文档库 最新最全的文档下载
当前位置:文档库 › 如何绘制状态图

如何绘制状态图

如何绘制状态图
如何绘制状态图

学习绘制状态图

?状态和状态机

状态、状态表示法及状态机

?状态是指在对象生命周期中满足某些条件、执行某些活动或等待某些事件的一个条件和状况

?一个状态通常包括名称、进入/退出活动、内部转换、子状态和延迟事件等五个部分组成

?状态机是计算机科学理论的一部分,但UML中的状态机模型主要是基于David Harel所做的扩展,

是用来展示状态与状态之间转换的图

?如何阅读状态机图

阅读最简单的状态图

?最为核心的元素无外乎是两个:一个是用圆角矩形表示的状态(初态和终态例外);另一个则是

在状态之间的、包含一些文字描述的有向箭头线,这些箭头线称为转换

转换的五要素

?源状态:即受转换影响的状态

?目标状态:当转换完成后对象的状态

?触发事件:用来为转换定义一个事件,包括调用、改变、信号、时间四类事件

?监护条件:布尔表达式,决定是否激活转换、

?动作:转换激活时的操作

读图小结

?与状态off相关的转换有两个,其触发事件都是turnOn,只不过其监护条件不同。如果对象收到事件turnOn,

那么将判断壶中是否有水;如果[没水],则仍然处于off状态;如果[有水]则转为on状态,并执行“烧水”动作

?而与状态on相关的转换也有两个,如果“水开了”就执行turnOff,关掉开关;如果烧坏了,就进入了终态了

复杂转换

转换类型

描述

语法

外部转换

对事件做出响应,引起状态变化或自身转换,同时引发一个特定动作,如果离开或进入状态将引发进入转换、离开转换

事件(参数)[监护条件]/动作

内部转换

对事件做出响应,并执行一个特定的活动,但并不引起状态变化或进入转换、离开转换事件(参数)[监护条件]/动作

进入转换

当进入某一状态时,执行相应活动

entry/活动

退出转换

当离开某一状态时,执行相应活动

exit/活动

阅读带有复杂转换的状态图

只有动作描述,进入和退出和操作方法写在了里面

各种转换的区别

?进入和退出转换:当进入一个状态时,执行某个动作;或当退出某个状态时,执行什么动作。这时就可以使

用进入和退出转换来表示

?内部转换:用来处理一些不离开该状态的事件

活动与延迟事件

?活动:当对象处于一个状态时,它一般是空闲的,在等待一个事件的发生。但是某些时间,你可能希望描

述个正在进行的活动。在处于一个状态的同时,对象做着某些工作,并一直继续到被某个事件中断

?延迟事件:延迟事件是一种特殊的事件,它是指该事件不会触发状态的转换,当对象处于该状态时事件不

会丢失,但会被延迟执行。例如,当E-mail程序中正在发送第一封邮件时,用户下达发送第二封邮件执令就

会被延迟,但第一封邮件发送完成后,这封邮件就会被发送。这种事件就属于延迟事件

复合状态表示法

分解指示符

顺序复合状态图

并发复合状态图

三种评测方式

历史

?“一个圆圈中加上字母H”,是用来表示历史状态的。

它的含义是:当从状态“结账”和“显示购物车”返回子状态“显示索引信息”时,将进入

的是离开时的历史状态。

也就是说,转到购物车或结账区之后,再回到“浏览目录”的页面时,其中的内容是不变的,

仍然保留原来的信息。

子状态机

?将子状态机单独定义,并对其进行命名(通常以大写字母开头),然后在需要使用的地方来引用它

引用C状态机

?如何绘制状态机图

绘制状态机图

?绘制状态机图的理想步骤是:寻找主要的状态,确定状态之间的转换,细化状态内的活动与转换,用复合状态来展开细节

?寻找主要状态:对于航班机票预订系统而言,显然包括的状态主要有

-- 在刚确定飞机计划时,显然是没有任何预订的,并且在有人预订机票之前都将处于这种“无预订”状态

-- 对订座而言显然有“部分预订”和“预订完”两种状态

-- 而当航班快要起飞时,显然要“预订关闭”

总结一下,主要有四种状态:无预订、部分预订、预订完以及预订关闭

?确定状态间转换

表格横向是转出

表格纵向是转入

源目标

无预订

部分预订

预订完

预订关闭

无预订

预订()

不直接转换

关闭()

部分预订

退订(),使预订人=0

预订(),无空座

关闭()

预订完

不直接转换

退订()

关闭()

