文档库 最新最全的文档下载
当前位置:文档库 › 全铁含量的测定

全铁含量的测定

全铁含量的测定
全铁含量的测定

全铁含量的测定

(1)三氯化钛还原滴定法

1 方法提要

试样用硫磷混酸溶解,加入盐酸在热沸状态下用氯化亚锡还原大部分三价铁。在冷溶液中以中性红为指示剂,滴加三氯化钛还原剩余三价铁,并稍过量,在二氧化碳气体保护下,用重铬酸钾氧化过量三氯化钛,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定到终点。根据消耗的重铬酸钾标准溶液的体积计算试样中全铁百分含量。

2 主要试剂

2.1 硫磷混酸(1+1+1)。

2.2 盐酸(1+5)。

2.3 氟化钾(5%)。

2.4 碳酸氢钠:固体。1.19g/mL)中,加水稀释至100mL。ρ

2.5 氯化亚锡(6%):6g氯化亚锡溶于20mL盐酸(1.42g/mL)。ρ

2.6 硝酸

2.7 中性红指示剂(0.05%)。(1.69g/mL)。ρ

2.8 二苯胺磺酸钠指示剂(0.5%):称取二苯胺磺酸钠0.5g,溶于100mL水中,加2滴磷酸

2.9 三氯化钛(1+19):取三氯化钛溶液15~20%,用盐酸(1+9)稀释至20倍,加少许锌粒,防止氧化。

2.10 重铬酸钾标准溶液:c(k2Cr2O7)=0.03581mol/L。

3 分析步骤

1.42g/mL)1mL,加热溶解,至浓厚白烟从瓶中腾空2~3cm,后取下稍冷,

慢慢加入盐酸(1+5)20mL,加热至沸,滴加氯化亚锡到溶液呈淡黄色,加水50mL,溶解盐类,冷至室温。 取试样0.2000g置于300mL锥形瓶中,加入氟化钾溶液(5%)5mL,将试样湿润摇开,加入硫磷混酸15mL,硝酸(加4~5滴中性红指示剂,此时溶液呈蓝色,滴加三氯化钛(1+19)至溶液为无色,加约1g固体碳酸氢钠,滴加重铬酸钾(可用标准溶液或稍加稀释)至溶液呈稳定蓝色,立即加二苯胺磺酸钠指示剂(0.5%)4滴,用重铬酸钾标准溶液滴定至溶液为紫红色为终点。

4 分析结果的计算

TFe(%)=滴定时消耗重铬酸钾标准溶液的毫升数

5 注

5.1 溶样炉温宜高,冒烟时间不宜长,以防形成难溶盐类。

5.2 试样冒烟完毕取下后,应自然冷却至瓶内无白烟,再慢慢加入盐酸,防止反应剧烈,试液溅出。

5.3 加入盐酸后,煮沸时间不可过长,以防三氯化铁挥发。

5.4 用氯化亚锡还原时不可过量。

6 允许差

全铁量,% 标样允许差% 试样允许差%

≤50±0.14 0.20

>50 ±0.21 0.30

铁含量的测定

铁含量(硫氰酸钾比色法) 1、原理:铁离子与硫氰酸盐生成一种血红色络合物,可用比色测定。 Fe3++6SCN-→Fe(SCN)63- 硫氰酸钾的浓度对颜色深浅有显著影响,所以应当严格控制,使标准溶液与分析溶液中硫氰酸盐的浓度一致。所形成的络合物不够稳定放置时间久就会退色,应在变色后一小时内完成测定。 2、试剂 (1)铁标准溶液:称取0.7020克分析纯硫酸亚铁铵晶体溶于50ml蒸馏水中,再加入6毫升1:1盐酸和0.1克过硫酸铵,摇匀放置3~5分钟。将溶液移入1升容量瓶中。稀释至刻度。上述1ml溶液中含0.1毫克Fe3+ (2)硫氰酸钾溶液:取50克分析纯硫氰酸钾晶体,溶于50ml蒸馏水中,并稀释至100ml (3)1:1盐酸 (4)过硫酸铵AR(100g/L) (5)浓硫酸 (6)1:1氨水 3、测定步骤 (1)取40ml水样于150ml锥形瓶中,加5ml浓硝酸加热煮沸5分钟,冷却后以氨水调节至中性(用试纸) (2)、加入4ml 1:1盐酸和0.1克过硫酸铵,放10分钟移入50ml比色管,用蒸馏水稀释至刻度。 (3)加入2ml硫氰酸钾,混合均匀后,于510nm处测其光密度。 (4)标准曲线的绘制:取一系列50ml比色管,分别加入0、0.2、0.5、1.0、2.0、3.0、4.0铁标准溶液,加4ml1:1盐酸和0.1克过硫酸铵,用蒸馏水稀释至刻度,加2ml硫氰酸钾,发色后测其光密度,绘制标准曲线。 4、计算:总铁:(毫克/升=A×1000/V) 式中:A-相应于光密度数值的铁含量(配制样标准比色液时所用的硫酸铁铵标准液的体积) V-水样体积 分光光度计的使用 提前30分钟开机,使仪器提前预热 1、在比色皿中倒入一个蒸馏水和试样,分别放入相应的测量位置。 2、在空白处,即没有东西处调零(开盖调零),调节时指示灯T/%显示。 3、闭盖调100(在蒸馏水处调100),按下Δ(OA/100%)即可,同2。 4、然后把位置拉到所测试样处,在这时指示灯所显示位置在T/%处,按A/T/C/F键,使指示 灯在Abs处显示即可得吸光度。 5、Fe3+(铁离子):(仪器所测-0.0546)÷0.2462×0.1×1000 40

