文档库 最新最全的文档下载
当前位置:文档库 › 混合偏导数求导次序无关的条件

混合偏导数求导次序无关的条件

混合偏导数求导次序无关的条件
混合偏导数求导次序无关的条件

求导法则与求导公式

§2.2 求导法则与导数的基本公式 教学目标与要求 1. 掌握并能运用函数的和、差、积、商的求导法则 2. 理解反函数的导数并能应用; 3. 理解复合函数的导数并会求复合函数的导数; 4. 熟记求导法则以及基本初等函数的导数公式。 教学重点与难度 1. 会用函数的和、差、积、商的求导法则求导; 2. 会求反函数的导数; 3. 会求复合函数的导数 前面,我们根据导数的定义,求出了一些简单函数的导数。但是,如果对每一个函数都用定义去求它的导数,有时候将是一件非常复杂或困难的事情。因此,本节介绍求导数的几个基本法则和基本初等函数的导数公式。鉴于初等函数的定义,有了这些法则和公式,就能比较方便地求出常见的函数——初等函数的导数。 一、函数的和、差、积、商求导法则 1.函数的和、差求导法则 定理1 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =±在点x 处也可导,且 [()()]()()y u x v x u x v x ''''=±=± 同理可证:' ' ' [()()]()()u x v x u x v x -=- 即证。 注意:这个法则可以推广到有限个函数的代数和,即 12''' ' 12[()()()]()()()n n u x u x u x u x u x u x ±± ±=±±±, 即有限个函数代数和的导数等于导数的代数和。

例1 求函数4 cos ln 2 y x x x π =+++ 的导数 解 4 c o s l n 2y x x x π'??'=+++ ?? ? ()()()4 cos ln 2x x x π'??'''=+++ ??? 3 1 4s i n x x x =-+ 2.函数积的求导公式 定理2 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =在点x 也可导,且 ''''[()()]()()()()y u x v x u x v x u x v x ==+。 注意:1)特别地,当u c =(c 为常数)时, '''[()]()y cv x cv x ==, 即常数因子可以从导数的符号中提出来。而且将其与和、差的求导法则结合,可得: ''''[()()]()()y au x bv x au x bv x =±=±。 2)函数积的求导法则,也可以推广到有限个函数乘积的情形,即 ''' '12 1212 12 ()n n n n u u u u u u u u u u u u =+++。 例2 求下列函数的导数。 1)32 3254sin y x x x x =+-+; 解 ()()()()3 2 3254sin y x x x x '''''=+-+

导数二次求导

1.已知函数()(1)ln 1f x x x x =+-+. (Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥

2.设a 为实数,函数()22,x f x e x a x R =-+∈。 (Ⅰ)求()f x 的单调区间与极值; (Ⅱ)求证:当a >ln 21-且x >0时,x e >2 21x ax -+。

