文档库 最新最全的文档下载
当前位置:文档库 › 薄板件结构设计准则(下)

薄板件结构设计准则(下)

薄板件结构设计准则(下)
薄板件结构设计准则(下)

【塑料橡胶制品】塑料结构件设计规范

(塑料橡胶材料)塑料结构 件设计规范

塑料制品的结构设计 塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。 §1.1塑料制品设计的一般程序和原则 1.1.1塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案,绘制制品草图(形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件,包括塑料制品设计说明书和技术条件等。 1.1.2塑料制品设计的一般原则 1、在选料方面需考虑:(1)塑料的物理机械性能,如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等;(2)塑料的成型工艺性,如流动性、结晶速率,对成型温度、压力的敏感性等;(3)塑料制品在成型后的收缩情况,及各向收缩率的差异。 2、在制品形状方面:能满足使用要求,有利于充模、排气、补缩,同时能适应高效冷却硬化(热塑性塑料制品)或快速受热固化(热固性塑料制品)等。 3、在模具方面:应考虑它的总体结构,特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺,以便使制品具有较好的经济性。 4、在成本方面:要考虑注射制品的利润率、年产量、原料价格、使用寿命和更换期限,尽可能降低成本。

§1.2塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象,收缩的大小用收缩率表示。 式中S——收缩率; L0——室温时的模具尺寸; L——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1)成型压力。型腔内的压力越大,成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2)注射温度。温度升高,塑料的膨胀系数增大,塑料制品的收缩率增大。但温度升高熔料的密度增大,收缩率反又减小。两者同时作用的结果一般是,收缩率随温度的升高而减小。 (3)模具温度。通常情况是,模具温度越高,收缩率增大的趋势越明显。 (4)成型时间。成型时保压时间一长,补料充分,收缩率便小。与此同时,塑料的冻结取向要加大,制品的内应力亦大,收缩率也就增大。成型的冷却时间一长,塑料的固化便充分,收缩率亦小。 (5)制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加,而非结晶型塑料中,收缩率的变化又分下面几种情况:ABS和聚碳酸酯等的收缩率不受壁厚的影响;聚乙烯、丙烯腈—苯乙烯、丙烯酸类等塑料的收缩率随壁厚的增加而增加;硬质聚氯乙烯的收缩率随壁厚的增加而减小。 (6)进料口尺寸。进料口尺寸大,塑料制品致密,收缩便小。 (7)玻璃纤维等的填充量。收缩率随填充量的增加而减小。 表2-1、表2-2、表2-3为常用塑料的成型收缩率。

产品结构设计准则壁厚篇

产品结构设计准则壁厚篇 基本设计守则 壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。 最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。 对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於 0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm 时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。

此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。 平面准则 在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。下图可供叁考。 转角准则

