文档库 最新最全的文档下载
当前位置:文档库 › 儒歇定理

儒歇定理

儒歇定理

儒歇定理

1、求方程04337227=+-+z z z 在z <1内根的个数

2、函数12)(37+-=z z z f 在z <2内有多少个零点?

3、证明有届函数)(z f 必为常数

差压变送器工作原理及常见故障分析

差压变送器工作原理及常见故障分析 差压变送器工作原理及常见故障分析 差压变送器在工业自动化生产中对压力、压差流量的测最应用愈见广泛,生产中遇到的问题也越来越多,故障的及时判定分析和处理,对正在进行的生产来说是至关重要的。本文介绍日常维护中的经验和故障判定分析方法,供参考。 一、差压变送器工作原理 来自双侧导压管的差压直接作用于变送器传感器双侧隔离膜片上,通过膜片内的密封液传导至洲量元件上,测最元件将测得的差压信号转换为与之对应的电信号传递给转换器,经过放大等处理变为标准电信号输出。差压变送器的几种应用测最方式: 1 .与节流元件相结合,利用节流元件的前后产生的差压值测量液体流量. 2 .利用液体自身重力产生的压力差,测是液体的高度。 3 .直接测量不同管道、魄休液体的压力差值。 二、差压变送器故障诊断方法 除了回顾故障发生前的打火、冒烟、异味、供电变化、雷击、潮湿、误操作、误维修等情况;以及观察回路的外部损伤、导压管的泄漏,回路的过热,供电开关状态等现象外,还应通过检测来诊断故障。 1 .断路检侧:将怀疑有故障的部分与其他部分分割开来,查看故障是否消失,如果消失,则可确定故障在此处。否则可进行下一步查找,如:智能差压变送器不能正常Ha 性远程通讯,可将电源从仪表本体中断开 用现场另加电源的方法为变送器通电进行通讯,以查看是否叠加有约Zk - HZ 的电磁信号而干扰通讯。 2 .短接检测:在保证安全的情况下,将相关部分回路直接短接,如:差压变送器输出值偏小,可将导压管断开,从一次取压阀外将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路有无堵、漏及连通性。 3 .替换检测:更换怀疑有故障的部分,判断故障部位。如:怀疑变送器电路板发生故障,可临时更换一块,以确定原因。 4 .分部检侧:将测皿回路分割成几个部分(如:供电电源、信号输出、信号变送、信号检测),按各部分分别检查,由简至繁,由表及里,缩小范围,找出故障位置。 三、常见故障检修 1 .输出过大的可能原因和解决方法: ( l )导压管。检查导压管是否泄漏或堵塞;检查截止阀是否全开;检查气体导压管内是否有液体,液体导压管内是否有气休;检查变送器压力容室内有无沉积物. ( 2 )变送器的电气连接。检查变送器的传感器组件连接情况.保证接插件接触处清洁;检查8 号插针是否可靠接表壳地. . ( 3 )变送器电路故障。用备用电路板代换检查、判断有故障的电路板及更换有故障的电路板. ( 4 )检查电源的输出是否符合所需的电压值. 2 .输出过小或无输出的可能原因和解决方法: ( 1 )导压管。检查导压管是否泄漏或堵塞;检查液体导压管内是否有气体;检查变送器压力容室内有无沉积物;检查截止阀是否开全,平衡阀是否关严。 ( 2 )变送器的电气连接。检查变送器传感器组件的引出线是否短接;保证接插件接触处清洁;检查各调节螺钉是否在控制范围内。

第二章 基本原理和定理

第2章基本原理和定理 2.1亥姆霍兹定理 亥姆霍兹定理:任一个矢量场由其散度、旋度以及边界条件所确定,都可以表示为一个标量函数的梯度与一个矢量函数的旋度之和。 定理指出,由于闭合面S 保卫的体积V 中任一点R 处的矢量场Fr 可分为用一标量函数的梯度小时的无旋场和用另一个适量函数的旋度表示的无散场两部分,即为 F A Φ=-?+?? 而式中的变量函数和适量函数分别于体积V 中矢量场的散度源和旋度源,以及闭合面S 上矢量场的法向分量和切向分量。 1()1()d d 44V S V Φπ π''''???''= -''--??F r n F r S r r r r 1()1()d d 44V S V π π''''???''= -''--??F r n F r A S r r r r 2.2唯一性定理 惟一性定理:给定区域V 内的源(ρ、J )分布的和场的初始条件以及区域V 的边界 S 上场的边界条件,则区域V 内的场分布是惟一的。 场、源;范围 —— 时间间隔、空间区域; 条件 —— 初始条件、边界条件。 有惟一解的条件: (1)区域内源分布是确定的(有源或无源),与区域外的 源分布无关; (2)初始时刻区域内的场分布是确定的; (3)边界面上或是确定的。