1.已知函数()(1)ln 1f x x x x =+-+. (Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ 先看第一问,首先由()(1)ln 1f x x x x =+-+可知函数()f x 的定义域为()0,+∞,易得 ()()11ln 11ln f x x x x x x '=++-=+ 则由2'()1xf x x ax ≤++可知21ln 1x x x ax x ? ?+≤++ ??? ,化简得 2ln x x x ax ≤+,这时要观察一下这个不等式,显然每一项都有因子x ,而x 又大于零,所以两边同乘 1x 可得ln x x a ≤+,所以有ln a x x ≥-,在对()ln g x x x =-求导有 ()11g x x '=-,即当0<x <1时,()g x '>0,()g x 在区间()0,1上为增函数;当1x =时,()0g x =;当1<x 时,()g x '<0,()g x 在区间()1,+∞上为减函数。 所以()g x 在1x =时有最大值,即()()ln 11g x x x g =-≤=-。又因为ln a x x ≥-,所以1a ≥-。 应该说第一问难度不算大,大多数同学一般都能做出来。再看第二问。 要证(1)()0x f x -≥,只须证当0<x 1≤时,()0f x ≤;当1<x 时,()f x >0即可。 由上知()1ln f x x x '=+ ,但用()f x '去分析()f x 的单调性受阻。我们可以尝试再对()1ln f x x x '=+求导,可得()211f x x x ''=-,显然当0<x 1≤时,()0f x ''≤;当1<x 时,()f x ''>0,即()1ln f x x x '=+在区间()1,+∞上为减函数,所以有当0<x 1≤时, ()()11f x f ''≥=,我们通过二次求导分析()f x '的单调性,得出当0<x 1≤时()1f x '≥,则()f x 在区间(]0,1上为增函数,即()()10f x f ≤=,此时,则有(1)()0x f x -≥成立。 下面我们在接着分析当1<x 时的情况,同理,当1<x 时,()f x ''>0,即()f x '在区间()1,+∞上为增函数,则()()11f x f ''≥=,此时,()f x 为增函数,所以()()10f x f ≥=,易得(1)()0x f x -≥也成立。 综上,(1)()0x f x -≥得证。 下面提供一个其他解法供参考比较。 解:(Ⅰ)()1ln f x x x '=+ ,则()ln 1xf x x x '=+ 题设2'()1xf x x ax ≤++等价于ln x x a -≤。

高等数学公式导数基本公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 222122an 11cos 12sin u du dx x t u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x x x x a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(cot sec )(tan 22= '='?-='?='-='='2 2 22 11 )cot (11 )(arctan 11 )(arccos 11 )(arcsin x x arc x x x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x xdx x C x dx x x C x xdx x dx C x xdx x dx x x )ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x a x a dx C x x xdx C x x xdx C x xdx C x xdx t +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln an 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

最新复合函数求导练习题

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

(完整word版)导数的概念、导数公式与应用

导数的概念及运算 知识点一:函数的平均变化率 (1)概念: 函数中,如果自变量在处有增量,那么函数值y也相应的有增量△ y=f(x 0+△x)-f(x ),其比值叫做函数从到+△x的平均变化率,即。 若,,则平均变化率可表示为,称为函数从 到的平均变化率。 注意: ①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; ②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。 ③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。 (2)平均变化率的几何意义 函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。 如图所示,函数的平均变化率的几何意义是:直线AB的斜率。 事实上,。 作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x以增量,函数y相应有增量。若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。 即:(或) 注意: ①增量可以是正数,也可以是负数; ②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。 2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。 注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在 处的函数值,反映函数在附近的变化情况。 3.导数几何意义: (1)曲线的切线 曲线上一点P(x 0,y )及其附近一点Q(x +△x,y +△y),经过点P、Q作曲线的割线PQ, 其倾斜角为当点Q(x 0+△x,y +△y)沿曲线无限接近于点P(x ,y ), 即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。 若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。 即:。

导数及求导

导数定义: [1](一)导数第一定义:设函数y = f(x) 在点x0 的某个邻域内有定义,当自变量x 在x0 处有增量△x ( x0 + △x 也在该邻域内) 时,相应地函数取得增量△y = f(x0 + △x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数y = f(x) 在点x0 处可导,并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即 导数第一定义 (二)导数第二定义:设函数y = f(x) 在点x0 的某个邻域内有定义,当自变量x 在x0 处有变化△x ( x - x0 也在该邻域内) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数y = f(x) 在点x0 处可导,并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即 导数第二定义 (三)导函数与导数:如果函数y = f(x) 在开区间I 内每一点都可导,就称函数f(x)在区间I 内可导。这时函数y = f(x) 对于区间I 内的每一个确定的x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x) 的导函数,记作y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