塑料件结构设计 加强筋设计

塑料件结构设计-(5)加强筋设计 浏览?发布时间?15/05/10基本设计守则 ??? 加强筋在塑胶部件上是不可或缺的功能部份。加强筋有效地如『工』字型,增加产品的刚性和强度而无需大幅增加产品切面面积,但没有如『工』字型筋,倒扣结构将难於成型,对一些经常受到压力、扭力、弯曲的塑胶产品尤其适用。此外,加强筋更可充当内部流道,有助模腔充填,对帮助塑料流入部件的支节部份很大的作用。 ??? 加强筋一般被放在塑胶产品的非接触面,其伸展方向应跟随产品最大应力和最大偏移量的方向,选择加强筋的位置亦受制於一些生产上的考虑,如模腔充填、缩水及脱模等。加强筋的长度可与产品的长度一致,两端相接产品的外壁,或只占据产品部份的长度,用以局部增加产品某部份的刚性。要是加强筋没有接上产品外壁的话,末端部份亦不应突然终止,应该渐次地将高度减低,直至完结,从而减少出现困气、填充不满及烧焦痕等问题,这些问题经常发生在排气不足或封闭的位置上。 加强筋一般的设计 ??? 加强筋最简单的形状是一条长方形的柱体附在产品的表面上,不过为了满足一些生产上或结构上的考虑,加强筋的形状及尺寸须要改变成如以下的图一般。 ??? 加强筋的两边必须加上出模角以减低脱模顶出时的摩擦力,底部相接产品的位置必须加上圆角以消除应力过分集中的现象,圆角的设计亦给与流道渐变的形状使模腔充填更为流畅。此外,底部的宽度须较相连外壁的厚度为小,产品厚度与加强筋尺寸的关系图a说明这个要求。图中加强筋尺寸的设计虽然已按合理的比例,但当从加强筋底部与外壁相连的位置作一圆圈R1时,图中可见此部分相对外壁的厚度增加大约50%因此,此部份出现缩水纹的机会相当大。如果将加强筋底部的宽度相对产品厚度减少一半(产品厚度与加强筋尺寸的关系图b),相对位置厚度的增幅即减至大约20%,缩水纹出现的机会亦大为减少。由此引伸出使用两条或多条矮的加强筋比使用单一条高的加强筋较为优胜,但当使用多条加强筋时,加强筋之间的距离必须较相接外壁的厚度大。加强筋的形状一般是细而长,加强筋一般的设计图说明设计加强筋的基本原则。留意过厚的加强筋设计容易产生缩水纹、空穴、变形挠曲及夹水纹等问题,亦会加长生产周期,增加生产成本。

机械结构设计准则汇总

机械结构设计准则汇总 第一部分、塑料件 1、概述: 注塑件设计的一般原则: z 充分考虑塑料件的成型工艺性,如流动性; z 塑料件的形状在保证使用要求的前提下,应有利于充模,排气,补缩, 同时能适应高效冷却硬化; z 塑料设计应考虑成型模具的总体结构,特别是抽芯与脱出制品的复杂程 度,同时应充分考虑到模具零件的形状及制造工艺,以便使制品具有较 好的经济性: z 塑料件设计主要内容是零件的形状、尺寸、壁厚、孔、圆角、加强筋、 螺纹、嵌件、表面粗糙度的设计。 1.1、常用塑料介绍 常用的塑料主要有 ABS、AS、PC、PMMA、PS、HIPS、PP、POM 等,其 中常用的透明塑料有 PC、PMMA、PS、AS。高档电子产品的外壳通常采用 ABS+PC;显示屏采用 PC,如采用 PMMA 则需进行表面硬化处理。日常生活中 使用的中底挡电子产品大多使用 HIPS 和 ABS 做外壳,HIPS 因其有较好的抗老 化性能,逐步有取代 ABS 的趋势。 1.2、常见表面处理介绍 表面处理有电镀、喷涂、丝印、移印。ABS、HIPS、PC 料都有较好的表面处 理效果。而 PP 料的表面处理性能较差,通常要做预处理工艺。近几年发展起来 的模内转印技术(IMD)、注塑成型表面装饰技术(IML)、魔术镜(HALF MIRROR)制造技术。 IMD 与 IML 的区别及优势: 1、 IMD 膜片的基材多数为剥离性强的 PET,而 IML 的膜片多数为 PC。 2、 IMD 注塑时只是膜片上的油墨跟树脂接合,而 IML 是整个膜片履在树 脂上。 9 3、 IMD 是通过送膜机器自动输送定位,IML 是通过人工操作手工挂。 1.3、外形设计 对于塑料件,如外形设计错误,很可能造成模具报废,所以要特别小心。外 形设计要求产品外观美观、流畅,曲面过渡圆滑、自然,符合人体工程。 现实生活中使用的大多数电子产品,外壳主要都是由上、下壳组成,理论上 上下壳的外形可以重合,但实际上由于模具的制造精度、注塑参数等因素影响, 造成上、下外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受面刮<0.15mm,可接受底刮<0.1mm。所以在无法保证零段差时,尽 量使产品:面壳>底壳。 一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大, 一般选 0.5%。 底壳成型缩水较小,所以缩水率选择较小,一般选 0.4%。