预订关闭

无转换

无转换

无转换

?细化状态内的活动与转换

?使用复合状态

?状态机图应用说明

?对对象生命周期建模:主要描述对象能够响应的事件、对这些事件的响以及过去对当前行为的影响

?对反应型对象建模:这个对象可能处于的稳定状态、从一个状态到另一个状态之间的转换所需的触发事件,

以及每个状态改变时发生的动作

?状态机图既可以用来表示一个业务领域的知识,也可以用来描述设计阶段对象的状态变迁?本章小结

?首先介绍了“状态”的概念和UML表示法,然后引入了状态机的概念

?通过三个例子逐一说明简单状态机图、包含复杂转换的状态机图以及包含复合状态的状态机图的阅读方法,紧接着通过一个航班机票预订系统来阐述了状态图的绘制过程:确定状态,

分析状态间的转换,细化活动与内部转化,通过复合状态来组织

?简明地点出状态图的两大功能:对对象的生命周期建模以及对反应型对象的行为建模

检测质量控制图.doc

检测质量控制图 1 质量控制样的测量及参数计算 l.1 质量控制样的选用原则和要求 l.1.1 质量控制样的选用原则 (1)质量控制样的组成应尽量与所要分析的待测样品相似。 (2)质量控制样中待测参数应尽量与待测样品相近。 (3)如待测样品中待测参数值波动不大,则可采用一个位于其间的中等参数值的质量控制样,否则,应根据参数幅度采用两种以上参数水平的质量控制样。 l.1.2 对质量控制样的要求 (1)测量方法与待测样品相同。 (2)与待测样品同时进行测量。 (3)每次至少平行测量两次,测量结果的相对偏差不得大于标准测量方法中所规定的相对标准偏差(变异系数)的两倍,否则应重做。 (4)为建立质量控制图,至少需要积累质量控制样重复实验的20个数据,此项重复测量应在短期内陆续进行,例如每天测量平行质量控制样一次,而不应将20个重复实验的测量同时进行,一次完成。 (5)如果各次测量的时间隔较长,在此期间可能由于气温波动较大而影响测定结果,必要时可对质量控制样的测定值进行温度校正。

1.2测量数值的积累及参数的计算 l.2.1 测量数值的积累 当质量控制样的测量数据积累至20个以上时,即可按下列公式计算出总均值X、标准偏差s(此值不得大于标准测量方法中规定的相应参数水平的标准偏差值)、平均极差(或差距)R 等。 式中,X i和X为平行测量控制样的测量值和平均值。 l.2.2 质量控制图的参数的计算 各种类型的质量控制图的基本参数计算公式列入表1。表中给出的是3σ控制限的计算公式,有时用2σ控制限,因此使用时应注意二者的换算。 表1 质量控制图的参数计算公式 控制图类型中心线3σ控制限 平均值±A 1 或±A 2 标准偏差B 2(下)和 B 4(上) 极差D 3(下)和 D 4(上)

质量控制图的绘制及使用教学内容

质量控制图的绘制及使用[2,5,7] 根据误差为正态分布的原理,在统计学上X±1S占正态曲线下面积的68.26%,以此作为上辅助限和下辅助限;X±2S占总面积的95.45%,以此作为上警戒限和下警戒限;X±3S占总面积的99.73%,以此作为控制图的上控制限和下控制限(图21.2);超过3倍S的概率总共只占0.27%,以乃属于小概率事件,亦即同一总体中出现如此大偏差的概率极小,可以认为它不是这个总体中的一个随机样品,这个结论具有99.73%的把握是正确的。既然不能作为同一总体中的一个随机组成者,而在分析测试中是用同一分析方法,在相同条件下所测得的同一个样品(例如空白试验)的检测值,则必然发生了某种影响较大因素的作用,从而有根据否定这一测定值。 图21.2 质量控制图 图21.2中质量控制图的形式与正态曲线形式完全相同,即将正态曲线向逆时针方向旋转了90度,以正态曲线的中心m被X所代替,作为理想的预期测定值;将68.26%概率保证的置信区间作为目标值(即上、下辅助限之间的区域);以95.45%概率保证的置信区间作为可接受范围(即上、下警戒限之间的区域);将上、下警戒限至上、下控制限的区间作为可能存在“失控”倾向,应进行检查并采取相应的校正措施;在上、下控制限以外,则表示测定过程已失去控制,应立即停止检测,待查明原因加以纠正后对该批样品全部重新测定。 对于质量控制检查样品和实验室控制样品的控制图,是把算术平均值作为中心值统计。最初控制限制是用平均值的百分数表示,通常系列测定算术平均值±10%。然而,最少进行7个测定值后才能建立统计控制限度。警戒限度设在来自平均数(X)±2Sx (标准误,来自质量控制样品的95%);控制限度设在离平均数(X)±3 Sx应包含质量控制样品的99.7%)。 质量控制样品数据的5%将落在警戒限外面,如果两个连续测定值落在警戒限外面被认为是“失控”状态(Taylor, 1987)。由于99.7%的数据应该落在X±3Sx以内,控制限外面的点是最可能失控的,矫正活动是有根据的。例如,如果失控值是标准参考物质或其它质量控制样品,即这一批完整的分析样应重新测定。这可能需要对新的校正标准再分析、或要求通过完整的