导数的几何意义是,导数在几何上表现为切线的斜率。对于一元函数,某一点的导数就是平面图形上某一点的切线斜率;对于二元函数而言,某一点的导数就是空间图形上某一点的切线斜率,故必须对极限的定义及几何意义非常了解,不然无法了解倒数的意义。 对于单侧可导,设函数f(x)在点x0及x0的某个领域内有定义 则当h从h=0的右边逼近于h=0即原点时,若lim[f(x0+h)-f(x0)]/h存在,这个极限就是f(x)在x=x0的右导数。左导数类似。区别在于逼近的方向不同。几何意义即函数f(x)左右的切线斜率,如果函数f(x)在点x0的左导数与右导数存在且相同,则称函数f(x)在点x0处可导。 同时,若函数f(x)在点x0可导,则函数f(x)在点x0一定连续,但f(x)在点x0连续却不一定可导。

高考数学--导数中二次求导的运用

高考数学--导数中二次求导的运用 【理·2010全国卷一第20题】已知函数()(1)ln 1f x x x x =+-+. (Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ 解析:先看第一问,首先由()(1)ln 1f x x x x =+-+可知函数()f x 的定义域为()0,+∞,易得()() 11ln 11ln f x x x x x x '=++-=+ 则由2'()1xf x x ax ≤++可知21ln 1x x x ax x ? ?+≤++ ??? ,化简得 2ln x x x ax ≤+,这时要观察一下这个不等式,显然每一项都有因子x ,而x 又大于零,所以两边同乘1x 可得ln x x a ≤+,所以有ln a x x ≥-,在对()ln g x x x =-求导有 ()11g x x '=-,即当0<x <1时,()g x '>0,()g x 在区间()0,1上为增函数;当1x =时,()0g x =;当1<x 时,()g x '<0,()g x 在区间()1,+∞上为减函数。 所以()g x 在1x =时有最大值,即()()ln 11g x x x g =-≤=-。又因为ln a x x ≥-,所以1a ≥-。 应该说第一问难度不算大,大多数同学一般都能做出来。再看第二问。 要证(1)()0x f x -≥,只须证当0<x 1≤时,()0f x ≤;当1<x 时,()f x >0即可。 由上知()1ln f x x x '=+ ,但用()f x '去分析()f x 的单调性受阻。我们可以尝试再对()1ln f x x x '=+求导,可得()211f x x x ''=-,显然当0<x 1≤时,()0f x ''≤;当1<x 时,()f x ''>0,即()1ln f x x x '=+在区间()1,+∞上为减函数,所以有当0<x 1≤时, ()()11f x f ''≥=,我们通过二次求导分析()f x '的单调性,得出当0<x 1≤时()1f x '≥,则()f x 在区间(]0,1上为增函数,即()()10f x f ≤=,此时,则有(1)()0x f x -≥成立。

复合函数的求导法则(导案)

当堂检测 1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)4 x x y = ; (2)1ln 1ln x y x -=+. (3)2(251)x y x x e =-+?; (4)sin cos cos sin x x x y x x x -=+ 解: (1)''''224(4)144ln 41ln 4()4(4)(4)4 x x x x x x x x x x x x x y ?-??-?-====, '1ln 44x x y -=。 (2)''''221 1ln 212()(1)2()21ln 1ln 1ln (1ln )(1ln ) x x y x x x x x x -==-+==?=+++++ '2 2(1ln )y x x =+ (3)'2'2'(251)(251)()x x y x x e x x e =-+?+-+? 22(45)(251)(24)x x x x e x x e x x e =-?+-+?=--?, '2(24)x y x x e =--?。 (4)''sin cos ()cos sin x x x y x x x -=+ '' 2(sin cos )(cos sin )(sin cos )(cos sin )(cos sin ) x x x x x x x x x x x x x x x -?+--?+=+ 2 (cos cos sin )(cos sin )(sin cos )(sin sin s )(cos sin )x x x x x x x x x x x x xco x x x x -+?+--?-++= + 2 sin (cos sin )(sin cos )s (cos sin )x x x x x x x x xco x x x x ?+--?=+ 2 2 (cos sin )x x x x =+。 2 ' 2(cos sin )x y x x x =+

