文档库 最新最全的文档下载
当前位置:文档库 › 勾股定理证明和逆定理和详解-中考题

勾股定理证明和逆定理和详解-中考题

勾股定理证明和逆定理和详解-中考题
勾股定理证明和逆定理和详解-中考题

一、选择题(共13小题)

1、(2010?南宁)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()

A、3

B、4

C、5

D、6

2、在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为5,且△ABC 是直角三角形,则满足条件的C点有()

A、4个

B、5个

C、6个

D、8个

3、下列各组数中,可以构成直角三角形的三边长的是()

A、3,4,5

B、4,5,6

C、5,6,7

D、6,7,8

4、给出下列长度的四组线段:①1,2,2;②5,13,12;③6,7,8;④3,4,5其中能组成直角三角形的有()

A、①②

B、②③

C、②④

D、③④

5、△ABC的三边满足,则△ABC为()

A、直角三角形

B、等腰三角形

C、等边三角形

D、等腰直角三角形

6、以下列各线段为边,能组成直角三角形的是()

A、2,5,8

B、1,1,2

C、3,5,4

D、2,4,6

7、以下各组数为边长的三角形中,能组成直角三角形的是()

A、3、4、6

B、9、12、15

C、5、12、14

D、10、16、25

8、如图,一块四边形ABCD,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,则这块地的面积为()㎡.

A、24

B、30

C、48

D、60

9、若△ABC的三边长分别为a,b,c,且满足(a﹣b)?(a2+b2﹣c2)=0,则△ABC是()

A、直角三角形

B、等腰三角形

C、等腰直角三角形

D、等腰三角形或直角三角形

深圳市菁优网络科技有限公司

10、直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是()

A、直角三角形

B、锐角三角形

C、等边三角形

D、钝角三角形

11、一个三角形的三边分别是m2+1、2m、m2﹣1,则此三角形是()

A、锐角三角形

B、直角三角形

C、钝角三角形

D、等腰三角形

12、若a、b、c为三角形三边长,则下列各项中不能构成直角三角形的是()

A、a=6,b=8,c=10

B、a=7,b=24,c=25

C、a=1,b=2,c=3

D、(n,0)

13、△ABC的三边为a,b,c且(a+b)(a﹣b)=c2,则()

A、a边的对角是直角

B、b边的对角是直角

C、c边的对角是直角

D、△ABC不是直角三角形

二、填空题(共9小题)

14、(2008?湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名

的定理,这个定理称为_________,该定理的结论其数学表达式是

_________.

15、在△ABC中,AB=5,AC=12,CB=13,D、E为边BC上的点,满足BD=1,CE=8.则∠DAE的度数为_________.

16、在△ABC中,设CD是高,若BC=6,CA=8,AB=10,则CD=_________.

17、在△ABC中,点D为BC的中点,BD=3,AD=4,AB=5,则AC=_________.

18、如果△ABC的三边长a,b,c满足关系式(a+2b﹣60)2+|b﹣18|+=0,则a=_________,b=

_________,c=_________,△ABC是_________三角形.

19、若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是_________.

20、如图,Rt△ABC中,∠C=90度.将△ABC沿折痕BE对折,C点恰好与AB的中点D重合,若BE=4,则AC的长为_________.

21、△ABC的边AC、BC的中垂线交于AB上一点O,且OC=BC,则∠A=_________度.

22、已知a、b、c是△ABC的三边长,且满足|c2﹣a2﹣b2|+(a﹣b)2=0,则△ABC的形状是

_________.

三、解答题(共8小题)

23、(2010?孝感)勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.

请根据图1中直接三角形叙述勾股定理.

以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;

利用图2中的直角梯形,我们可以证明<.其证明步骤如下:

∵BC=a+b,AD=_________;

又∵在直角梯形ABCD中有BC_________AD(填大小关系),即_________.

∴<.

24、已知(如图):

用四块底为b、高为a、斜边为c的直角三角形拼成一个正方形,求图形中央的小正方形的面积,你不难找到:

解法(1)小正方形的面积=_________;

解法(2)小正方形的面积=_________;

由解法(1)、(2),可以得到a、b、c的关系为:_________.

25、如图,两个直角三角形的直角边a,b在同一直线上,斜边为c,请利用三角形和梯形面积公式验证勾股定

理.

26、美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.

27、4个直角三角形拼成右边图形,你能根据图形面积得勾股定理吗?

28、如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.

29、请选择一个图形来证明勾股定理.(可以自己选用其他图形进行证明)

30、用下面的图形验证勾股定理(虚线代表辅助线):

赵君卿图.

答案与评分标准

一、选择题(共13小题)

1、(2010?南宁)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()

A、3

B、4

C、5

D、6

考点:勾股定理的证明。

分析:先根据勾股定理求出AD的长度,再根据角平分线上的点到角的两边的距离相等的性质解答.

解答:解:过D点作DE⊥BC于E.

∵∠A=90°,AB=4,BD=5,

∴AD===3,

∵BD平分∠ABC,∠A=90°,

∴点D到BC的距离=AD=3.

故选A.

点评:本题利用勾股定理和角平分线的性质.

2、在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为5,且△ABC 是直角三角形,则满足条件的C点有()

A、4个

B、5个

C、6个

D、8个

考点:坐标与图形性质;勾股定理的逆定理。

分析:当∠A=90°时,满足条件的C点2个;当∠B=90°时,满足条件的C点2个;当∠C=90°时,满足条件的C点2个.所以共有6个.