实验室质量控制图制作过程

实验室质量控制图制作过程 1.1 质控血清的制备和保存(以ELISA试验检测HIV抗体为例) 在每次实验中必须包含有内部对照质控血清和外部对照质控血清。 内部对照质控血清指试剂盒内提供的阳性和阴性对照血清。内部对照是质量控制的基础。每一次检测必须使用内部对照,而且只能在同批号的试剂盒中使用。 外部对照质控血清是为了监控检测的重复性和稳定性以及试剂盒批间或孔间差异而由实验室设置的一套对照血清,包括强阳性、弱阳性和阴性对照血清。也可以只设置一个弱阳性对照,以该试剂盒临界值(Cut-off)的2?3倍为宜。 1.1.1 外部对照质控血清的制备 HIV抗体阳性和阴性血清,56℃ 30min灭活,3000r/min,离心15min。弱阳性对照可以用HIV抗体阴性血清梯度稀释HIV抗体强阳性血清并标定后得到。按一年使用量配制(可加入不影响检测结果的防腐剂)用0.2μm滤膜过滤除菌。 1.1.2 外部对照质控血清的保存 1.1. 2.1 按一周实验用量分装、分类、标记、封口、-20℃冻存于非自动除霜冰箱中。 1.1. 2.2 外部对照血清不可反复冻融,一旦融化后应该存放2?8℃,供一周内使用。 1.1.3 外部对照质控血清的使用 每一次实验必须使用外部对照质控血清,以便监控实验的重复性和稳定性。同时可以了解各批试剂盒的批间或孔间差异,绘制质量控制图。 1.1.4 外部对照质控物的质量要求 质控物的管间或瓶间变异必须小于监测系统预期的变异(cv<20%),并且质控物的成分应在稳定状态中。质控物应无菌,并不含有影响ELISA反应的防腐剂。 1.2 质控图的建立及应用(以ELISA试验检测HIV抗体为例) 最常用的质控图是Levey-Jennings质控图,使用累计和技术或趋势分析技术的图形可提供系统偏移和漂移的状况。 1.2.1 建立质控图参数 外部对照质控物的平均值和标准差应建立在实验室常规使用方法对质控物重复测定的基础上。一般采用在不同批次检测取得至少20个数据;如果仅做少量批次的检测,也至少做5个批次的检测,每个批次中不少于4个质控物测定结果,以建立一个临时性的平均

质量控制图的绘制及使用复习课程

质量控制图的绘制及 使用

质量控制图的绘制及使用[2,5,7] 根据误差为正态分布的原理,在统计学上X±1S占正态曲线下面积的68.26%,以此作为上辅助限和下辅助限;X±2S占总面积的95.45%,以此作为上警戒限和下警戒限;X±3S占总面积的99.73%,以此作为控制图的上控制限和下控制限(图21.2);超过3倍S的概率总共只占0.27%,以乃属于小概率事件,亦即同一总体中出现如此大偏差的概率极小,可以认为它不是这个总体中的一个随机样品,这个结论具有99.73%的把握是正确的。既然不能作为同一总体中的一个随机组成者,而在分析测试中是用同一分析方法,在相同条件下所测得的同一个样品(例如空白试验)的检测值,则必然发生了某种影响较大因素的作用,从而有根据否定这一测定值。 图21.2 质量控制图 图21.2中质量控制图的形式与正态曲线形式完全相同,即将正态曲线向逆时针方向旋转了90度,以正态曲线的中心m被X所代替,作为理想的预期测定

值;将68.26%概率保证的置信区间作为目标值(即上、下辅助限之间的区域);以95.45%概率保证的置信区间作为可接受范围(即上、下警戒限之间的区域);将上、下警戒限至上、下控制限的区间作为可能存在“失控”倾向,应进行检查并采取相应的校正措施;在上、下控制限以外,则表示测定过程已失去控制,应立即停止检测,待查明原因加以纠正后对该批样品全部重新测定。 对于质量控制检查样品和实验室控制样品的控制图,是把算术平均值作为中心值统计。最初控制限制是用平均值的百分数表示,通常系列测定算术平均值±1 0%。然而,最少进行7个测定值后才能建立统计控制限度。警戒限度设在来自平均数(X)±2Sx (标准误,来自质量控制样品的95%);控制限度设在离平均数(X)±3 Sx应包含质量控制样品的99.7%)。 质量控制样品数据的5%将落在警戒限外面,如果两个连续测定值落在警戒限外面被认为是“失控”状态(Taylor, 1987)。由于99.7%的数据应该落在X±3Sx以内,控制限外面的点是最可能失控的,矫正活动是有根据的。例如,如果失控值是标准参考物质或其它质量控制样品,即这一批完整的分析样应重新测定。这可能需要对新的校正标准再分析、或要求通过完整的制备方法采取新的测定部分。然而,如果失控结果是对连续标定检验(CCV),那么前面在控的实验室控制样品需要重测。通常这种状态是由于仪器漂移或其它决定时间特征的因素引起的。