二次求导问题

北京华罗庚学校 为全国学生提供优质教育 二次求导问题 导数既是高中数学的一个重要内容,又是高考的一个必考内容.近几年高考中,出现了一种新的“导数”,它是对导函数进行二次求导而产生的新函数,尤其是近几年作为高考的压轴题时常出现. 利用二次求导求函数的单调性 [典例] 若函数f(x)= sinx ,00时,函数f(x)单调递增;当 f ′(x)<0时,函数f(x)单调递减. [方法演示] 解:由f(x)= sinx ,得f ′(x)= xcosx -sinx , x 2 x 设 g(x)=xcosx -sinx ,则g ′(x)=-xsinx +cosx -cosx =-xsinx. ∵ 0f(x 2),即a>b. [解题师说] xcosx -sinx 从本题解答来看,为了得到 f(x)的单调性,须判断 f ′(x)的符号,而 f ′(x)= x 2 的分母 为正,只需判断分子xcosx -sinx 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题. [应用体验] 1.已知函数f(x)满足f(x)=f ′(1)e x -1 1 2 -f(0)x +x ,求f(x)的解析式及单调区间. 2 解:因为f(x)=f ′(1)e x -1 -f(0)x +1 x 2,所以f ′(x)=f ′(1)e x - 1-f(0)+x. 2 令x =1,得f(0)=1.所以f(x)=f ′(1)e x -112 ,所以 f(0) =f ′(1)e -1 ,解得f ′(1) =e. -x +x =1 2 所以f(x)=e x -x +1 x 2. 2

导数公式证明大全(更新版)

(麻烦那些盗取他人成果的人素质点,最近总有人把我的作品抄袭过去,改改标题就作为他的东西。愤怒啊!!!!!!) 导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)

证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx

=lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx

导数中的二次求导问题

2019高考数学热点难点突破技巧第03讲: 导数中的二次求导问题 【知识要点】 1、高中数学课程标准对导数的应用提出了明确的要求,导数在研究函数中的应用,既是高考考查的重点,也是难点和必考点. 利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大. 2、在解决有关导数应用的试题时,有些题目利用“一次求导”就可以解决,但是有些问题“一次求导”,不能求出原函数的单调性,还不能解决问题,需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. “再构造,再求导”是破解函数综合问题的有效工具,为高中数学教学提供了数学建模的新思路和“用数学”的新意识和新途径. 【方法讲评】 对函数一次求导得到 难度较 的单调性,得到函数的最值,即可得到 到函数 【例1】(理·2010全国卷Ⅰ第20题)已知函数. (Ⅰ)若,求的取值范围;(Ⅱ)证明:

化简得, 所以两边同乘可得,所以有,在对求导有 ,即当<<时,>0,在区间上为增函数;当时, ;当<时,<0,在区间上为减函数. 所以在时有最大值,即.又因为,所以 . 当时,同理,当时,>,即在区间上为增函数,则 ,此时,为增函数,所以,易得 也成立. 综上,得证. 方法二:(Ⅰ),则 题设等价于. 令,则. 当<<时,>;当时,,是的最大值点,所以 . 综上,的取值范围是.

(Ⅱ)由(Ⅰ)知,,即. 当<<时, 因为<0,所以此时. 当时,. 所以 【点评】(1)比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得自然流畅,难度降低,否则,另外一种解法在解第二问时用到第一问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出.(2)大家一定要理解二次求导的使用情景,是一次求导得到之后,解答难度较大甚至解不出来. (3) 二次求导之后,设,再求,求出的解,即得到函数的单调性,得到函数的最值,即可得到的正负情况,即可得到函数 的单调性. 【例2】设函数 (Ⅰ)若在点处的切线为,求的值;(Ⅱ)求的单调区间; (Ⅲ)若,求证:在时,>. 【解析】(Ⅰ)∵∴, ∵在点处的切线为,即在点的切线的斜率为,