解答:解:∵点A,B的纵坐标相等,

∴AB∥x轴,点C到距离AB为5,并且在平行于AB的两条直线上.

∴满足条件的C点有:(1,6),(6,6),(11,6),(1,﹣4),(6,﹣4),(11,﹣4)

故选C.

点评:用到的知识点为:到一条直线距离为某个定值的直线有两条.△ABC是直角三角形,它的任意一个顶点都有可能为直角顶点.

3、下列各组数中,可以构成直角三角形的三边长的是()

A、3,4,5

B、4,5,6

C、5,6,7

D、6,7,8

考点:勾股定理的逆定理。

分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.

解答:解:A、32+42=52,能构成直角三角形,故符合题意;

B、42+52≠62,不能构成直角三角形,故不符合题意;

C、52+62≠72,不能构成直角三角形,故不符合题意;

D、62+72≠82,不能构成直角三角形,故不符合题意.

故选A.

点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.

4、给出下列长度的四组线段:①1,2,2;②5,13,12;③6,7,8;④3,4,5其中能组成直角三角形的有()

A、①②

B、②③

C、②④

D、③④

考点:勾股定理的逆定理。

分析:判定是否为直角三角形,这里给出三边的长,只要验证两小边的平方和是否等于最长边的平方即可.

解答:解:①12+22=5≠22,故不是直角三角形,故错误;

②122+52=132,故是直角三角形,故正确;

③62+72=85≠82,故不是直角三角形,故错误;

④42+32=52,故是直角三角形,故正确.

故选C.

点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.

5、△ABC的三边满足,则△ABC为()

A、直角三角形

B、等腰三角形

C、等边三角形

D、等腰直角三角形

考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根。

分析:由题意可知a+b=50,a﹣b=32,c=40,就可求出a、b长分别为41,9,而412=402+92,所以△ABC为直角三角形.

解答:解:由题意可知a+b=50,a﹣b=32,c=40,

∴a=41,b=9

∵412=402+92

∴△ABC为直角三角形.

故选A.

点评:本题考查了勾股定理的应用,以及非负数的性质,是一道综合性的题目,难度中等.

6、以下列各线段为边,能组成直角三角形的是()

A、2,5,8

B、1,1,2

C、3,5,4

D、2,4,6

考点:勾股定理的逆定理。

分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.

解答:解:A、22+52=29≠82,故不是直角三角形,错误;

B、12+12=2≠22,故不是直角三角形,错误;

C、32+42=52,故是直角三角形,正确;

D、22+42=20≠62,故不是直角三角形,错误.

故选C.

点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.

7、以下各组数为边长的三角形中,能组成直角三角形的是()

A、3、4、6

B、9、12、15

C、5、12、14

D、10、16、25

考点:勾股定理的逆定理。

分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.

解答:解:A、32+42≠62,故不是直角三角形,故不正确;

B、92+122=152,故是直角三角形,故正确;

C、52+122≠142,故不是直角三角形,故不正确;

D、102+162≠252,故不是直角三角形,故不正确.

故选B.

点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.

8、如图,一块四边形ABCD,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,则这块地的面积为()㎡.

A、24

B、30

C、48

D、60

考点:勾股定理的逆定理;勾股定理。

专题:计算题。

分析:连接AC,由AD=4m,CD=3m,∠ADC=90°利用勾股定理可求出AC的长,在根据AB=13m,BC=12m,利用勾股定理的逆定理可证△ACB为直角三角形,然后即可求出这块地的面积.

解答:解:连接AC,

∵AD=4m,CD=3m,∠ADC=90°,

∴AC===5,

∵AB=13m,BC=12m,

∴AB2=BC2+CD2,即△ABC为直角三角形,

∴这块地的面积为S△ABC﹣S△ACD=AC?BC﹣AD?CD=×5×12﹣×3×4=24.

故选A.

点评:此题主要考查勾股定理和勾股定理的逆定理等知识点,难度不大,解答此题的关键是连接AC,求出三角形ABC的面积,再减去三角形ACD的面积即可.

9、若△ABC的三边长分别为a,b,c,且满足(a﹣b)?(a2+b2﹣c2)=0,则△ABC是()

A、直角三角形

B、等腰三角形

C、等腰直角三角形

D、等腰三角形或直角三角形

考点:勾股定理的逆定理;等腰三角形的判定。

分析:了解等腰三角形和直角三角形判定标准,是解题的关键.

解答:解:∵(a﹣b)?(a2+b2﹣c2)=0,∴(a﹣b)=0或(a2+b2﹣c2)=0,

即a=b或a2+b2=c2,

∴△ABC是等腰三角形或直角三角形.

故选D.

点评:本题利用了等腰三角形的判定和勾股定理的逆定理求解.

10、直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是()

A、直角三角形

B、锐角三角形

C、等边三角形

D、钝角三角形

考点:勾股定理的逆定理。

专题:应用题。

分析:先利用勾股定理得到a,b,c,h之间的关系,再根据勾股定理逆定理判定所求的三角形是直角三角形.

解答:解:根据题意可知:

a2+b2=c2,ab=ch,

∵(c+h)2=c2+2ch+h2,

(a+b)2=a2+2ab+b2,

∴(a+b)2+h2=(c+h)2,

∴三角形是直角三角形.

故选A.

点评:主要考查了勾股定理逆定理的运用.要会熟练利用勾股定理的逆定理来判定直角三角形.