控制图如何制作

控制图如何制作Last revision on 21 December 2020

控制图如何制作 控制图,是制造业实施品质管制中不可缺少的重要工具。它最早 是由美国贝尔电话实验室的休华特在1924年首先提出的,它通过设置 合理的控制界限,对引起品质异常的原因进行判定和分析,使工序处 于正常、稳定的状态。 控制图是按照3 Sigma 原理来设置控制限的,它将控制限设在X±3 Sigma 的位置上。在过程正常的情况下,大约有%的数据会落在 上下限之内。所以观察控制图的数据位置,就能了解过程情况有无变 化。 ?电脑 ?待解决问题 ?制作Xbar--R控制图,需要明确记录抽样数据的基本条件(机种、项目、生产线、规格标准、控制界限、抽样时间及日期、抽样频次等),在控制图的上方可开辟“基本条件记录区”以记录上述条件;另外抽样的数据及计算出的X和R值记录在控制图的下方区域,形成“抽样数据区”,最下方可作为“不良原因对策区”,这样就可形成一份完整的Xbar--R控制图。 二、控制图的轮廓线 控制图是画有控制界限的一种图表。如图 5-4所示。通过它可以看出质量变动的情况及趋势 , 以便找出影响质量变动的原因 , 然后予以解决。 图 5-4控制图 我们已经知道 :在正态分布的基本性质中 , 质量特性数据落在[μ±3]范围内的概率为 99. 73%, 落在界外的概率只有 0. 27%, 超过一侧的概率只有 0. 135%, 这是一个小概率事件。这个结论非常重要 , 控制图正是基于这个结论而产生出来的。

现在把带有μ±3线的正态分布曲线旋转到一定的位置 (即正态 分布曲线向右旋转 9,再翻 转 ) ,即得到了控制图的基本形式 , 再去掉正态分布的概率密度曲线 , 就得到了控制图的轮廓线 , 其演变过程如图 5-5所示。 图 5— 5控制图轮廓线的演变过程 通常 , 我们把上临界线 (图中的μ+3线 ) 称为控制上界 , 记为 U C L (U p p e r C o n t r o l L i m i t ) , 平均数 (图中的μ线 ) 称为中心线 , 记为 C L (C e n t r a l L i n e ) , 下临界线 (图中μ-3线 ) 称为控制下界 , 记为 L C L (L o w e r C o n t r o l L i m i t ) 。控制上界与控制下界统称为控 制界限。按规定抽取的样本值用点子按时间或批号顺序标在控制图中 , 称为描点或打点。各个点子之间用实线段连接起来 , 以便看出生产过程的变化趋势。若点子超出控制界限 , 我们认为生产过程有变化 , 就要告警。 三、两种错误和 3方式 从前面的论述中我们已知 , 如果产品质量波动服从正态分布 , 那么产品质量特性值落在μ土 3控制界限外的可能性是 0. 27%, 而落在一侧界限外的概率仅为 0. 135%。根据小概率事件在一次实验中不会发生的原理 ,若点子出界就可以判断生产有异常。可是 0. 27%这个概率数值虽然很小 , 但这类事件总还不是绝对不可能发生的。 当生产过程正常时 , 在纯粹出于偶然原因使点子出界的场合 , 我们根据点子出界而判断生产过程异常 , 就犯了错发警报的错误 , 或 称第一种错误。这种错误将造成虚惊一场、停机检查劳而无功、延误生产等损失。 为了减少第一种错误 , 可以把控制图的界限扩大。如果把控制界限扩大到μ±4, 则第一种错误发生的概率为 0. 006%, 这就可使由错发警报错误造成的损失减小。可是 , 由于把控制界限扩大 , 会增大另一种错误发生的可能性 , 即生产过程已经有了异常 , 产品质量分布偏离了原有的典型分布 , 但是总还有一部分产品的质量特性值在上下控制界限之内 , 参见图 5-6。 如果我们抽取到这样的产品进行检查 ,那么这时由于点子未出界而判断生产过程正常 , 就犯了漏发警报的错误 , 或称第二种错误。这种错误将造成不良品增加等损失。 图 5-6控制图的两种错误 要完全避免这两种错误是不可能的 , 一种错误减小 , 另一种错误就要增大 , 但是可以设法把两种错误造成的总损失降低到最低限度。也就是说 , 将两项损失之和是最小的地方 , 取为控制界限之所在。以μ±3为控制界限 , 在实际生产中广泛应用时 , 两种错误造成的 第7页 共7页 <上一页 预览: 总损失为最小。如图 5-7所示。这就是大多数控制图的控制界限都采用μ±3方式的理由。 图 5— 7两种错误总损失最小点 X—R控制图的操作步骤及应用示例