塑胶件结构设计基础知识

塑胶件结构设计基础知识 一、塑胶件 塑胶件设计时尽可能做到一次成功,对某些难以保证的地方,考虑到修模时 给模具加料难、去料易,可预先给塑料件保留一定的间隙。 常用塑料介绍 常用的塑料主要有ABS、AS、PC、PMMA、PS、HIPS、PP、POM 等,其 中常用的透明塑料有PC、PMMA、PS、AS。高档电子产品的外壳通常采用 ABS+PC;显示屏采用PC,如采用PMMA则需进行表面硬化处理。日常生活中 使用的中低档电子产品大多使用HIPS 和ABS 做外壳,HIPS因其有较好的抗老化性能,逐步有取代ABS 的趋势。 常见表面处理介绍 表面处理有电镀、喷涂、丝印、移印。ABS、HIPS、PC 料都有较好的表面 处理效果。而PP料的表面处理性能较差,通常要做预处理工艺。近几年发展起来的模内转印技术(IMD)、注塑成型表面装饰技术(IML)、魔术镜(HALF MIRROR)制造技术。 IMD与IML的区别及优势: 1. IMD膜片的基材多数为剥离性强的PET,而IML的膜片多数为PC. 2. IMD注塑时只是膜片上的油墨跟树脂接合,而IML是整个膜片履在树脂上 3. IMD是通过送膜机自动输送定位,IML是通过人工操作手工挂 1.1外形设计 对于塑胶件,如外形设计错误,很可能造成模具报废,所以要特别小心。外

形设计要求产品外观美观、流畅,曲面过渡圆滑、自然,符合人体工程。 现实生活中使用的大多数电子产品,外壳主要都是由上、下壳组成,理论上 上下壳的外形可以重合,但实际上由于模具的制造精度、注塑参数等因素影响, 造成上、下外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受面刮<0.15mm,可接受底刮<0.1mm。所以在无法保证零段差时,尽量 使产品:面壳>底壳。 一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大, 一般选0.5%。 底壳成型缩水较小,所以缩水率选择较小,一般选0.4%。 即面壳缩水率一般比底壳大0.1% 1.2装配设计 指有装配关系的!#_5$____零部件之间的装配尺寸设计。主要注意间隙配合和公差的控制。 1.2.1止口 指的是上壳与下壳之间的嵌合。设计的名义尺寸应留0.05~0.1mm 的间隙, 嵌合面应有1.5~2°的斜度。端部设倒角或圆角以利装入。 上壳与下壳圆角的止口配合。应使配合内角的R 角偏大,以增大圆角之间 的间隙,预防圆角处的干涉。 1.2.2扣位 主要是指上壳与下壳的扣位配合。在考虑扣位数量位置时,应从产品的总体 外形尺寸考虑,要求数量平均,位置均衡,设在转角处的扣位应尽量靠近转角, 确保转角处能更好的嵌合,从设计上预防转角处容易出现的离缝问题。

最新整理机械结构设计基础知识复习过程

机械结构设计基础知识 1前言 1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 2机械结构件的结构要素和设计方法 2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图1。 2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

产品结构设计准则壁厚篇

产品结构设计准则--壁厚篇 基本设计守则 壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。 最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。 对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。 此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。 平面准则 在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。下图可供叁考。

机械结构设计的原则和特点

5.1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 5.1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 5.2机械结构件的结构要素和设计方法 5.2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,

一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 5.2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、