铁含量的测定方法

铁含量的测定方法 铁含量的测定采用邻菲啰啉比色法。 一、原理 在一定酸度条件下,试液中亚铁离子(Fe2+)与1,10-邻菲啰啉生成红色配合物,于波长为506nm处,测定其吸光度,即可计算出铁含量。 二、试剂和仪器 柠檬酸三钠水溶液,150g/L;盐酸羟胺溶液,50 g/L;盐酸溶液,3mol/L;氨水溶液,2.5%;1,1 0-邻菲啰啉溶液,2.5 g/L:称量2.5g1, 10-邻菲啰啉溶于80℃的约l00ml水中,加lml浓盐酸,冷却后加水稀释至1000ml,储于阴凉处备用; 醋酸-醋酸钠缓冲溶液:称量272g醋酸钠(NaCH3·CO2·3H2O)于约500m1水中,加入冰醋酸240ml,加水稀释至1000ml; Fe2+标准溶液,lmg/ml:称量7.024g硫酸亚铁铵于约500ml水中,加入浓盐酸10ml,移入l000ml 容量瓶中,稀释至刻度; Fe2+标准溶液,20?g/ml:吸取lmg/ml的亚铁标准溶液20ml于1000ml容量瓶中,用水稀释至刻度,混匀,临用前配制。 仪器:分光光度计;1cm比色皿。 三、测定步骤 (一)工作曲线的绘制 量取20?g/ml的亚铁标准溶液0.00m1、2 .50m1、5 .00ml、10.00ml、20.00ml(相当于分别含0、50、100、200、400?g/ Fe2+)分别加入l00ml烧杯中,用水稀释至50ml,加入150g/L柠檬酸三钠溶液5m1,用3mol/L盐酸或2.5%氨水溶液调节溶液pH为2.4~2.6,加入50 g/L盐酸羟胺溶液5ml混匀,加入1,10-邻菲罗琳溶液5m1,加入醋酸-醋酸钠缓冲溶液l0ml,将溶液移入到l00 ml容量瓶中,用水稀释至刻度,混匀放置60min。 用分光光度计在波长506nm处用lcm比色皿,以水为参比溶液测定该标准系列的吸光度,以Fe2+标准溶液浓度(?g/100ml)为横坐标,以其对应吸光度作纵坐标绘制工作曲线。 (二)湿法磷酸中铁含量的测定 吸取1 ml湿法磷酸,用水稀释至100m1,混匀,移取1m1到100m1的烧杯中,用水稀释至50m1,以下操作同工作曲线的绘制,测定其吸光度。 不加试样,在同样条件下进行空白试验。 (三)计算 总铁含量按下式计算 w(Fe)= 式中:m1为从工作曲线上查得被测试液Fe的质量,?g;m0为从工作曲线上查得试剂空白溶液中Fe的质量,?g;m为吸取试样溶液相当于试样的质量,g

全铁含量的测定

全铁含量的测定 (1)三氯化钛还原滴定法 1 方法提要 试样用硫磷混酸溶解,加入盐酸在热沸状态下用氯化亚锡还原大部分三价铁。在冷溶液中以中性红为指示剂,滴加三氯化钛还原剩余三价铁,并稍过量,在二氧化碳气体保护下,用重铬酸钾氧化过量三氯化钛,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定到终点。根据消耗的重铬酸钾标准溶液的体积计算试样中全铁百分含量。 2 主要试剂 2.1 硫磷混酸(1+1+1)。 2.2 盐酸(1+5)。 2.3 氟化钾(5%)。 2.4 碳酸氢钠:固体。1.19g/mL)中,加水稀释至100mL。ρ 2.5 氯化亚锡(6%):6g氯化亚锡溶于20mL盐酸(1.42g/mL)。ρ 2.6 硝酸 2.7 中性红指示剂(0.05%)。(1.69g/mL)。ρ 2.8 二苯胺磺酸钠指示剂(0.5%):称取二苯胺磺酸钠0.5g,溶于100mL水中,加2滴磷酸 2.9 三氯化钛(1+19):取三氯化钛溶液15~20%,用盐酸(1+9)稀释至20倍,加少许锌粒,防止氧化。 2.10 重铬酸钾标准溶液:c(k2Cr2O7)=0.03581mol/L。 3 分析步骤 1.42g/mL)1mL,加热溶解,至浓厚白烟从瓶中腾空2~3cm,后取下稍冷,