重要意义: (1)指出了获得惟一解所需给定的条件; (2)为各种求解场分布的方法提供了理论依据。 2.3镜像原理 镜像原理:等效源(镜像源)替代边界面的影响边值问题转换为无界空间问题;理论基础:惟一性定理 2.4等效原理 等效原理是基于唯一性定理建立的电磁场理论的另一个重要原理。考察某一有界区域,如果该去云内的源分布不变,而在该区域之外有不同分布的源,只要在该区域的边界上同时满足同样的边界条件,根据唯一性定理,就可以在该规定区域内产生同样的场分布。也就是说,在该区域外的这两种源的另一种源是另一种源的等效源。 基本思想:等效源替代真实源; 理论基础:惟一性定理。 1. 拉芙(Love)等效原理 将区域V1内的源和用分界面S上的等效源和来替代,且将区域V1内的场设为零,则区域V2内的场不会改变。 2Schelknoff 等效原理 (1)电壁+磁流源 在紧贴分界面S的内侧设置电壁,则 J不产生辐射场,区域内V2 的场由 S J产生。 2m S (2)磁壁+电流源 在紧贴分界面S的内侧设置电壁,则m J不产生辐射场,区域内V2 的场由 S J产生。 2 S

综合除法与余数定理

学科:奥数 教学内容:综合除法与余数定理 【内容综述】 数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。 【要点讲解】 1、综合除法 在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可 以推得 (此处用表示关于x 的多项式)除以的商式系数和余数有如下 规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数乘以 b 加的第二项系数得商式的次高次项系数,以此类推最后得余数。 ★例1 计算() 分析 把除式变成形式用综合除法, 解:, ∴商式为,余式为-38 说明用综合除法计算时要注意: (1)被除式与除式按降幂排列后的缺项要用0补足; (2 )除式要变成的形式(b可以是负数) ★★例2 用综合除法计算 (1 ); (2 ) 解:(1 ) ∴商式为,余式为-3 (2 )用 除 ,只需先以 除, 再把求得的商用2除,而余数不变。

∴商式为,余式为。 说明一般地,多项式除以一次二项式,用综合除法先将多项式除以, 所得的商式除以p就是所求的商式,所得的余数就是所求的余数。 2、余数定理 若多项式f(x)除以的商式为p(x),余数为r,则 当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。 余数定理多项式除以()所得的余数等于。 特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。 由余数定理易知多项式除以的余数就是的多项式 的值。 余数定理告诉我们,可以不做除法求除以的余数;反过来在计算 复杂时也可以用综合法求。 ★★★例3 一个关于x的二次多项式,它被除余2,它被除时 余28,它还可被整除,求。 解:设由题意得 解得a=3,b=1,c=2。 ∴ 说明因能被整除,所以是的因式,于是可设 ,再由,,列出a,b的方程求解。 ★★★★例4 利用余数定理判断能否被a-b,a+b整除。 分析含,即把看成是含字母a的多项式,要判断 能否被a-b,a+b整除,即判断,是否为零。 解:令= 当a=b时,,故能被a-b整除;

压力变送器的工作原理

压力变送器的工作原理 压力变送器的工作原理 压力变送器主要由测压元件传感器(也称作压力传感器)、放大电路和支持结构件三类组成。它能将测压元件传感器测量到的气体、液体等物理压力参数变化转换成电信号(如4~20mA等),以提供指示报警仪、记载仪、调理器等二次仪表进行显示、指示和调整。 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转换为成4~20mA 信号输出。 压差变送器也称差压变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力差信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 差压变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPA)和微差压变送器(0~30kPa)两种。 差压变送器的测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的 电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力传感器工作原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式