11、一个三角形的三边分别是m2+1、2m、m2﹣1,则此三角形是()

A、锐角三角形

B、直角三角形

C、钝角三角形

D、等腰三角形

考点:勾股定理的逆定理。

专题:探究型。

分析:根据勾股定理的逆定理进行解答即可.

解答:解:∵(2m)2+(m2﹣1)2=4m2+m4+1﹣2m2=m4+1+2m2=(m2+1)2.

∴此三角形是直角三角形.

故选B.

点评:本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.

12、若a、b、c为三角形三边长,则下列各项中不能构成直角三角形的是()

A、a=6,b=8,c=10

B、a=7,b=24,c=25

C、a=1,b=2,c=3

D、(n,0)

考点:勾股定理的逆定理。

分析:根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,先确定能否构成三角形,再根据勾股定理的逆定理,判断能否构成直角三角形.

解答:解:A、∵6+8>10,且62+82=102,∴能构成直角三角形;

B、∵7+24>13,且72+242=252,∴能构成直角三角形;

C、∵1+2=3,∴不能构成三角形,∴更不能构成直角三角形;

D、∵n+n>2n,且n2+(n)2=(2n)2,∴能构成直角三角形.

故选C.

点评:本题考查了勾股定理的逆定理,直角三角形必须符合勾股定理的逆定理,三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.

13、△ABC的三边为a,b,c且(a+b)(a﹣b)=c2,则()

A、a边的对角是直角

B、b边的对角是直角

C、c边的对角是直角

D、△ABC不是直角三角形

考点:勾股定理的逆定理。

分析:把式子写成a2﹣b2=c2的形式,确定a为最长边,则可判断边a的对角是直角.

解答:解:∵(a+b)(a﹣b)=c2,

∴a2﹣b2=c2,

∴a为最长边,

∴边a的对角是直角.

故选A.

点评:此题考查勾股定理逆定理的应用,判断最长边是关键.

二、填空题(共9小题)

14、(2008?湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名

的定理,这个定理称为勾股定理,该定理的结论其数学表达式是

a2+b2=c2.

考点:勾股定理的证明。

专题:证明题。

分析:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.

解答:解:用图(2)较简单,

如图正方形的面积=(a+b)2,

用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,

即(a+b)2=4×ab+c2化简得a2+b2=c2.

这个定理称为勾股定理.

故答案为:勾股定理、a2+b2=c2.

点评:本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.

15、在△ABC中,AB=5,AC=12,CB=13,D、E为边BC上的点,满足BD=1,CE=8.则∠DAE的度数为45°.考点:正弦定理与余弦定理;勾股定理;勾股定理的逆定理。

专题:数形结合。

分析:首先由已知可得△ABC是直角三角形,则可求得∠B与∠C的余弦值,在△ABD与△AEC中利用余弦定理即可求得AD与AE的值,再在△ADE中用余弦定理求得∠DAE的余弦值,即可求得∠DAE的度数.

解答:解:∵AB=5,AC=12,CB=13,

∴AB2+AC2=CB2,

∴∠BAC=90°,

∴cos∠B=,cos∠C=,

∵BD=1,CE=8,

∴DE=4,

∴AD2=AB2+BD2﹣2?AB?BD?cos∠A=25+1﹣2×5×1×=26﹣=,

AE2=AC2+CE2﹣2?AC?CE?cos∠C=144+64﹣2×12×8×=208﹣=,

∴AD=,AE=,

∴cos∠DAE==,

∴∠DAE=45°.

故答案为:45°.

点评:此题考查了余弦定理的知识以及勾股定理的逆定理.此题难度适中,解题时注意数形结合思想的应用.16、在△ABC中,设CD是高,若BC=6,CA=8,AB=10,则CD= 4.8.

考点:勾股定理;三角形的面积;勾股定理的逆定理。

专题:计算题。

分析:根据勾股定理的逆定理可以判定△ABC为直角三角形,用两条直角边和斜边及斜边的高分别求三角形ABC的面积,运用面积法可以计算CD.

解答:解:已知BC=6,CA=8,AB=10,

且BC2+CA2=AB2,

∴△ABC为直角三角形,且AB为斜边,

所以Rt△ABC面积=BC?CA=AB?CD,

解得CD=4.8.

故答案为:4.8.

点评:本题考查了勾股定理在直角三角形中的运用,考查了运用勾股定理的逆定理判定直角三角形,本题中正确的判定三角形是直角三角形是解题的关键.

17、在△ABC中,点D为BC的中点,BD=3,AD=4,AB=5,则AC=5.

考点:勾股定理;勾股定理的逆定理。

专题:计算题。

分析:根据BD,AD,AB的长度可以判定△ABD为直角三角形,即AD⊥BC,又∵D为BC的中点,可以判定△ABC 为等腰三角形,且AB=AC.

解答:解:在△ABD中,已知AB=5,AD=4,BD=3,

满足AB2=AD2+BD2,

∴△ABD是直角三角形,

即AD⊥BC,

又∵D为BC的中点,

∴△ABC为等腰三角形,且AB=AC,

∴AC=5.

故答案为5.

点评:本题考查了根据勾股定理的逆定理来判定直角三角形,考查了等腰三角形腰长相等的性质,本题中求证△ABC 是等腰三角形是解题的关键.

18、如果△ABC的三边长a,b,c满足关系式(a+2b﹣60)2+|b﹣18|+=0,则a=24,b=18,c=30,

△ABC是直角三角形.

考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根。

分析:先根据非负数的性质求得a、b、c的值,再根据勾股定理的逆定理解答.