机械结构设计课程教学大纲

《机械结构设计》课程教学大纲 执笔人:陈建毅编撰日期:2009年8月30日 一、课程概述 《机械结构设计》是工业设计专业的职业核心课程(属于B类),它包括理论力学、材料力学和机械设计基础三部分内容。计划时数为68学时,本课程4学分。 通过本课程的学习,使学生掌握工程力学和机械设计有关的基本概念、基本理论和基本方法。会对物体进行正确的受力分析,会分析计算一些简单力学问题。培养学生对工程设计中的强度、刚度和稳定性问题有明确的基本概念,必要的基础知识和比较熟练的计算能力、分析能力和初步的实验分析能力。使学生学会应用工程力学的基本理论和方法分析与解决机械工程中的一些简单实际问题。掌握一般机械中常用机构和通用零件的工作原理、性能特点,及其使用、维护的基础知识。掌握常用机构的基本理论和设计方法,常用零部件失效形式、设计准则和设计方法。在本课程的学习,注意培养学生正确的设计思想和严谨的工作作风。 教学对象:工业设计专业大二上学期的高职学生。 二、教学内容描述 教学内容分成两个模块:工程力学基础和机械设计基础。工程力学主要内容分为静力分析和强度分析;机械设计基础分为机械零件基础、常用机构、机械传动基础。 第一篇工程力学基础 第一章工程力学的基本概念 教学内容: 第一节工程力学与工业设计 第二节工程力学的研究对象与基本内容 第三节工程力学的基本概念 第四节静力学公理 第五节约束与约束反力 第六节分离体与受力图 教学要求:了解力与力系的基本概念,掌握静力学的基本公理和各种常见约束的性质,对简单的物体系统,能熟练地取分离体,画受力图。 第二章构件与产品的静力分析 教学内容: 第一节平面力系的简化与合成 第二节平面力系平衡问题的求解 第三节空间力系简介超静定的概念

钣金结构设计准则

1 引言 薄板指板厚和其长宽相比小得多的钢板。它的横向抗弯能力差,不宜用于受横向弯曲载荷作用的场合。薄板就其材料而言是金属,但因其特殊的几何形状厚度很小,所以薄板构件的加工工艺有其特殊性。和薄板构件有关的加工工艺有三类:(1)下料:它包括剪切和冲裁。(2)成形:它包括弯曲、折叠、卷边和深拉。(3)连接:它包括焊接、粘接等。薄板构件的结构设计主要应考虑加工工艺的要求和特点。此外,要注意构件的批量大小。 薄板构件之所以被广泛采用是因为薄板有下列优点: (1)易变形,这样可用简单的加工工艺制造多种形式的构件。 (2)薄板构件重量轻。 (3)加工量小,由于薄板表面质量高,厚度方向尺寸公差小,板面不需加工。(4)易于裁剪、焊接,可制造大而复杂的构件。 (5)形状规范,便于自动加工。 2 结构设计准则 在设计产品零件时,必须考虑到容易制造的问题。尽量想一些方法既能使加工容易,又能使材料节约,还能使强度增加,又不出废品。为此设计人员应该注意以下制造方面事项。 钣金件的工艺性是指零件在冲切、弯曲、拉伸加工中的难易程度。良好的工艺应保证材料消耗少,工序数目少,模具结构简单,使用寿命高,产品质量稳定。在一般情况下,对钣金件工艺性影响最大的是材料的性能、零件的几何形状、尺寸和精度要求。

如何在薄板构件结构设计时充分考虑加工工艺的要求和特点,这里推荐几条设计准则。 2.1 简单形状准则 切割面几何形状越简单,切割下料越方便、简单、切割的路径越短,切割量也越小。如直线比曲线简单,圆比椭圆及其它高阶曲线简单,规则图形比不规则图形简单(见图1)。 (a)不合理结构(b)改进结构 图1 图2a的结构只有在批量大时方有意义,否则冲裁时,切割麻烦,因此,小批量生产时,宜用图b所示结构。 (a)不合理结构(b)改进结构 图2 2.2 节省原料准则(冲切件的构型准则) 节省原材料意味着减少制造成本。零碎的下角料常作废料处理,因此在薄板构件的设计中,要尽量减少下脚料。冲切弃料最少以减少料的浪费。特别在批量大的构件下料时效果显著,减少下角料的途径有:

机械结构设计规范

机械结构设计规范 编制 审核 批准 发布日期

目次 1常用标准件优选清单 2常用外购件优选清单 3钣金件设计规范 4焊接件设计规范 5铸件设计规范 6机加件设计规范 7公差设计规范 8便于装配、维护及可靠性设计规范 9外观设计/表面处理规范 10技术要求规范 11常用材料及图样标注 12结构设计检查表