变送器的工作原理

常见变送器的工作原理 常见变送器的工作原理 作者:未知 文章来源:网络 点击数: 463 更新时间:2009-5-7 传感器和变送器在仪器、仪表和工业自动化领域中起着举足轻重的作用。与传感器不同,变送器除了能将非电量转换成可测量的电量外,一般还具有一定的放大作用。本文简单地介绍了各类变送器的特点,以供使用者选用。 一、一体化温度变送器 一体化温度变送器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。一体化温度变送器一般分为热电阻和热电偶型两种类型。 热电阻温度变送器是由基准单元、R/V 转换单元、线性电路、反接保护、限流保护、V/I 转换单元等组成。测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I 转换电路后输出一个与被测温度成线性关系的4~20mA 的恒流信号。 热电偶温度变送器一般由基准源、冷端补偿、放大单元、线性化处理、V/I 转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,最后放大转换为4~20mA 电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。当热电偶断丝或接解不良时,变送器会输出最大值(28mA )以使仪表切断电源。 一体化温度变送器具有结构简单、节省引线、输出信号大、抗干扰能力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。 一体化温度变送器的输出为统一的4~20mA 信号;可与微机系统或其它常规仪表匹配使用。也可用户要求做成防爆型或防火型测量仪表。 二、压力变送器 压力变送器也称差变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 压力变送器的测量原理图如图3所示。其测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm 级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV 级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV 级的电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力变送器根据测压范围可分成一般压力变送器(0.001MPa ~20MP3)和微差压变送器(0~30kPa )两种。 三、液位变送器 1、浮球式液位变送器 浮球式液位变送器由磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成。

综合除法与余数定理

综合除法与余数定理Revised on November 25, 2020

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。

(2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式,但一次项系数不是1,能不能利用综合除法计算呢 例2、求)23()1623103(23-÷+-+x x x x 的商式Q 和余式R 。 解:把除式缩小3倍,那么商就扩大3倍,但余式不变。因此先用3 2-x 去除被除式,再把所得的商缩小3倍即可。 ∴Q=542-+x x , R=6。 下面我们将综合除法做进一步的推广,使除式为二次或者二次以上的多项式时也能够利用综合除法来求商和余式。

压力变送器的原理安装和使用

压力变送器的原理安装和 使用 This model paper was revised by the Standardization Office on December 10, 2020

压力变送器的安装及使用 压力是重要的工业参数之一, 正确测量和控制压力对保证生产工艺过程的安全性和经济性有重要意义。压力及差压的测量还广泛地应用在流量和液位的测量中。压力变送器的任务是将检测出来的非电量(物理量)大小转换为相应的电信号,传输到显示仪表中进行监视和控制,将非电量转换为电量的方法有: 1电容式压力变送器 2扩散硅压阻变送器 3电感式变送器 4振弦式变送器 20世纪80年代中末期,国内开始引进国外生产的压力变送器,主要是非智能的,在选购变送器时,要根据生产工艺过程的不同压力检测点的压力,来选择不同压力变送器的量程,由于被测压力点数量多,订货时,所定压力变送器的规格多,同时,在备件上造成很大的资金积压。由于早期的压力变送器没有微处理器进行各种性能的补偿,容易受到环境的影响,造成仪表的漂移和测量不准确。 美国霍尼韦尔(HONEYWELL)公司于1983年独家率先向全世界推出智能化现场仪表ST3000 100系列全智能压力变送器,这是对传统现场仪表的一次深刻变革!它为工业自动化仪表及其系统应用,向更高层次的发展奠定了基础,全智能变送器的问世,开创了现场仪表的新纪元。 美国霍尼韦尔公司在92年4月向中国推出了ST3000/900系列全智能变送器,它具有数字式全智能变送器的全部优越性能,而价格接近传统模拟式常规变送器。97年底,霍尼韦尔公司又推出可测高温的压力变送器,现场环境温度最高可达150℃。通过使用专用的手操器,可以对运行中的变送器进行零点、量程、变送器的工作温度、使用单位等很多参

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

压力和差压变送器详细使用说明

压力和差压变送器详细使用说明 (一)差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。 图1.1 测量转换电路 图1.2 差动电容结构 差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。中心可动极板与两侧固定极板构成两个平面型电容H C和L C。可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 (1)表压压力变送器的方向 低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 (2)电气接线 ①拆下标记“FIELD TERMINALS”电子外壳。 ②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果,为了保证正确通讯,应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 (3)电子室旋转 电子室可以旋转以便数字显示位于最好的观察位置。旋转时,先松开壳体旋转固定螺钉。 3. 投运和零点校验

7.综合除法与余数定理

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 41264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同 -7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面, 同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