解答:解:∵(a+2b﹣60)2+|b﹣18|+=0,

∴,

∴a=24,b=18,c=30,

∵242+182=302,

∴△ABC是直角三角形.

点评:本题考查了非负数的性质及勾股定理的逆定理.当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.

19、若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是直角三角形.考点:勾股定理的逆定理;非负数的性质:偶次方;完全平方公式。

分析:利用完全平方公式把这个式子写成平方几个非负数的和的形式,求得a,b,c的值,进而判断出三角形的形状即可.

解答:解:∵a2﹣6a+b2﹣10c+c2=8b﹣50

∴a2﹣6a+9+b2﹣8b+16+c2﹣10c+25=0

∴(a﹣3)2+(b﹣4)2+(c﹣5)2=0

∴a=3,b=4,c=5

∴这个三角形的形状是直角三角形.

点评:本题考查完全平方公式和勾股定理的逆定理在实际中的运用,注意运用几个非负数的和为0,那么这几个数均为0这个知识点.

20、如图,Rt△ABC中,∠C=90度.将△ABC沿折痕BE对折,C点恰好与AB的中点D重合,若BE=4,则AC的长为6.

考点:勾股定理的逆定理;含30度角的直角三角形。

分析:运用线段垂直平分线的性质得∠A=∠ABE,根据折叠的性质得∠ABE=∠CBE,然后根据直角三角形的性质计算.

解答:解:根据题意,得DE垂直平分AB,则AE=BE.

得∠A=∠ABE

根据折叠,得∠ABE=∠CBE

再根据直角三角形的两个锐角互余得∠A=∠ABE=∠CBE=30°

∴CE=BE=2

则AC=4+2=6.

点评:此题综合了线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,所以学生学过的知识要系统.21、△ABC的边AC、BC的中垂线交于AB上一点O,且OC=BC,则∠A=30度.

考点:勾股定理的逆定理;等边三角形的判定。

分析:由题意得出△AEO和△OEC全等以及△OCF和△OFB全等,再根据全等三角形的定义,求得对应的边相等.而OC=CB=OB,则△OCB为等边三角形,得出∠B=60°,最后求出∠A的度数.

解答:解:如图所示,OE,OF分别是边AC,BC的中垂线

∵OE,OF分别是边AC,BC的中垂线

∴△AEO≌△CEO,△OCF≌△OBF

∴AO=CO,CO=BO

∴△ACB为直角三角形.

∵CO=BC

∴△OBC为等边三角形

∴∠B=60°

∴∠A=30°,

故填为30°.

点评:此题主要考查了学生对直角三角形的判定及等边三角形的判定的运用.

22、已知a、b、c是△ABC的三边长,且满足|c2﹣a2﹣b2|+(a﹣b)2=0,则△ABC的形状是

等腰直角三角形.

考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方。

专题:推理填空题。

分析:根据绝对值和偶次方的性质,|c2﹣a2﹣b2|=0,(a﹣b)2=0,由此可得出△ABC的三边关系,利用勾股定理的逆定理,即可作出判断.

解答:解:△ABC是等腰直角三角形.

∵|c2﹣a2﹣b2|+(a﹣b)2=0,

∴|c2﹣a2﹣b2|=0,(a﹣b)2=0,

∴c2=a2+b2,a=b,

∴△ABC是等腰直角三角形.

故答案为:等腰直角三角形.

点评:此题主要考查学生对勾股定理的逆定理,非负数的性质(绝对值,偶次方)的理解和掌握,解答此题的关键是根据|c2﹣a2﹣b2|=0,(a﹣b)2=0,得出△ABC的三边关系.

三、解答题(共8小题)

23、(2010?孝感)勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.

请根据图1中直接三角形叙述勾股定理.

以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;

利用图2中的直角梯形,我们可以证明<.其证明步骤如下:

∵BC=a+b,AD=c;

又∵在直角梯形ABCD中有BC<AD(填大小关系),即a+b<c.

∴<.

考点:勾股定理的证明;全等三角形的判定与性质。

专题:阅读型。

分析:利用SAS可证△ABE≌△ECD,可得对应角相等,结合90°的角,可证∠AED=90°,利用梯形面积等于三个直角三角形的面积和,可证a2+b2=c2,在直角梯形ABCD中,BC<AD,由于已证△AED是直角三角形,那么利用勾股

定理有AD=c,从而可证<.

解答:解:如果直角三角形的两直角边长为a,b,斜边长为c,那么a2+b2=c2.

∵Rt△ABE≌Rt△ECD,

∴∠AEB=∠EDC;

又∵∠EDC+∠DEC=90°,

∴∠AEB+∠DEC=90°;

∴∠AED=90°;(5分)

S梯形ABCD=S Rt△ABE+S Rt△DEC+S Rt△AED

(a+b)(a+b)=++;

(a2+2ab+b2)=++;

整理得a2+b2=c2(7分).

AD=c,BC<AD,a+b c.(10分)

点评:本题利用了全等三角形的判定和性质、面积分割法、勾股定理等知识.

24、已知(如图):

用四块底为b、高为a、斜边为c的直角三角形拼成一个正方形,求图形中央的小正方形的面积,你不难找到:

解法(1)小正方形的面积=c2﹣2ab;

解法(2)小正方形的面积=b2﹣2ab+a2;

由解法(1)、(2),可以得到a、b、c的关系为:c2=a2+b2.