控制图如何制作修订稿

控制图如何制作 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

控制图如何制作 控制图,是制造业实施品质管制中不可缺少的重要工具。它最早 是由美国贝尔电话实验室的休华特在1924年首先提出的,它通过设置合理的控制界限,对引起品质异常的原因进行判定和分析,使工序处于正常、稳定的状态。 控制图是按照3 Sigma 原理来设置控制限的,它将控制限设在X±3 Sigma 的位置上。在过程正常的情况下,大约有%的数据会落在 上下限之内。所以观察控制图的数据位置,就能了解过程情况有无变化。

工具/原料 电脑 待解决问题 方法/步骤 1.1 确定抽样数目,平均值—极差控制图的抽样数目通常为每组2~6个。确定抽样次数,通常惯例是每班次20~25次数,最少20组,一般25组较合适,但要确保样本总数不少于50个单位。

2.2 确定级差、均值及均值、级差控制界限(通过公式计算)。 3.3 制作Xbar--R控制图。

4.4 分析控制图并对异常原因进行调查及对策;继续对生产过程进行下一生产日的抽样并绘制控制图,以实现对工程质量的连续监控。

END 注意事项 制作Xbar--R控制图,需要明确记录抽样数据的基本条件(机种、项目、生产线、规格标准、控制界限、抽样时间及日期、抽样频次等),在控制图的上方可开辟“基本条件记录区”以记录上述条件;另外抽样的数据及计算出的X和R值记录在控制图的下方区域,形成“抽样数据区”,最下方可作为“不良原因对策区”,这样就可形成一份完整的Xbar--R控制图。 二、控制图的轮廓线 第3页/(共6页)

实验四 控制图的制作和应用

实验四控制图的制作和应用 一、实验目的和要求 掌握Minitab软件用于绘制控制图的基本方法 二、实验环境 硬件:windows 操作系统的计算机 软件:Minitab16、Microsoft Word 2003 三、实验内容 您在汽车发动机组厂工作。部件之一的凸轮轴的长度必须为600mm+2mm 以满足工程规格。凸轮轴长度不符合规格是一个长期以来的问题,它引起装配时配合不良,导致废品率和返工率都居高不下。您的主管要求绘制Xbar-R控制图以监控此特征,于是您在一个月中从工厂使用的所有凸轮轴收集共100个观测值(20个样本,每个样本中5个凸轮轴),并从每个供应商处收集100个测量值。 其中一家供应商A的数据见下表所示,请绘制Xbar-R控制图。 2、若该特性值质量控制限为[5,15],特性均值标准为10,分析该过程的过程能力。(选作,素质较高学生可以根据自愿原则完成) 四、实验步骤 1、将上述按照表格形式数据输入到Minitab表格中,如下图所示。

2、选择菜单“数据>堆叠列>列”,对数据堆叠成一列。 3、按照上述内容进行设置,则可将所有的样本组数据堆叠成一列。 4、由于Xbar-R是计量型控制图,为保证结论的有效性,首先需要对数据的正态性进行检验。 5、选择菜单“统计>基本统计量>正态性检验”。 将“c22样本数据”选中“变量”后面的文本框中;正态性检验规则。选中“Anderson-Darling”。

6、点击“确定”按钮后,弹出概率图,如下所示。 软件会生成正太概率图并进行假设检验,以检查观测值是否服从正态分布。对于正态性检验,假设为: HO:数据服从正太分布与H1:数据不服从正太分布 查看上图中的“P值”可知数据是否满足正太分布。若P≤0.05,表示数据服从正太