求导法则及求导公式

§2 求导法则 上一节我们讲述了导数的相关知识,要求大家:深刻理解导数概念,能准确表达其定义;明确其物理、几何意义,会求曲线上一点的切线方程;能够从定义出发求某些函数的导数;知道导数与导函数的区别和联系;明确导数与单侧导数,可导与连续的关系.特别要注意,要学会从导数定义出发求某些导数的导数.例如,我们上节课已计算出左边所列的导函数,并且我们知道,计算函数在一点的导数或某区间上的导函数归结为极限的计算.因此,从理论上来讲,给了一个函数(不管它是简单函数,还是复杂函数),总可用定义求其导数(只要极限存在).但从我们计算左边几个函数的经验知道,用定义计算函数的导数是比较繁琐的.试想对基本初等函数的导数计算(用定义求导)都如此繁琐,对一般的初等函数更是不可想象. 因此,我们不能满足于只用导数定义求导数,而应去寻找一些求导数的一般方法,以便能较方便地求出初等函数的导数.在给出较一般的方法之前,先看以下函数如何求导数: x x x f cos sin )(1+= x x g 2sin )(1= x x x f cos sin )(2?= )sin()(2ax x g = x x x f a log cos )(3= x x g arcsin )(3= x c x f sin )(4= x x g arccos )(4= 一、导数的四则运算 问题1 设x x x f cos sin )(±=,求)('x f . 分析 利用导数的定义及极限的四则运算知,)'(cos )'(sin sin cos )('x x x x x f ±== .即 )'(cos )'(sin )'cos (sin x x x x ±=± 一般地,有如下和的导法则: 定理1(和的导数) 设)(x f ,)(x g 在x 点可导,则 )()(])()([x g x f x g x f '±'='± (求导是线性运算) 证明 令 )()()(x g x f x y += 。时当0)()()()()()()]()([)]()([→?'+'→?-?++ ?-?+=?+-?++?+=??x x g x f x x g x x g x x f x x f x x g x f x x g x x f x y 问题2 设x a x x f ?=sin )(,则a a x a x x f x x ln cos )'()'(sin )('??=?=对吗?

二次求导法解高考导数题

二次求导法解高考导数题 胡贵平(甘肃省白银市第一中学 ,甘肃 白银 730900) 导数是研究函数性质的一种重要工具,用导函数判断原函数的单调性,如果导函数大于零,则原函数为增,导函数小于零,则原函数为减.而当导数与0的大小确定不了时,对导函数或导函数中的一部分再构造,继续求导,也就是二次求导,不失为一种妙法,下面我们结合高考题来看看二次求导数题中的应用. 1 (2017年高考课标Ⅱ卷(文)(21))设函数2()(1)e x f x x =-. (I )讨论()f x 的单调性; (II)当0x ≥时,()1f x ax ≤+,求a 的取值范围. 解:(I )略. (II)当0x ≥时,()1f x ax ≤+等价于2(1)1x ax x e ≥--. 若=0x ,显然成立,a R ∈. 若0x >时,2(1)1x x e a x --≥,设2(1)1()x x e g x x --=, 2232222(1)(1)1(1)1()x x x x xe x e x x e x x x e g x x x ????-+------+-+????'== , 令32()(1)1x h x x x x e =--+-+,32()(4)0x h x e x x x '=-++<,所以()h x 在(0,)x ∈+∞内是减函数,易知(0)=0h ,所以当(0,)x ∈+∞时,()0h x <,即()0g x '<,所以()g x 在(0,)x ∈+∞上单调递减,所以