考点:勾股定理的证明。

分析:(1)用拼成的大正方形的面积减去四个三角形的面积;

(2)直接求出小正方形的边长,然后求面积;

(3)得到勾股定理.

解答:解:(1)S=c2﹣ab×4=c2﹣2ab;

(2)S=(b﹣a)2=b2﹣2ab+a2;

(3)c2=a2+b2.

点评:本题主要在于验证勾股定理,比较简单.

25、如图,两个直角三角形的直角边a,b在同一直线上,斜边为c,请利用三角形和梯形面积公式验证勾股定

理.

考点:勾股定理的证明。

专题:计算题。

分析:由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.

解答:解:由图可得,×(a+b)(a+b)=ab+c2+ab,

整理得,=,

∴a2+2ab+b2=2ab+c2,

∴a2+b2=c2.

点评:本题主要考查了勾股定理的证明,锻炼了同学们的数形结合的思想方法.

26、美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.

考点:勾股定理的证明。

专题:证明题。

分析:此等腰梯形的面积有三部分组成,利用等腰梯形的面积等于三个直角三角形的面积之和列出方程并整理.

解答:解:因为,

又因为

所以=,

得c2=a2+b2.

点评:此类证明要转化成同一个东西的两种表示方法,从而转化成方程达到证明的结果.

27、4个直角三角形拼成右边图形,你能根据图形面积得勾股定理吗?

考点:勾股定理的证明。

分析:根据已知可求得大正方形的面积,四个直角三角形的面积和及中间的正方形的面积,根据大正方形的面积=中间的正方形的面积+四个直角三角形的面积,即可得到勾股定理.

解答:解:∵大正方形的面积=(a+b)2,四个直角三角形的面积和=4×ab=2ab,中间的正方形的面积=c2∴2ab+c2=

(a+b)22ab+c2=a2+b2+2ab

∴c2=a2+b2

点评:此题主要考查学生对勾股定理的掌握情况.

28、如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.

考点:勾股定理的证明。

分析:根据大正方形面积=四个相同直角三角形面积+小正方形面积,得c2=4×ab+(a﹣b)2即得c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.

解答:解:∵大正方形面积为:c2,直角三角形面积为ab,小正方形面积为:(a﹣b)2,

所以c2=4×ab+(a﹣b)2,

即c2=a2+b2,

在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.

点评:本题主要考查了勾股定理的证明,要认真理解勾股定理.

29、请选择一个图形来证明勾股定理.(可以自己选用其他图形进行证明)

考点:勾股定理的证明。

专题:证明题;开放型。

分析:选第一个图形证明,都来表示中间正方形的面积.有两种表示方法:直接表示正方形的面积;用大正方形的面积﹣4个全等的直角三角形的面积.

解答:解:∵外部是四个全等的直角三角形,

∴中间的四边形为正方形

正方形的面积=c2,

正方形的面积=(a+b)2﹣4××ab=a2+b2

∴a2+b2=c2

点评:用构图法来解释勾股定理,通常情况下是运用不同的方式来表示面积得到的结果.

30、用下面的图形验证勾股定理(虚线代表辅助线):

赵君卿图.

考点:勾股定理的证明。

专题:证明题。

分析:根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.

解答:解:根据题意,中间小正方形的面积(b﹣a)2=c2﹣4×ab;

化简得a2+b2=c2,

即在直角三角形中斜边的平方等于两直角边的平方和.

点评:本题考查了学生对勾股定理的证明和对三角形、正方形面积公式的熟练掌握和运用.

勾股定理及其逆定理 (习题及答案)-精选学习文档

勾股定理及其逆定理(习题) 例题示范 例1:如图,强大的台风使得一棵树在离地面 3m 处折断倒下,树的顶部落在离树的底部 4m 处,这棵树折断之前有多高? 解:如图,由题意,得 AC=3,BC=4,∠ACB=90° A 在 Rt△ABC 中,∠ACB=90°, 由勾股定理,得 AC2+BC2=AB2 ∴32+42=AB2 ∴AB=5 C B ∴AB+AC=5+3=8 答:这棵树折断之前高 8m. 例 2:如图,在△ABC 中,AB=13cm,AC=5cm,BC=12cm.求证:∠C=90°. A C B 证明:如图 在△ABC 中,AB=13,AC=5,BC=12 ∵52+122=132 ∴AC2+BC2=AB2 ∴△ABC 为直角三角形,且∠C=90°.

巩固练习 1.如图,在 Rt△ABC 中,∠C=90°,若BC=8,AB=17,则AC 的长为. B C A 2.已知甲、乙两人从同一地点出发,甲往东走了 12km,乙往南 走了5km,这时甲、乙两人之间的距离为. 3.如图,分别以直角三角形的三边为直径作半圆,三个半圆的 面积从小到大依次记为S1,S2,S3,则S1,S2,S3 之间的关系是() A.S l+S2>S3 B.S l+S2

5.如图 1 是用硬纸板做成的两个全等的直角三角形,两直角边的 长分别为a 和b,斜边长为c.图 2 是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形. (1)画出拼成的这个图形的示意图,并利用这个图形证明勾股定理; (2)假设图 1 中的直角三角形有若干个,你能运用图 1 中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼成的图形的示意图,并利用该图形证明勾股定理. b b a a 图1 图2 6.以下列长度的三条线段为边,不能组成直角三角形的是 A.1.5,2,2.5 B.9,12,15 C.7,24,25 D.1,1,2

