %正弦波,f=2000Hz Y=awgn(xn,10); %加入信噪比为10db的高斯白噪声 subplot(2,1,1); plot(n,Y) title('信号') xlabel('时间');ylabel('幅度');

谱相减MATLAB代码以及信噪比计算

实验二 语音信号的频域处理 一、 实验目的、要求 (1)掌握语音信号频域分析方法 (2)了解语音信号频域的特点 (3)了解谱减法作为频域语音增强的原理与编程实现 (3)了解谱减法的缺点,并分析产生该缺点的原因 二、实验原理 语音虽然是一个时变、非平稳的随机过程。但在短时间内可近似看作是平稳的。因此如果能从带噪语音的短时谱中估计出“纯净”语音的短时谱,即可达到语音增强的目的。由于噪声也是随机过程,因此这种估计只能建立在统计模型基础上。利用人耳感知对语音频谱分量的相位不敏感的特性,这类语音增强算法主要针对短时谱的幅度估计。 短时话幅度估计概述 设一帧加窗后的带噪语音为 ()()() 01y n s n d n n N =+≤≤- (2.1) 其中()s n 为纯净语音,()d n 假设为平稳加性高斯噪声。 将()y n 在一组基{()}k n φ上展开,使展对系数为各不相关的随机变量。设()y n 的相关函数为(,)y R n m ,由K -L 展开得知{()}k n φ满足 1 ()()(,)()N k y k m K n R n m m λφφ-==∑ (2.2) 则()y n 的展开式为 1 1 0()()()()N k k K N k k n y n Y n Y y n n φφ-=-=? =????=?? ∑∑ (2.3) 如果()y n 的相关长度小于帧长N ,则()k n φ的近似函数为 2()k nk n j N π??? = ?? ? (2.4) 可见()y n 的展开过程实际上相当于离散博里叶交换,其展开系数(为傅里叶变换系数。由()()()y n s n d n =+,则有:k k k Y S N =+。 其中[]||exp k k k Y Y j θ=、[]||exp k k k S S j α=、k N 分别为()y n 、()s n 及()d n 的傅里叶交换系数。由于假设噪声是高斯分布的,其傅里叶系数k N 相当于多个高

电平、载噪比、调制误差比、误码率简介及关系剖析

电平、载噪比、调制误差比、误码率简介及关系剖析 一、概念介绍 1、电平(db),就是指电路中两点或几点在相同阻抗下电量的相对比值。这里的电量 自然指“电功率”、“电压”、“电流”并将倍数化为对数,用“分贝”表示,记作“dB”。分 别记作:10lg(P2/P1)、20lg(U2/U1)、20lg(I2/I1)上式中P、U、I分别是电功率、电压、 电流。使用“dB”有两个好处:其一读写、计算方便。如多级放大器的总放大倍数为 各级放大倍数相乘,用分贝则可改用相加。其二能如实地反映人对声音的感觉。实 践证明,声音的分贝数增加或减少一倍,人耳听觉响度也提高或降低一倍。即人耳 听觉与声音功率分贝数成正比。 2、载噪比(C/N),在通信中,载噪比(信噪比)是用来标示载波与载波噪音关系 的标准测量尺度,通常记作CNR或者C/N(dB)。高的载噪比可以提供更好的网 络接收率、更好的网络通信质量以及更好的网络可靠率。载噪比中,载波的 功率用Pc 表示,噪音的功率用Pn表示。那么载噪比的分贝单位公式表示为: C/N = 10 lg(Pc/Pn)载噪比与信噪比相似为表示网络信道质量的尺度。但是信噪 比通常在实际应用中使用。载噪比则用于卫星通讯系统中。最佳的天线排列 可以得到最佳载噪比值。 3、调制误差比(MER),TR101 290标准是用来描述DVB系统的测量准则。在标 准中,调制误差比(MER)指的是被接收信号的单个“品质因数”(figure of merit)。 MER往往作为接收机对传送信号能够正确解码的早期指示。MER 被定义为调 制后的符号位置与理想位置之间的比值。信号越好,调制后的符号就越接近 理想位置,相反就远离理想位置。当信号质量下降到一定程度的时候,符号 最终会被错误解码,此时BER 增大。使用MER 可以很好的量化噪声与入侵 干扰在他们对BER 造成影响之前。 4、误码率(BER),是衡量数据在规定时间内数据传输精确性的指标。误码率=传输中 的误码/所传输的总码数*100%。如果有误码就有误码率。另外,也有将误码率定义 为用来衡量误码出现的频率。IEEE802.3标准为1000Base-T网络制定的可接受的最 高限度误码率为10-10。这个误码率标准是针对脉冲振幅调制(PAM-5)编码而设定的, 也就是千兆以太网的编码方式。 二、相互关系 为了更好地保证数字有线电视的传输质量,需要合理地规划载噪比(C/N)和调制误码率(MER)以确保误码率(BER)指标能够保持在良好的范围内。 1、载噪比与误码率的关系 当Eb/No 确定以后,达到一定BER 值所要求的C/N 为:C/N= (Eb/No)×(R/B),Eb/No= (C/N)×B/R 式中:Eb:信号的每比特能量。No:传输信道的噪声功率谱密度。B:检波滤波 器的等效噪声带宽。C/N:传输信道的载噪比(dB)。R:比特率,表征传输信号的频谱效率。 根据上式可以绘出BER 与C/N 关系曲线,就得到著名的瀑布曲线如下图:

matlab 如何计算信噪比

Matlab信号上叠加噪声和信噪比的计算 在信号处理中经常需要把噪声叠加到信号上去,在叠加噪声时往往需要满足一定的信噪比,这样产生二个问题,其一噪声是否按指定的信噪比叠加,其二怎么样检验带噪信号中信噪比满足指定的信噪比。 在MATLAB中可以用randn产生均值为0方差为1的正态分布白噪声,但在任意长度下x=randn(1,N),x不一定是均值为0方差为1(有些小小的偏差),这样对后续的计算会产生影响。在这里提供3个函数用于按一定的信噪比把噪声叠加到信号上去,同时可检验带噪信号中信噪比。 1,把白噪声叠加到信号上去: function [Y,NOISE] = noisegen(X,SNR) % noisegen add white Gaussian noise to a signal. % [Y, NOISE] = NOISEGEN(X,SNR) adds white Gaussian NOISE to X. The SNR is in dB. NOISE=randn(size(X)); NOISE=NOISE-mean(NOISE); signal_power = 1/length(X)*sum(X.*X); noise_variance = signal_power / ( 10^(SNR/10) ); NOISE=sqrt(noise_variance)/std(NOISE)*NOISE; Y=X+NOISE; 其中X是纯信号,SNR是要求的信噪比,Y是带噪信号,NOISE是叠加在信号上的噪声。 2,把指定的噪声叠加到信号上去 有标准噪声库NOISEX-92,其中带有白噪声、办公室噪声、工厂噪声、汽车噪声、坦克噪声等等,在信号处理中往往需要把库中的噪声叠加到信号中去,而噪声的采样频率与纯信号的采样频率往往不一致,需要采样频率的校准。 function [Y,NOISE] = add_noisem(X,filepath_name,SNR,fs) % add_noisem add determinated noise to a signal. % X is signal, and its sample frequency is fs; % filepath_name is NOISE's path and name, and the SNR is signal to noise ratio in dB. [wavin,fs1,nbits]=wavread(filepath_name); if fs1~=fs wavin1=resample(wavin,fs,fs1);

相关文档
相关文档 最新文档