压力变送器工作原理

罗斯蒙特3051 智能型压力变送器 工作原理 工作时,高、低压侧的隔离膜片和灌充液将过程压力传递给中心的灌充液,中心灌充液将压力传递到δ- 室传感器中心的传感膜片上。传感膜片是一个张紧的弹性元件,其位移随所受压差而变化(对于GP表压变送器,大气压力如同施加传感膜片的低压则一样,AP绝压变送器低压侧始终保持一个参考电压)。传感膜片的最大位移量为0.004英寸(0.10毫米)且位移量与压力成正比,两侧的电容极板检测传感膜片的位置。传感膜片和电容极板之间的电容的差值被转换成相应的电流,电压或数字HATR输出信号。 线路板模块 变送器线路板模块采用专用集成电路(ASICS)和表面封装技术。 线路块接收来自传感器膜头的数字信号和修正系数后,对信号进行修正和显性化。线路板模块的输出部分将数字信号转换成一个模拟信号输出,并可与HATR手操器通讯。可选的夜晶表头插入线路板上,可

显示以压力工程单位或百分比为单位的数字输出。夜晶表头适用于标准变送器和低功耗变送器。 数据组态 组态数据存贮在变送器线路板上的永久性EEPROM存贮器中。变送器断电数据仍能保存,因此变送器一通电力可以工作。 数/模转换和信号传送 过程变量以数字方式存贮,可进行精确的修正和工程单位转换,之后经修正的数据被转换成一个模拟输出信号。HATR手操器存取传感器的数字信号,而不需要数/模转换从而达到更高精度。 通讯模式 1151型智能变送器采用HATR协议通讯,该协议采用工业标准bell202频移键控(FSK)技术,将一个高频信号叠加在电流输出信号上实现远程通讯。而不影响回路的一致性。 软件功能 HATR协议使用户很容易对1151智能型压力变送器进行组态,测试和具体设置。 组态 1151智能型可以很容易地用HATR手操器进行组态。组态包括两个方面。第一,对变送器可操作参数的设置,包括设置:·零点和量程设置点 ·线性或平方根输出 ·阻尼

综合除法与余数定理修订版

综合除法与余数定理修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是 )(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++-

∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。

电磁感应解题技巧及练习

基础回顾 (一)法拉弟电磁感应定律 1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比 E =n ΔΦ/Δt (普适公式) 当导体切割磁感线运动时,其感应电动势计算公式为E =BLVsin α 2、E =n ΔΦ/Δt 与E =BLVsin α的选用 ①E =n ΔΦ/Δt 计算的是Δt 时间内的平均电动势,一般有两种特殊求法 ΔΦ/Δt=B ΔS/Δt 即B 不变 ΔΦ/Δt=S ΔB/Δt 即S 不变 ② E =BLVsin α可计算平均动势,也可计算瞬时电动势。 ③直导线在磁场中转动时,导体上各点速度不一样,可用 V 平=ω(R 1+R 2)/2代入也可用E =n ΔΦ/Δt 间接求得出 E =BL 2 ω/2(L 为导体长度, ω为角速度。) (二)电磁感应的综合问题 一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E 和r 。再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。然后进行“力”的分析--------要分析力学研究对象( 如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。 【常见题型分析】 题型一 楞次定律、右手定则的简单应用 例题(2006、广东)如图所示,用一根长为L 、质量不计的细杆与一个上弧长为L 0 、下弧长为d 0 的金属线框的中点连接并悬挂于o 点,悬点正下方存在一个弧长为2 L 0、下弧长为2 d 0、方向垂直纸面向里的匀强磁场,且d 0 远小于L 先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是 A 、金属线框进入磁场时感应电流的方向为a →b →c →d → B 、金属线框离开磁场时感应电流的方向a →d →c →b → C 、金属线框d c 边进入磁场与ab 边离开磁场的速度大小总是相等 D 、金属线框最终将在磁场内做简谐运动。 题型二 法拉第电磁感应定律的简单应用 例题(2000、上海卷)如图所示,固定于水平桌面上的金属框架cdef ,处在坚直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动,此时abcd 构成一个边长为L的正方形,棒的电阻力为r ,其余部分电阻不计,开始时磁感强度为B 。 (1)若从t=0时刻起,磁感强度均匀增加,每秒增量为K ,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的方向。 (2)在(1)情况中,始终保持棒静止,当t=t 1 秒未时需加的垂直于棒的水平拉力为多大? (3)若从t=0时刻起,磁感强度逐渐减小,当棒以速度v 向右做匀速运动时,若使棒中不产生感应电流,则磁感强度怎样随时间变化(写出B 与t 的关系式)? d a c B 0 e b f