勾股定理的证明方法探究

a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC 中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股4弦5”知 AC=4cm,BC=3cm,AB>AC,∴AB=5cm.剖析:这种解法受“勾3股4弦5”思维定势的影响,见题中有BC=3,AC=4,就认为AB=5,而忘记了“勾3股4弦5”是在直角三角形的条件下才成立,而本题中没有指明是直角三角形,因此,只能用三角形三条边之间的关系来解。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂。

我们都喜欢把日子过成一首诗,温婉,雅致;也喜欢把生活雕琢成一朵花,灿烂,美丽。可是,前行的道路有时会曲折迂回,让心迷茫无措。生活的上空有时会飘来一场风雨,淋湿了原本热情洋溢的心。 不是每一个人都能做自己想做的事情,也不是每一个人都能到达想去的远方。可是,既然选择了远方,便只有风雨兼程。也许生活会辜负你,但你不可以辜负生活。 匆匆忙忙地奔赴中,不仅要能在阳光下灿烂,也要能在风雨中奔跑!真正的幸福不是拥有多少财富,而是在前行中成就一个优秀的自己! 生命没有输赢,只有值不值得。坚持做对的事情,就是值得。不辜负岁月,不辜负梦想,就是生活最美的样子。 北大才女陈更曾说过:“即使能力有限,也要全力以赴,即使输了,也要比从前更强,我一直都在与自己比,我要把最美好的自己,留在这终于相逢的决赛赛场。” 她用坚韧和执着给自己的人生添上了浓墨重彩的一笔。 我们都无法预测未来的日子是阳光明媚,还是风雨如晦,但前行路上点点滴滴的收获和惊喜,都是此生的感动和珍藏。 有些风景,如果不站在高处,你永远欣赏不到它的美丽;脚下有路,如果不启程,你永远无法揭晓远方的神秘。 我们踮起脚尖,是想离太阳更近一点儿;我们努力奔跑,是想到达远方欣赏最美的风景。 我们都在努力奔跑,我们都是追梦人!没有伞的时候,学会为自己撑伞;没有靠山的时候,学会自己屹立成一座伟岸的山! 远方有多远?多久能达到?勇敢往前冲的人,全世界都会向他微笑。相信,只要启程,哪怕会走许多弯路,也会有到达的那一天。

勾股定理及其逆定理专题练习

勾股定理及其逆定理专题练习 (一)几何法证明勾股定理. 1、如图所示, 90=∠=∠BCE ADE ,a CE AD ==,b BC DE ==,c BE AE ==,利用面积法证明勾股定理. (二)勾股定理的应用. 一、勾股定理的简单计算: 1、直角三角形的三边长为连续偶数,则这三个数分别为__________. 2、已知一个直角三角形的两边长分别为3和4,则第三边长是__________. 3、直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4、在△ABC 中,∠C=90°,AB =5,则2AB +2AC +2BC =_______. 二、勾股定理与实际问题: 1、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米. 2、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________m . 3、如图,从电线杆离地面6m 处向地面拉一条长10m 的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有__________m . b c c a a b D C A E B

4、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需___________米. 5、将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中(如图).设筷子露在杯子外面的长为hcm ,则h 的取值范围是___________. 三、勾股定理与图形变换: 1、如图,已知ABC ?中, 5.22=∠B ,AB 的垂直平分线交BC 于D ,26=BD ,BC AE ⊥于E ,求AE 的长. 2、如图,将长方形ABCD 沿直线AB 折叠,使点C 落在点F 处,BF 交AD 于E ,48==AB AD ,,求BED ?的面积.

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

17.2勾股定理的逆定理(优质课)优秀教学设计

《17.2勾股定理的逆定理》教学设计 Y qzx Bmm 【内容和教材分析】 内容教材第31-33页,17.2勾股定理的逆定理. 教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一. 【教学目标】 知识与技能 1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理. 2.理解原命题、逆命题、逆定理的概念关系. 3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形. 过程与方法 1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程. 2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题. 情感、态度与价值观 1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系. 2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神. 【教学重难点及突破】 重点 1.勾股定理的逆定理及运用. 2.灵活运用勾股定理的逆定理解决实际问题. 难点 1.勾股定理的逆定理的证明. 2.说出一个命题的逆命题及辨别其真假性. 【教学突破】 1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题. 2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断. 3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”. 4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根

勾股定理的证明的方法

【】() 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上, B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ R t ΔEBF,

∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB.