22022000 (1)1(101(1)1lim lim (1)1x x x x x x x e e x e x e x x →→=??-------'????==--??)20(21)=1x x x x e =??=--+??,所以1a ≥, 综上所述,a 的取值范围是[)1 +∞,. 2 (2016年高考课标Ⅱ卷(文)(20)) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 解:(I )略. (II)当(1,)∈+∞x 时,()0>f x 等价于(1)ln 1x x a x +< -,设(1)ln ()1x x g x x +=-, 2221(ln )(1)(1)ln 2ln 1()(1)(1)x x x x x x x x x g x x x x ++ --+--'==-- , 令2()2ln 1h x x x x =--,()22ln 22(ln 1)0h x x x x x '=--=-->,所以()h x 在()1,x ∈+∞内是增函数,易知(1)=0h ,所以当()1,x ∈+∞时,()0h x >,即()0g x '>,所以()g x 在()1,x ∈+∞上单调递增,所以 []111 1(1)ln (1)ln (11)ln1(1)lim lim (1)ln ln 211x x x x x x x x x x x x x x x →→==++-++??'==+=+=??--??,所以2≤a ,即a 的取值范围是(],2-∞. 3 (2010年高考安徽卷(理)(17))设a 为实数,函数()22,x f x e x a x R =-+∈.

基本函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =, )(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式

求导公式

1. y=c(c 为常数) y'=0 2. y=x^n y'=nx^(n-1) 3. y=a^x y'=a^xlna y=e^x y'=e^x 4. y=logax y'=logae/x y=lnx y'=1/x 5. y=sinx y'=cosx 6. y=cosx y'=-sinx 7. y=tanx y'=1/cos^2x 8. y=cotx y'=-1/sin^2x 9. y =arcsinx y'=1/√1-x^2 10. y=arccosx y'=-1/√1-x^2 11. y=arctanx y'=1/1+x^2 12. y=arccotx y'=-1/1+x^2 1、a 是一个常数,对数的真数,比如ln5 5就是真数 2、log 对数 lognm 这里的n 是指底数,m 是指真数, 当底数为10时,简写成lgm 当底数为e (e = 2.718281828459)是一个常数 数学中成为超越数 经常要用到)时,简写成lnm 3、sin ,cos ,tan ,sec ,cot ,csc 分别为三角函数 分别表示正弦、余弦、正切、正割、余切、余割。 正弦余弦是一对,正切余切是一对,正割余割是一对 这六个是最基本的三角函数 4、arc 是指的反三角函数 比如反正弦Sin30°=0.5 则arcsin0.5=30°(角度制)=π/6(弧度制) 反正切 反余弦 反余切等等都是同一道理 四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) 0 )(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -='

复合函数求导方法和技巧

复合函数求导方法和技巧 毛涛 (理工学院数计学院数学与应用数学专业2011级1班, 723000) 指导老师:延军 [摘要]复合函数求导是数学分析中的一个难点,也是微积分中的一个重点和难点,因此本文先从复合函数的 定义以及性质入手,在全面了解复合函数后再探讨复合函数的求导方法,分析复合函数求导过程中容易出现 的问题,然后寻求能快速准确的对复合函数进行求导的方法,并进行归纳总结,最终进行推广,帮助学生的 有效学习。 [关键词] 复合函数,定义,分解,方法和技巧,数学应用 1引言 复合函数求导是数学分析中的一个难点,也是高等数学三大基本运算中的关键,是学生深入学习高等数学知识,提高基本运算技能的基础,对学生后继课程的学习和思维素质的培养起着至关重要的作用,在各学科和现实生活中也发挥着越来越重要的作用,从而必须解决复合函数的求导问题。同时,在教学过程中,许多学生在进行求导时也犯各种各样的错误,有的甚至在学习复合函数求导之后做题时仍然不会进行求导,或者只能求导对一部分,而对另外一部分比较复杂的复合函数则还停留在一知半解的程度上,不知该求导哪一部分,也不知要对哪一部分得进行分解求导。复合函数求导方法是求导的重中之重,而且也是函数求导、求积分时不可缺少的工具,这个问题解决的好坏直接影响到换元积分法甚至以后的数学学习是否能够顺利进行。求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,然后由外层向层逐层求导(或者也可以由层向外层逐层求导),直到关于自变量求导,同时还要注意不能漏掉求导环节并及时化简计算结果。因此本文先给出了复合函数的定义和性质,在充分了解并且掌握复合函数的概念之后,根据其定义和性质对各种复合函数进行求导,通过对链式求导法、对数求导法、反序求导法、多元复合函数的一元求导法以及反函数求导法的分析,加以对各种对应例题的详细分解,分析每一步的步骤,比较各种求导方法,明确并且能够掌握各种题型的最佳解决方法,最终寻求一种能够既简便又准确的解决复合函数求导问题的方法,并总结技巧,方便在以后学习生活中的使用。 2复合函数的定义 如果y 是a 的函数,a 又是x 的函数,即()y f a =,()a g x =,那么y 关于x 的函数[]()y f g x =叫做函数()y f x =和()a g x =的复合函数,其中a 是中间变量,自变量为x ,函数值为y 。 3导数的四则运算