实验四---控制图的制作和应用复习课程

实验四---控制图的制作和应用

实验四控制图的制作和应用 一、实验目的和要求 掌握Minitab软件用于绘制控制图的基本方法 二、实验环境 硬件:windows 操作系统的计算机 软件:Minitab16、Microsoft Word 2003 三、实验内容 您在汽车发动机组厂工作。部件之一的凸轮轴的长度必须为600mm+2mm 以满足工程规格。凸轮轴长度不符合规格是一个长期以来的问题,它引起装配时配合不良,导致废品率和返工率都居高不下。您的主管要求绘制Xbar-R控制图以监控此特征,于是您在一个月中从工厂使用的所有凸轮轴收集共100个观测值(20个样本,每个样本中5个凸轮轴),并从每个供应商处收集100个测量值。其中一家供应商A的数据见下表所示,请绘制Xbar-R控制图。 2、若该特性值质量控制限为[5,15],特性均值标准为10,分析该过程的过程能力。(选作,素质较高学生可以根据自愿原则完成) 四、实验步骤 1、将上述按照表格形式数据输入到Minitab表格中,如下图所示。

2、选择菜单“数据>堆叠列>列”,对数据堆叠成一列。 3、按照上述内容进行设置,则可将所有的样本组数据堆叠成一列。 4、由于Xbar-R是计量型控制图,为保证结论的有效性,首先需要对数据的正态性进行检验。 5、选择菜单“统计>基本统计量>正态性检验”。 将“c22样本数据”选中“变量”后面的文本框中;正态性检验规则。选中“Anderson-Darling”。

6、点击“确定”按钮后,弹出概率图,如下所示。 软件会生成正太概率图并进行假设检验,以检查观测值是否服从正态分布。对于正态性检验,假设为: HO:数据服从正太分布与H1:数据不服从正太分布

控制图如何制作

控制图如何制作 控制图,是制造业实施品质管制中不可缺少的重要工具。它最早 是由美国贝尔电话实验室的休华特在1924年首先提出的,它通过设置 合理的控制界限,对引起品质异常的原因进行判定和分析,使工序处 于正常、稳定的状态。 控制图是按照3 Sigma 原理来设置控制限的,它将控制限设在X±3 Sigma 的位置上。在过程正常的情况下,大约有99.73%的数据会落在上下限之内。所以观察控制图的数据位置,就能了解过程情况有无变化。

工具/原料 ?电脑 ?待解决问题 方法/步骤 1. 1 确定抽样数目,平均值—极差控制图的抽样数目通常为每组2~6个。 确定抽样次数,通常惯例是每班次20~25次数,最少20组,一般25 组较合适,但要确保样本总数不少于50个单位。 2. 2 确定级差、均值及均值、级差控制界限(通过公式计算)。 3. 3 制作Xbar--R控制图。

4. 4 分析控制图并对异常原因进行调查及对策;继续对生产过程进行下一生产日的抽样并绘制控制图,以实现对工程质量的连续监控。

END 注意事项 制作Xbar--R控制图,需要明确记录抽样数据的基本条件(机种、项目、生产线、规格标准、控制界限、抽样时间及日期、抽样频次等),在控制图的上方可开辟“基本条件记录区”以记录上述条件;另外抽样的数据及计算出的X和R值记录在控制图的下方区域,形成“抽样数据区”,最下方可作为“不良原因对策区”,这样就可形成一份完整的Xbar--R控制图。 二、控制图的轮廓线 第3页 /(共6页)

控制图是画有控制界限的一种图表。如图5-4所示。通过它可以看出质量变动的情况及趋势, 以便找出影响质量变动的原因, 然后予以解决。 图5-4控制图 我们已经知道:在正态分布的基本性质中, 质量特性数据落在[μ±3]范围内的概率为99. 73%, 落在 界外的概率只有0. 27%, 超过一侧的概率只有0. 135%, 这是一个小概率事件。这个结论非常重要, 控制图正是基于这个结论而产生出来的。 现在把带有μ±3线的正态分布曲线旋转到一定的位置(即正态 分布曲线向右旋转 9,再翻 转) ,即得到了控制图的基本形式, 再去掉正态分布的概率密度曲线, 就得到了控制图的轮廓线, 其演变过程如图5-5所示。 第4页 /(共6页) 图5— 5控制图轮廓线的演变过程 通常, 我们把上临界线(图中的μ+3线) 称为控制上界, 记为U C L (U p p e r C o n t r o l L i m i t ) , 平均数(图中的μ线) 称为中心线, 记为C L (C e n t r a l L i n e ) , 下临界线(图中μ-3线) 称为控制下界, 记为L C L (L o w e r C o n t r o l L i m i t ) 。控制上界与控制下界统称为控制界限。按规定抽取的样本值用点子按时