1常用标准件优选清单 常用标准件优选清单见HIFU-DP-121001(GF)重庆海扶(HIFU)技术有限公司产品常用紧固标准件优选清表。 2常用外购件优选清单 2.1选用原则 满足性能指标,供货稳定,供货周期不超过2个月;性价比优,能够用其他品牌及型号替换。 2.2滚珠丝杆类 台湾TBI、台湾上银 2.3直线导轨类: 台湾上银 2.4减速器: 2.4.1 行星减速器:德国纽卡特(NEUGART) 2.4.2 蜗轮蜗杆减速器:台湾成大 3钣金件设计规范 3.1弯曲棱边应与切割边垂直。如不能保证,应在弯曲棱边和切割边的交汇处设计一个R大于2倍板厚 的圆角。如图1所示。 3.2弯曲棱边与槽孔棱边的距离应大于弯曲半径加2倍壁厚的距离,或者让槽孔横跨整个弯曲棱边。如图 2所示。 3.3复杂结构应组合制造。将复杂结构分拆成几件简单结构,再组焊在一起。如图3所示。

4焊接件设计规范 4.1 几何连续性原则 应避免在几何突变处设置焊缝。如果不能避免,则设定过渡结构。如图4所示。 4.2 避免焊缝重叠 应避免多条焊缝交汇。改进措施:加辅助结构;切除部分;焊缝错开。如图5所示。 · 4.3 焊缝根部优先受压 焊缝根部有裂纹,易产生缺口作用。焊缝根部承受拉载荷能力<承受压载荷能力。如图6所示。 4.4 最少的焊接 应减少焊缝的数量,减小焊缝的长度。如图7所示。

机械设计的结构要素

机械设计的结构要素 一、机械结构件的结构要素与设计方法 1、1 结构件的几何要素 机械结构的功能主要就是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面就是决定机械功能的重要因素,功能表面的设计就是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 1、2 结构件之间的联接 在机器或机械中,任何零件都不就是孤立存在的。因此在结构设计中除了研究零件本身的功能与其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关与间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关与运动相关两类。位置相关就是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关就是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这就是靠床身导轨与主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它 零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链与精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。 1、3 结构设计据结构件的材料 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺, 结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

结构设计规范

武汉蓝星科技股份有限公司企业技术规范 结构设计规范

目录第一章塑胶结构设计规范 1、材料及厚度 1.1、材料选择 1.2、壳体厚度 1.3、零件厚度设计实例 2、脱模斜度 2.1、脱模斜度要点 3、加强筋 3.1、加强筋与壁厚的关系 3.2、加强筋设计实例 4、柱和孔的问题 4.1、柱子的问题 4.2、孔的问题 4.3、“减胶”的问题 5、螺丝柱的设计 6、止口的设计 6.1、止口的作用 6.2、壳体止口的设计需要注意的事项 6.3、面壳与底壳断差的要求 7、卡扣的设计 7.1、卡扣设计的关键点 7.2、常见卡扣设计 7.3、

第一章塑胶结构设计规范 1、材料及厚度 1.1、材料的选取 a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲 击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支 架、LCD支架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、 导航键、电镀装饰件等)。目前常用奇美PA-757、PA-777D等。 b. PC+ABS:流动性好,强度不错,价格适中。适用于作高刚性、高冲击 韧性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 c. PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、 按键、传动机架、镜片等。常用材料代号如:帝人L1250Y、PC2405、 PC2605。 d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸 水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、 传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。 e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。 受冲击力较大的关键齿轮,需添加填充物。材料代号如:CM3003G-30。 f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳 光,室外十年仍有89%,紫外线达78.5% 。机械强度较高,有一定的耐 寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有 一定强度要求的透明结构件,如镜片、遥控窗、导光件等。常用材料代号 如:三菱VH001。

机械技术方案设计原则

机械技术方案设计原则 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 机械结构设计的主要特点有:它是集思考、绘图、计算于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中

有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件

机械设计规范

机械设计规范 (仅供内部使用,严禁外泄) (共19页) 编写:________校对:________审核:________批准:________ 2012年11月01日