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

综合除法与余数定理含答案

综合除法与余数定理 数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。 1、综合除法 在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可 以推得(此处用表示关于x的多项式)除以的商式系数和余数有如 下规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数 乘以b加的第二项系数得商式的次高次项系数,以此类推最后得余数。 例1 计算() 分析把除式变成形式用综合除法, 解:, ∴商式为,余式为-38 说明用综合除法计算时要注意: (1)被除式与除式按降幂排列后的缺项要用0补足; (2)除式要变成的形式(b可以是负数) 例2用综合除法计算 (1); (2) 解:(1) ∴商式为,余式为-3 (2)用除,只需先以除,再把求得的商用2除,而余数不变。

∴商式为,余式为。 说明一般地,多项式除以一次二项式,用综合除法先将多项式除以 ,所得的商式除以p就是所求的商式,所得的余数就是所求的余数。 2、余数定理 若多项式f(x)除以的商式为p(x),余数为r,则 当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。 余数定理多项式除以()所得的余数等于。 特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。 由余数定理易知多项式除以的余数就是的多项式 的值。 余数定理告诉我们,可以不做除法求除以的余数;反过来在计算 复杂时也可以用综合法求。 例3一个关于x的二次多项式,它被除余2,它被除时余28, 它还可被整除,求。 解:设由题意得 解得 a=3,b=1,c=2。 ∴ 说明因能被整除,所以是的因式,于是可设 ,再由,,列出a,b的方程求解。 例4利用余数定理判断能否被a-b,a+b整除。 分析含,即把看成是含字母a的多项式,要判断 能否被a-b,a+b整除,即判断,是否为零。

传感器原理及应用复习(简答题)

一.简答题(40分) 1.传感器的基本概念及基本功能? 传感器就是借助于检测元件(敏感元件)接受一定形式的信息,并按一定的规律将它转换成另一种信息的装置。它获取的信息,可以是各种物理量、化学量和生物量,而转化后的信息也有各种形式。目前,将传感器接收到的信息转化为电信号是最常用的一种形式(电信号包括电压,电流及频率信号) 基本功能:信息收集,信号数据的转换 2.传感器的基本组成并说出每部分的功能? 传感器通常是由敏感元件,转换元件和调节转换电路三部分组成 其中敏感元件是指传感器中能够直接感受或响应被测量的部分;转换元件是指传感器中能够将敏感元件感受或响应的被测量转换成电信号的部分;调节转换电路是指将非适合电量进一步转换成适合电量的部分。 3.传感器的发展趋势? 1新特性(努力实现传感器的新特性) 2可靠性(确保传感器的可靠性,延长其使用寿命) 3集成智能(体感传感器的集成化和智能化程度) 4微型(传感器微型化) 5仿生(发展仿生物传感器)

6新材料(新型功能材料开发) 7多融合(多传感器信息融合) 4.按被测量的不同传感器可以分为哪几类? 1按感知外界信息基本效应不同分为物理传感器,化学传感器,和生物传感器等 2按被测量不同分为力学量/热量/液体成分/气体成分/真空/光/磁/离子/放射线传感器等 2按敏感材料不同分为金属/半导体/光纤/陶瓷/高分子材料/复合材料传感器等 3按工作原理不同分为应变式/电感式/电容式/压电式/磁电式/光电式/热电式/气敏/湿敏传感器等 5.传感器的特性及其概念? 6.传感器的静态特性包括那几个重要指标? 传感器的特性是指传感器的输入量和输出量之间的对应关系。通常分为 静态特性:输入不随时间变化而变化的特性(重要指标包括线性度、灵敏度、重复性、迟滞、零点漂移、温度漂移等) 动态特性:输入随时间变化而变化的特性(可从时域和频率方面即对应阶跃响应法和频率响应法方面分析) 7..电感式传感器的概念及每类传感器的基本概念? 1应变式传感器:基于电阻应变片的应变效应(对半导体应变片而言为压阻效应)。 2电感式传感器:基于电磁感应原理,利用磁路磁阻变化引起传感器线圈的电感(自感系数或互感系数)变化来检测非电量的一种机电转换装置。常见有自感式,互感式,涡流式等。 3电容式传感器:可以把某些非电量的变化通过一个可变电容器转换成电容量变化的装置。常见有变极距型,变面积型,变介质型。 4压电式传感器:基于压电材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量原理。压电式传感器是典型的有源传感器,常见有单向力,双向力,三向力。 5磁电式传感器:利用电磁感应原理将运动速度转换成感应电动势输出的传感器。又称感应式或电动式

综合除法(1)

综合除法与余数定理 一、知识提要与典型例题 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 (一)、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数 826322 4 1264414072++--+--++-444344421 ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。

最新综合除法与余数定理

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

相关文档
相关文档 最新文档