实验一用SPSS绘制质量控制图

实验一:用SPSS绘制质量控制图 控制图(Control Chart)又称管理图,它是用来区分是由异常原因引起的波动,还是由过程固有的原因引起的正常波动的一种有效的工具。控制图通过科学的区分正常波动和异常波动,对工序过程的质量波动性进行控制,并通过及时调整消除异常波动,使过程处于受控状态。不仅如此,通过比较工序改进以后的控制图,还可以确认此过程的质量改进效果。因此,控制图在质量管理中有着广泛的应用。 控制图由样本均值服从于正态分布演变而来。正态分布可用两个参数即均值μ和标准差σ来决定。正态分布有一个结论对质量管理很有用,即无论均值μ和标准差σ取何值,产品质量特性值落在μ±3σ之间的概率为99.73%,落在μ±3σ之外的概率为100%-99.73%= 0.27%,而超过一侧,即大于μ+3σ或小于μ-3σ的概率为0.27%/2=0.135%≈1‰,,休哈特就根据这一事实提出了控制图。图上有中心线(CL)、上控制限(UCL)和下控制限(LCL),并有按时间顺序抽取的样本统计量数值的描点序列。

多数情况下是通过人工来绘制控制图,首先通过计算器计算各种指标,然后再一步步地绘制控制图。在这个过程中,往往会出现计算错误或者误差过大等原因,使得最后的控制图达不到预期的效果,更为严重的是能使质量管理者产生错误的判断,做出错误的决策,从而产生较大的损失。也有的企业利用excel绘制控制图,从而提高其精确度,减少误差。然而,用excel绘制控制图的步骤比较繁杂,不容易掌握,容易在绘制过程中产生操作性失误,造成数据集的失真。 SPSS的图形工具非常强大,具有很强的统计分析功能。在质量数据管理中,经常要用到一些图形方法和工具,例如帕雷托图、直方图、散点图、控制图、序列图等,SPSS均可以有效地应用这些图形方法和工具来处理质量数据信息,这些功能集中在Graph菜单中。 因此,此处我们采用SPSS来绘制控制图。 SPSS控制图的选择依据(X-R或X-S和X-MR) 根据主要测量值分组变量的具体情况,可选择X-R、X-S,即均值-极差和均值-标准差控制图;或者选择X-MR,个体-移动均值控制图。 1、分组变量中有大于10个组值,宜于计算标准差,故选择X-S控制图。 2、分组变量中有小于10个组值,选择计算极差,即X-R控制图。 3、分组变量中只有1个组值,则选择个体-极差控制图,即X-MR控制图。 案例:个体-移动极差控制图 数据为某搅拌站实测混凝土坍落度数据,现在使用控制图看看工艺质量情况。

实验六 状态图建模

辽宁工程技术大学上机实验报告 实验名称实验六状态图建模 院系专业班级姓名学号日期 实验目的简述本次实验目的: 1.熟悉状态图的基本功能和使用方法。 2.掌握如何使用建模工具绘制状态图的方法。 实验准备 了解状态图建模中状态及状态之间转移和相应事件的确定,并对ROSE 2003中状态图的创建方法有了一定的了解。回忆课上的例子,结合实验内容分析。 实验 进度 本次共有 2 个练习,完成 2 个。 实验总结 通过这次实验,对状态图建模中状态及状态之间转移和相应事件的确定有了更深层次,更直观的感受,熟悉了状态图的基本功能和使用方法,掌握了绘制状态图的方法及步骤 教师 评语 成绩

实验六UML状态图建模 一、实验目的 1、熟悉状态图的基本功能和使用方法。 2、掌握如何使用建模工具绘制状态图的方法。 二、实验工具 工具:面向对象可视化建模工具Rational Rose 2003。 三、实验性质 本实验为设计性实验。 四、实验内容 1. 分析图书管理系统中的书的状态,画出状态图(参见实验步骤)。 2. 分析并绘制手机的状态图 手机开机后进入待机状态,可以拨号,进入拨号状态,拨号成功则接通,拨号不成功也可能呼叫失败;待机中也可能被呼叫而进入振铃状态,机主可以选择接听电话也可以拒绝接听。 五、实验步骤 1、分析 在图书管理系统中,分析书的状态如下: 1.可借 2.被借 3.被预约 4.删除 2、绘图步骤: 下面介绍在Rose2003中创建类和它们之间关系的过程: (1)在浏览器中右键单击“Logical View“选择“StateChart Diagram”,双击后出现图1,为编辑状态图做好准备。