版本追溯

目录 1主题内容与适用范围 (1) 2目的 (1) 3规范性引用文件 (1) 4结构设计 (2) 4.1设计原则 (2) 4.1.1确保结构件功能的实现 (2) 4.1.2良好的结构工艺性 (2) 4.1.3保证结构强度、刚度 (2) 4.1.4便于装配、使用、维修和操作安全 (2) 4.1.5防盗功能 (3) 4.1.6标准化、模块化 (3) 4.1.7小型化 (3) 4.1.8外形美观 (3) 4.2材料选择 (3) 4.2.1材料选择准则 (3) 4.2.2常用材料及性能 (4) 4.2.2.1碳素结构钢 (4) 4.2.2.2不锈钢 (4) 4.2.2.3铝合金 (4) 4.2.2.4铜合金 (5) 4.2.2.5弹簧钢 (5) 4.3尺寸设计 (5) 4.3.1插件式机箱 (5) 4.3.1.1机箱尺寸 (5) 4.3.1.2插件面板 (6) 4.3.1.3横梁 (6) 4.3.1.4挂耳 (7) 4.3.2机箱把手 (7) 4.3.3支架类和钣金、压铸箱体 (7) 4.4箱体内元器件的排列布局 (7) 4.5标准件选择准则 (7) 4.6钣金件设计准则 (7) 4.7焊接设计准则 (9) 4.8装配设计准则 (10) 4.9表面处理 (10) 5结构件表面印字 (11) 5.1丝印 (11) 5.2金属蚀刻 (11) 6铭牌设计 (12)

7车载产品包装 (12) 7.1包装纸箱 (12) 7.2包装泡沫 (13) 7.3包装木箱 (13) 8公差设计 (13) 8.1利于提高精度设计 (13) 8.2公差等级选择 (13) 8.2.1形位公差 (13) 8.2.2尺寸公差 (13) 8.2.2.1机械结构件 (14) 8.2.2.2包装泡沫 (15)

结构设计的基本原则

结构设计的“四项基本原则” (2007-03-30 15:07:49) 转载 标签: 结构设计 刚柔相济,多道防线,抓大放小,打通关节 1、刚柔相济 合理的建筑结构体系应该是刚柔相济的。结构太刚则变形能力差,强大的破坏力瞬间袭来时,需要承受的力很大,容易造成局部受损最后全部毁坏;而太柔的结构虽然可以很好的消减外力,但容易造成变形过大而无法使用甚至全体倾覆。结构是刚多一点好,还是柔多一点好?刚到什么程度或柔到什么程度才算合适呢?这些问题历来都是专家们争论的焦点,现今的规范给出的也只是一些控制的指标,但无法提供“放之四海皆准”的精确答案。最后,专家们达成难以准确言传的共识:刚柔相济乃是设计者的追求。道也许都是相通的。 想想看,人应该是刚多一点好还是柔多一点好呢?思考的哲人们对此各抒已见,力求给出处世的灵丹妙方。总的来讲,做人太刚和太柔都不受推崇。过份刚强者,应变能力差,难以找到共同受力的合作者,便要我行我素,要鹤立鸡群,即使面对任何突然袭来的恶势力,亦敢于硬顶硬撞而不留变通的余地,这种时候必须有足够的刚度才能立于不败,否则一旦后继乏力,油尽灯枯就会发生脆性破坏,导致伤痕累累、体无完肤的灭顶之灾。在盛赞这种刚气之余,却鲜有人能够或者愿意完全去做到,英雄的眼泪大抵只有英雄自己能体味。人们唯有感叹道:精神可嘉,方法难取!世人处世多以“柔”为本,退一步海阔天空,和为贵。柔者易于找到共同受力的构件以协同消化和抵抗外力。但过柔亦为人所不耻。因为“柔”必然产生变形以适应外力,太柔的结果必然是太大的变形,甚至会导致立足不稳而失去根本。处世极为圆滑者,八面玲珑,见风使舵,整日上窜下跳,左右逢源,活得游刃有余,这种柔得无形,表面上着实不容易受到伤害,骨子里却难免有“似我非我”的疑问,弄不好会个性丧失、面目全非,可能还免不了要背上奴颜婢膝的骂名。 所以古人在长期的实践后发现了中庸之道最适合生存。用现代的话来讲大意是做人最好既有原则性又有灵活性,也就是刚柔相济。刚是立足之本,必要刚度不能少,如此方能控制变形在可以忍受的范围内,才不会失掉本质的东西;柔为护身之法,血肉之躯刚度毕竟有限,要学会以柔克刚,不断提高消化转换外力的能力,有时候,牺牲一点变形来抵抗突然到来的摧毁力是必要的,也是值得的,但应以不失去自我为度。只可惜“道可道,道难行”。不是想刚就能刚,想柔便得柔的,刚柔相济只是理想中的“模糊结构”,每个人的组成材料千差万别,生存的地基也不尽相同,所受的外力更难统一定性。如此的差异下,企望哲人们找到统一的、万无一失的处世良方实在勉为其难。不过,每个人如果都能给自己多一点时间,去思考一下适合于自身的结构体系,想必这世界会有另一番光景。 2、多道防线 安全的结构体系是层层设防的,灾难来临,所有抵抗外力的结构都在通力合作,前仆后继。这时候,如果把“生存”的希望全部寄托在某个单一的构件上,是非常非常危险的。多肢墙比单片墙好,框架剪力墙比纯框架好等等,就是体现了多道防线的设计思路。也许我们会自信计算的正确性,但更要牢记绝对安全的防备构件是不存在的,还是应该多多考虑:当第一道防线跨了,