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

《勾股定理的逆定理》教案

勾股定理的逆定理 (1)教案

图18.2-2 [活动2] 建立模型 1.你能证明以2.5cm 、6cm 、6.5cm 为三边长的三角形是直角三角形吗? 2.如图18.2-2,若△ABC 的三边长a 、b 、c 满足222c b a =+,试证明△是直角三角形,请简要地写出证明过程. [活动3]理论释意 任意三角形的三边长a 、b 、c ,只要满足222c b a =+,一定可以得到此三角形为直角三角形。 1.教材75页练习第1题. 学生结合活动1的体验,独立思考问题1,通过小组交流、讨论,完成问题2.在此基础上,说出问题2的证明思路. 教师提出问题,并适时诱导,指导学生完成问题2的证明.之后,归纳得出勾股定理的逆定理.在此基础上,类比定理与逆定理的关系,介绍逆命题(定理)的概念,并与学生一起完成问题. 在活动2中教师应关注: (1)学生能否联想到了“‘全等’,进而设法构造全等三角形”这一问题获解的关键; (2)学生在问题2中,所表现出来的构造直角三角形的意识; (3)是否真正地理解了AB =A /B / (如图18.2-2);数形结合的意识和由特殊到一般的数学思想方法; 在活动3中 (1)利用几何画板,从理论上改变三角形三边的大小,度量∠BAC 是否为直角.从实践上去检验命题的正确性,加深学生对勾股逆定理的理解; 变“命题+证明=定理”的推理模式为定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦. 利用几何画板去验证勾股定理的逆定理,让理论上释意形象生动,可强化学生的记忆,使学生对定理的理解更深刻. [活动4] 拓展应用 1.例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . 小试牛刀 1.教材76页习题18.2第1题(1)、(3). 2. 在下列长度的四组线段中,不能组成直角三角形的是( ). A.a =5,b =12,c =13 B .25,5===c b a C.a =9,b =40,c =41 D .15,12,11===c b a 在活动4中 学生说出问题(1)的判断思路,部分学生演板问题2,剩下的学生在课堂作业本上完成. 教师板书问题1的详细解答过程,并纠正学生在练习中出现的问题,最后向学生介绍勾股数的概念. 在活动4中教师应重点关注: (1)学生的解题过程是否规范; (2)是不是用两条较小边长的平方和与较大边长的平方进行比较; (3)活动4中的练习可视课堂情形而定,如果时间不允许,可处理部分. 进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重 点.

勾股定理16种证明方法

勾股定理的证明 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使 A 、E 、 B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ Rt ΔEBF, ∴ ∠AHE = ∠BE F . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()2 2 21 4c ab b a +?=+. ∴ 2 22c b a =+. 【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角

勾股定理和三角形证明相关习题

勾股定理及三角形证明相关测试题 1.已知a 、b 、c 是?ABC 三边长,则2)(c b a --+c b a -+的值是( ) A.2a B.2b C.2c D.2(a-c) 2.如图所示,AB=BC=CD=DE=1,AB ⊥BC,AC ⊥CD,AD ⊥DE,则AE=( ) A.1 B.2 C.3 D.2 3.如图在棱长为1的正方体ABCD-A 1B 1C 1D 1中,一只蚂蚁从点A 出发,沿正方体表 面爬行到面对对角线A 1B 上的一点P ,再沿截面A 1BCD 1,则整个过程中蚂蚁爬行 的最短路程为( ) A.2 B.2 62+ C.2+2 D.22+ 4.下列4个命题中正确的个数是( ) (1)两边及第三边上的中线对应相等的两个三角形全等 (2)两边及第三边上的高线对应相等的两个三角形全等 (3)直角三角形两条边的长分别为3和4,则第三边边长为5. (4)如果a ≥0,那么(a )2=a. A.1 B.2 C.3 D.4

5.若一个直角三角形的三边长为a,b,c,且a2=9,b2=16,则c2= . 6.已知一个直角三角形的两条直角边长为5cm,12cm,则第三边长为 . 7.如图,一棵大树在一次强台风中离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为 m 8.如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm,4cm、12cm,插吸管处的出口到相邻两边的距离都是1cm,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm至5cm间(包括3cm与5cm,不计吸管粗细及出口大小)则设计的吸管总长度L的范围是 . 9.如图,在?ABC中,AB=3+1,AC=6,BC=2,求?ABC三个内角的度数.

勾股定理的证明方法

【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 a^2+b^2+4*(ab/2)=c^2+4*(ab/2), 整理得到:a^2+b^2=c^2。 【证法2】 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴四边形EFGH是一个边长为c的 正方形. 它的面积等于c^2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)^2. ∴(a+b)^2=c^2+4*(ab/2),∴ a^2+b^2=c^2。

【证法3】 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c^2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)^2. ∴(b-a)^2+4*(ab/2)=c^2,∴ a^2+b^2=c^2。 【证法4】 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴∠ADE = ∠BEC.

勾股定理试题分类

勾股定理试题分类 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《数学》八年级下册第十七章 勾股定理 【题型一】勾股定理的验证与证明 1.如图,每个小正方形的边长是1,图中三个正方形的面积分别是S1、 S2、S3,则它们的面积关系是,直角△ABC的三边的关系是. 参考答案:用数方格的方法或用面积公式计算三个正方形面积,得出S1+S2=S3,从而得到:AB2+BC2=AC2. 2.如图,每个小正方形的边长是1,图中三个正方形的面积分别是S1、 S2、S3,则它们的面积关系是,直角△ABC的三边的关系是. 参考答案:对于S3显然用数方格的方法不合适,利用“相减法”或“相加法”用面积公式计算三个正方形面积,得出 S1+S2=S3,从而得到:AB2+BC2=AC2. 3.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定理吗 参考答案:由S大正方形=4S Rt△+S小正方形,得 c2=4× 1 2 ab+(b-a)2 ∴a2+b2=c2. 4.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定理吗 参考答案:由S大正方形=4S Rt△+S小正方形,得 (a+b)2=4× 1 2 ab+c2 ∴a2+b2=c2. 5.如图,已知∠A=∠B=90°且△AED≌△BCE,A、E、B在同一直线上.根据此图证明勾股定理. 参考答案:先证明△DCE是等腰直角三角形,再根据梯形面积为三个三角形面积之和得 1 2(a+b)2=2× 1 2 ab+ 1 2 c2, ∴a2+b2=c2. 6.如图,一个直立的火柴盒倒下来就可以证明勾股定理,请你根据图形,设计一种证明方法. 参考答案:方法类似第5题. 7.(2011温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1—1).图1—2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图1—2中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是 . 参考答案:10 3 8.(2010 湖北孝感)[问题情境 ] B A a 图2 图1 c b a