实验室的质量控制

实验室的质量控制 作为出具检验报告的检测单位,认真做好实验室的质量控制是计量认证的一项重要的技术管理工作。现将实验室的质量控制要点做以下介绍。 一质量控制概述 1、分析质量控制与质量保证 分析质量控制,对于环境监测(包括室内空气质量检测)技术而言又可称谓环境分析质量控制或环境检测质量控制,简称“质量控制”。质量控制的目的是将分析误差控制在容许限度内,以保证数据(检验结果)在给定的置信水平内达到要求的质量。 环境分析质量保证是整个分析过程的全面质量管理。其内容包括:采样、样品前处理、贮存、运输、实验室供应,仪器设备、器皿的选择与校准,试剂、溶剂和基准物质的选用,统一测定方法,质量控制程序,数据的记录和整理(包括原始数据和检测数据),各类人员的要求和技术培训,实验室的环境条件(温度、湿度、压力、风速、清洁度)和安全,以及编写有关的文件(含检验报告)、指南和手册等。 环境分析质量控制是环境分析质量保证的一个部分。环境分析质量控制包括实验室内部质量控制和实验室外部质量控制两个部分。 2、实验室内部质量控制 (1)实验室内部质量控制简称“内部控制”。内部控制是实验室自我控制质量的常规程序,它能反映分析质量稳定性状况,以便及时发现分析中异常情况,随时采取相应的校正措施。 (2)内部控制包括的内容:①空白试验②标准曲线核查③仪器设备的定期检定④平行样分析⑤加标分析⑥比对试验⑦“盲样”(密码样

品)分析⑧编制质量控制图等。 (3)内部控制的精密度是指平行性和重复性的总和。 ①平行性是指在同一实验室中,同一分析人员、同一分析设备、同一分析时间,用同一分析方法对同一样品进行双样或多样平行测定结果之间的符合程度。 ②重复性是指在同一实验室内,当分析人员、分析设备和分析时间三个因素中至少有一项不相同时,用同一分析方法对同一样品进行双样或多样平行测定结果之间的符合程度。 3、实验室外部质量控制 (1)实验室外部质量控制简称“外部控制”。外部控制也称实验室间质量控制。外部控制实际是实验室间测定数据的对比试验。通过这项试验可以发现一些实验室内部不易核对的误差来源,如试剂的纯度,蒸馏水的质量等问题。经常进行这一工作可增加实验室间测定结果的可比性,提高实验室的检测水平。 (2)外部控制的方法。它是在各实验室完成了内部控制的基础上,由中心实验室(或协调实验室)给各实验室每年发一、两次“标准参考样品”,各实验室采用标准分析方法或统一方法对标准样品进行测定,并把测定结果上报中心实验室,由中心实验室负责对这些测定结果进行统计评价,然后将标准参考样品中各参数的“标准值”与统计结果回报给各实验室。通过这种不是“评价”的评价,使各实验室进行总结分析对照,可不断提高分析质量,提高检验结果的可比性。 (3)外部控制的精密度用再现性表示。通常用分析标准溶液的方法来确定。 再现性是指在不同实验室(分析人员、分析设备甚至分析时间都不相同),用同一分析方法对同一样品进行多次测定结果之间的符合程度。 二质量控制图

UML建模之状态图(Statechart Diagram)

状态图目录: 一、状态图简介(Brief introduction) 二、状态图元素(State Diagram Elements) 1、状态(States) 2、转移(Transitions) 3、动作(State Actions) 4、自身转移(Self-Transitions) 5、组合状态(Compound States) 6、进入节点(Entry Point) 7、退出节点(Exit Point) 8、历史状态(History States) 9、并发区域(Concurrent Regions) 三、状态图案例分析(State Diagram Example Analysis) 四、总结(Summary) 一、状态图简介(Brief introduction) 状态图(Statechart Diagram)主要用于描述一个对象在其生存期间的动态行为,表现为一个对象所经历的状态序列,引起状态转移的事件(Event),以及因状态转移而伴随的动作(Action)。一般可以用状态机对一个对象的生命周期建模,状态图用于显示状态机(State Machine Diagram),重点在与描述状态图的控制流。 如下图例子,状态机描述了门对象的生存期间的状态序列,引起转移的事件,以及因状态转移而伴随的动作(Action). 状态有Opened、Closed、Locked。 事件有Open、Close、Lock和Unlock。

注意: 1、并不是所有的事件都会引起状态的转移,比如当门是处于【Opened】状态,不能 进行【Lock】事件。 2、转移(Transition)有警备条件(guard condition),比如只有doorWay->isEmpty 条 件满足时,才会响应事件。 二、状态图元素(State Diagram Elements) 1、状态(States) 指在对象的生命周期中的某个条件或者状况,在此期间对象将满足某些条件、执行某些活动活活等待某些事件。所有对象都有状态,状态是对象执行了一系列活动的结果,当某个事件发生后,对象的状态将发生变化。 状态用圆角矩形表示 初态和终态(Initial and Final States) 初态用实心圆点表示,终态用圆形内嵌圆点表示。 2、转移(Transitions) 转移(Transitions)是两个状态之间的一种关系,表示对象将在源状态(Source State)中执行一定的动作,并在某个特定事件发生而且某个特定的警界条件满足时进入目标状态(Target State)

相关文档