2.函数中的二次求导

导数中的二次求导题型 1.(2010年全国卷1理科20)已知函数1ln )1()(+-+=x x x x f . (1)若1)(2++≤'ax x x f x ,求a 的取值范围; (2)证明:0)()1(≥-x f x . 2.(2010年新课标全国卷1理科20)设函数21)(ax x e x f x ---=. (1)若0=a ,求)(x f 的单调区间; (2)若当0≥x 时0)(≥x f ,求a 的取值范围. 3.(2013年河北省石家庄一模理科21)设函数)1ln()(2++=x a x x f . (1)若函数)(x f y =在区间[)+∞,1上是单调递增函数,求实数a 的取值范围; (2)若函数)(x f y =有两个极值点1x ,2x 且21x x <求证:2ln 21)(012+-<< x x f . 4.(2013年山西省太原市一模理科21)已知函数 1()(2)(1)21,()(,x f x a x nx g x xe a R e -=---=∈为自 然对数的底数). (1)若不等式 ()0f x >对于一切1(0,)2 x ∈恒成立,求a 的最小值; (2)若对任意的0(0,]x e ∈,在(0,]e 上总存在两个不同的(1,2)i x i =,使0()()i f x g x =成立,求a 的取值范围.

5.(辽宁省五校第一联合体2013届高三年级考试理科21)已知函数()01ln )(>+=a x a x f . (1)当0>x 时,求证:)11(1)(x a x f -≥-; (2)在区间()e ,1上x x f >)(恒成立,求实数a 的取值范围; (3)当21= a 时,求证:()()*112)1()3()2(N n n n n f f f ∈+-+>++++ . 6.(山西省晋中名校2013届高三联合测试)已知函数()R a e ax x f x ∈-=2)(. (1)当1=a 时,试判断)(x f 的单调性并给予证明; (2)若)(x f 有两个极值点1x ,2x ()21x x <. (i )求实数a 的取值范围; (ii )证明:1)(21-<<- x f e .(注:e 是自然对数的底数) 7.设函数2ln )(2+-=x x x x f . (1)求)(x f 的单调区间; (2)若存在区间[]??????+∞?,21,b a ,使)(x f 在[]b a ,上的值域为[])2(),2(++b k a k ,求k 的取值范围.

复合函数求导公式大全 大学复合函数求导法则

复合函数求导公式大全大学复合函数求导法则 复合函数如何求导?大学符合函数求导公式有哪些?下文小编给大家整 理了复合函数的求导公式及法则,供参考! ?复合函数求导公式 ? ? ?复合函数求导法则证法一:先证明个引理 ?f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0 连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0) ?证明:设f(x)在x0可导,令H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0 ?因lim(x->;x0)H(x)=lim(x->;x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0) ?所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) ?反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0), x∈U(x0) ?因存在极限lim(x->;x0)H(x)=lim(x->;x0)[f(x)-f(x0)]/(x-x0)=lim(x->;x0) f'(x)=H(x0) ?所以f(x)在点x0可导,且f'(x0)=H(x0) ?引理证毕。 ?设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0) ?证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

相关文档