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

人教版-数学-八年级下册-《勾股定理的逆定理》教学设计(第1课时)

《17.2勾股定理的逆定理》教学设计(第1课时) 一、内容和内容解析 1.内容 勾股定理的逆定理证明及简单应用;原命题、逆命题的概念及相互关系. 2.内容解析 把勾股定理的题设和结论交换,可以得到它的逆命题.本节内容证明了这个逆命题是个真命题.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法和前面学过的一些判定方法不同,它通过计算来作判断.学习勾股定理的逆定理,对拓展学生思维,体会利用计算证明几何结论的数学方法有很大的意义. 基于以上分析,可以确定本课的教学重点是探究证明勾股定理的逆定理. 二、目标和目标解析 1.目标 (1)理解勾股定理的逆定理. (2)了解互逆命题、互逆定理. 2.目标解析 达成目标(1)的标志是学生经历“实验测量-猜想-论证”的定理探究过程后,能应用勾股定理的逆定理来判定一个三角形是直角三角形; 目标(2)能根据原命题写出它的逆命题,并了解原命题为真命题时,逆命题不一定为真命题. 三、教学问题诊断分析 勾股定理的逆定理的证明是先作一个合适的直角三角形,再证明有已知条件的三角形和直角三角形全等等,这种证法学生不容易想到,难以理解,在教学时应该注意启发引导.本课的教学难点是证明勾股定理的逆定理. 四、教学过程设计 1.创设问题情境 问题1 你能说出勾股定理吗?并指出定理的题设和结论. 师生活动:学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系.

追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗? 师生活动:师生共同得出新的命题, 教师指出其为勾股定理的逆命题. 追问2:“如果三角形三边长、b、c满足,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.【设计意图】通过对前面所学知识的归纳总结,自然合理地引出勾股定理的逆定理.问题2 实验观察:用一根打上13个等距离结的细绳子,让学生操作,以3个结间距、4个结间距、5个结间距的长度为边长,用钉子钉成一个三角形,请学生用角尺量出最大角的度数(900). 师生活动:学生动手操作,教师适时指导,并介绍这是古埃及人画直角的方法. 追问:你能计算出三边长的关系吗? 师生活动:师生共同得出. 【设计意图】介绍前人经验,启发思考,使学生意识到数学来源于生活. 实验操作:(1)画一画,下列各组数中两个数的平方和等于第三个数的平方,分别以这些数为边长(单位:cm)画三角形: ①2.5,6,6.5;②4,7.5,8.5. (2)量一量:用量角器分别测量上述各三角形的最大角的度数. (3)想一想:判断这些三角形的形状,提出猜想. 师生活动:教师引导学生画三角形,并计算三边的数量关系:,.接着度量三角形最大角的度数,发现最大角为900,并猜想:如果三角形的三边长、b、c满足,那么这个三角形是直角三角形.把勾股定理记着命题1,猜想的结论作为命题2. 【设计意图】让学生经历测量、计算、归纳和猜想的过程,了解几何知识的探索过程.问题3 命题1和命题2的题设和结论分别是什么?

(完整版)勾股定理解答证明题

《勾股定理》证明解答题练习 1、在ABC ?中,AC AB =,D 为BC 边上任一点,求证:DC BD AD AB ?=-2 2 2、已知:如图,在ABC Rt ?中,ο 90=∠C ,D 是AC 的中点,AB ED ⊥于E 求证:(1)2 2 2 43BD BC AB =+ (2)2 2 2 BC AE BE =- 3、如图,在ABC ?中,ο 90=∠C ,13=AB ,12=BC ,BC BD 2 1 = (1)AD 的长. (2)ABD ?的面积. 4、求边长为a 的等边三角形的高和面积 2 5、如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠, 3 使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? B C A C B B C

6、若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状. 7、已知:如图, ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A。 求:BD的长。(8分) 8、甲、乙两船同时从港口A出发,甲船一12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行。2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距40海里,问乙船的速度是每小时多少海里?9.如图所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,?求该四边形的面积. B C A D 10.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积. 11.如图,某购物中心在会十.一间准备将高5 m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 5m 13m 8m 20m

勾股定理逆定理八种证明方法

证法1 作四个全等的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条直线上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC 的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上,

勾股定理的证明方法

勾股定理的证明方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

勾股定理的证明方法 勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。 一、传说中毕达哥拉斯的证法(图1) 左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式 ,化简得。 在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。 二、赵爽弦图的证法(图2) 第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。 第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的 角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。 因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。 这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。 三、美国第20任总统茄菲尔德的证法(图3) 这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为 的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

17.2勾股定理的逆定理优秀教学设计

《勾股定理的逆定理》教学设计 Yqzx Bmm 【内容和教材分析】 内容教材第31-33页,勾股定理的逆定理. 教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一. 【教学目标】 知识与技能 1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理. 2.理解原命题、逆命题、逆定理的概念关系. 3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形. 过程与方法 1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程. 2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题. 情感、态度与价值观 1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系. 2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神. 【教学重难点及突破】 重点 1.勾股定理的逆定理及运用. 2.灵活运用勾股定理的逆定理解决实际问题. 难点 1.勾股定理的逆定理的证明. 2.说出一个命题的逆命题及辨别其真假性. 【教学突破】 1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题. 2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断. 3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”. 4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根

相关文档
相关文档 最新文档