塑胶产品结构设计要点

塑胶产品结构设计要点 1.胶厚(胶位):塑胶产品的胶厚(整体外壳)通常在0.80-3.00左右,太厚容易缩水和产生汽泡,太薄难走满胶,大型的产品胶厚取厚一点,小的产品取薄一点,一般产品取1.0-2.0为多。而且胶位要尽可能的均匀,在不得已的情况下,局部地方可适当的厚一点或薄一点,但需渐变不可突变,要以不缩水和能走满胶为原则,一般塑料胶厚小于0.3时就很难走胶,但软胶类和橡胶在0.2-0.3的胶厚时也能走满胶。 2.加强筋(骨位):塑胶产品大部分都有加强筋,因加强筋在不增加产品整体胶厚的情况下可以大大增加其整体强度,对大型和受力的产品尤其有用,同时还能防止产品变形。加强筋的厚度通常取整体胶厚的0.5-0.7倍,如大于0.7倍则容易缩水。加强筋的高度较大时则要做0.5-1的斜度(因其出模阻力大),高度较矮时可不做斜度。 3.脱模斜度:塑料产品都要做脱模斜度,但高度较浅的(如一块平板)和有特殊要求的除外(但当侧壁较大而又没出模斜度时需做行位)。出模斜度通常为1-5度,常取2度左右,具体要根据产品大小、高度、形状而定,以能顺利脱模和不影响使用功能为原则。产品的前模斜度通常要比后模的斜度大0.5度为宜,以便产品开模事时能留在后模。通常枕位、插穿、碰穿等地方均需做斜度,其上下断差(即大端尺寸与小端尺寸之差)单边要大于0.1以上。 4.圆角(R角):塑胶产品除特殊要求指定要锐边的地方外,在棱边处通常都要做圆角,以便减小应力集中、利于塑胶的流动和容易脱模。最小R通常大于0.3,因太小的R模具上很难做到。 5.孔:从利于模具加工方面的角度考虑,孔最好做成形状规则简单的圆孔,尽可能不要做成复杂的异型孔,孔径不宜太小,孔深与孔径比不宜太大,因细而长的模具型心容易断、变形。孔与产品外边缘的距离最好要大于1.5倍孔径,孔与孔之间的距离最好要大于2倍的孔径,以便产品有必要的强度。与模具开模方向平行的孔在模具上通常上是用型心(可镶、可延伸留)或碰穿、插穿成型,与模具开模方向不平行的孔通常要做行位或斜顶,在不影响产品使用和装配的前提下,产品侧壁的孔在可能的情况下也应尽量做成能用碰穿、插穿成型的孔。 6.凸台(BOSS):凸台通常用于两个塑胶产品的轴-孔形式的配合,或自攻螺丝的装配。当BOSS不是很高而在模具上又是用司筒顶出时,其可不用做斜度。当BOSS很高时,通常在其外侧加做十字肋(筋),该十字肋通常要做1-2度的斜度,BOSS看情况也要做斜度。当BOSS和柱子(或另一BOSS)配合时,其配合间隙通常取单边0.05-0.10的装配间隙,以便适合各BOSS加工时产生的位置误差。当BOSS用于自攻螺丝的装配时,其内孔要比自攻螺丝的螺径单边小0.1-0.2,以便螺钉能锁紧。如用M3.0的自攻螺丝装配时,BOSS的内孔通常做Ф2.60-2.80。 7.嵌件:把已经存在的金属件或塑胶件放在模具内再次成型时,该已经存在的部件叫嵌件。当塑胶产品设计有嵌件时,要考虑嵌件在模具内必须能完全、准确、可靠的定位,还要考虑嵌件必须与成型部分连接牢固,当包胶太薄时则不容易牢固。还要考虑不能漏胶。 8.产品表面纹面:塑料产品的表面可以是光滑面(模具表面省光)、火花纹(模具型腔用铜工放电加工形成)、各种图案的蚀纹面(晒纹面)和雕刻面。当纹面的深度深、数量多时,其出模阻力大,要相应的加大脱模斜度。

机械结构设计规范.

机械结构设计规范 机械设计规范 目录 1.标准件设计准则 2.薄板件设计准则 3.防腐蚀设计准则 4.公差设计准则 5.焊接件设计准则 6.可靠性设计准则 7.力学原理设计准则 8.便于切削设计准则 9.热应力设计准则 10.塑胶件设计准则 11.系统要求设计准则 12.运动部件设计准则 13.轴支撑设计准则 14.铸件设计准则 15.便于装配设计准则 第一章标准件设计准则 1.1 优选器件准则 建立《优选器件清单》; 制定清单中增加物料的控制流程;

通过流程控制物料种类和规格。 1.2 标准件种类最少准则 标准件种类不超过___种 单一种类中规格不超过___种 1.3 非标件慎用准则 自行设计和非标螺钉慎用; 若不可避免,考虑系列产品公用的设计 1.4 相同装配相同标准件准则 相同装配要求用相同的标准件。 1.5 腐蚀环境材料同质准则 在腐蚀性环境下工作的设备,标准件材料与构件材质须相同,如不同,标准件加套管等隔离防护措施,避免腐蚀。 1.6 外部螺钉特征一致准则 外部螺钉型号、颜色一致 1.7 明显差异或完全相同准则 用到的标准件,要么有明显差异,要么完全相同, 有明显差异是为了防止装错,完全相同是为了维修过程的互换性。 检查:维修过程重装时,应没有螺钉装错依然能够装上的情况, 并分析螺钉装错不会造成事故。 第二章:薄板件设计准则 2.1 薄板翻边准则 薄板(≤0.8mm)的零件,安装螺钉过孔位应有折边。 2.2 薄板零件禁攻丝准则 薄板(≤0.8mm)的零件禁止翻边攻丝 2.3 薄板件判定标准

确认是否有薄板件,判定标准:板厚和其长度相比小得多的钢板,特点是横向抗弯能力差包括三个加工工艺: 1下料包括剪切和冲裁; 2成形包括弯曲、折叠、卷边和深拉; 3连接包括焊接和粘接。 2.4 形状简单准则 用直线、圆形等简单形状,便于加工 2.5 节省材料准则 明确了解所选用材料的原材料形状 形状设计考虑加工时的自拼接,减少 下脚料,尤其是批量大时, 解决方法: 1下料排列方法优化; 2下脚料再利用 选用材料的原材料形状?

相关文档