慢慢加入盐酸(1+5)20mL,加热至沸,滴加氯化亚锡到溶液呈淡黄色,加水50mL,溶解盐类,冷至室温。 取试样0.2000g置于300mL锥形瓶中,加入氟化钾溶液(5%)5mL,将试样湿润摇开,加入硫磷混酸15mL,硝酸(加4~5滴中性红指示剂,此时溶液呈蓝色,滴加三氯化钛(1+19)至溶液为无色,加约1g固体碳酸氢钠,滴加重铬酸钾(可用标准溶液或稍加稀释)至溶液呈稳定蓝色,立即加二苯胺磺酸钠指示剂(0.5%)4滴,用重铬酸钾标准溶液滴定至溶液为紫红色为终点。 4 分析结果的计算 TFe(%)=滴定时消耗重铬酸钾标准溶液的毫升数 5 注 5.1 溶样炉温宜高,冒烟时间不宜长,以防形成难溶盐类。 5.2 试样冒烟完毕取下后,应自然冷却至瓶内无白烟,再慢慢加入盐酸,防止反应剧烈,试液溅出。 5.3 加入盐酸后,煮沸时间不可过长,以防三氯化铁挥发。 5.4 用氯化亚锡还原时不可过量。 6 允许差 全铁量,% 标样允许差% 试样允许差% ≤50±0.14 0.20 >50 ±0.21 0.30

铁矿石中全铁含量测定方法分析

铁矿石中全铁含量测定方法分析 铁矿石全铁的测定,是指样品中铁的全量而言,包括铁的复杂硅酸盐在内。铁矿石的分解,在实际应用中,根据矿石的特性、分析项目的要求及干扰元素的分离等情况,通常选用酸分解和碱熔融的方法。样品分解时一般用过氧化钠熔融是最恰当的方法。对于不含复杂硅酸盐的铁矿也可以用磷酸溶矿法或盐酸法。 重铬酸钾容量法 在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化高汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。反应式为2Fe3+ + Sn 2+ + 6Cl―—→ 2Fe2+ + SnCl62― Sn2+ + 4Cl― + 2HgCl2—→ SnCl62― + Hg2Cl2↓ 6Fe2+ + Cr2O72- + 14H+—→ 6Fe3+ + 2Cr3+ + 2Cr3+ + 7H2O 此法的优点是:过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,受温度的影响(30℃以下)较小,测定的结果比较准确。 《矿石及有色金属分析手册》P94 溶样方法: 1、三酸分解试样 2、过氧化钠分解试样 3、硫—磷混酸溶样 4、盐酸溶样 硫—磷混酸溶样 分析步骤:准确称取0.2g试样于250mL锥形瓶中,用少许水润湿,摇匀。加入10mL(2+3)硫磷混合酸及0.5g氟化钠,摇匀。在高温电炉上加热溶解3~5min,取下冷却,加入15mL 盐酸,低温加热至近沸并维持3~5min,溶液变澄清,取下趁热滴加二氯化锡溶液至铁(Ⅲ)离子的黄色消失,并过量1~2滴,用水冲洗瓶壁。在水槽中冷却至室温后,加入10mL二氯化汞饱和溶液,摇动后放置2~3 min,加水至120mL左右,冷却后加入5滴5g/L二苯胺磺酸钠指示剂,用重铬酸钾标准溶液滴定至紫色为终点。与试样分析同时进行空白试验。 注意: 1、溶样时需要用高温电炉,并不断地摇动锥形瓶以加速分解,否则在瓶底将析出焦磷酸盐或偏磷酸盐,使结果不稳定。 2、熔矿温度要严格控制。通常铁矿在250~300℃加热3~5min即可分解。温度过低,样品不易分解;温度过高,时间太长,磷酸会转化为难溶的焦磷酸盐,在350℃以上凝成硬块,影响滴定终点辨别,并使分析结果偏低。 3、本法适用于不含复杂硅酸盐的铁矿分析。磷酸的溶解力很强,对于大部分矿物都能分解,只有以下矿物不易分解:辰砂、辉钼矿、锡石、黄晶、锆英石、绿柱石以及复杂硅酸盐矿物。 过氧化钠分解试样 分析步骤:准确称取0.2g试样,置于30mL银坩埚中,加入3g过氧化钠,混匀,再加1g 过氧化钠覆盖。放入已经升温至650~700℃的马弗炉中,熔融5 min,取出冷却。将坩埚放入300mL烧杯中,加水20mL,浸取。待剧烈作用停止后,加盐酸15~20mL,同时搅拌,使溶块溶解,然后用5%盐酸洗净坩埚。在电炉上继续加热至近沸并维持约10min。取下趁热滴加二氯化锡溶液至铁(Ⅲ)离子的黄色消失,并过量1~2滴,用水冲洗杯壁。在水槽中冷却至室温后,加入10mL二氯化汞饱和溶液,摇动后放置2~3min,加水至120mL左右,

铁测定方法

溶解性铁 地壳中含铁量(Fe)约为5.6%,分布很广,但天然水体中含量并不高。 实际水样中铁的存在形式是多种多样,可以在真溶液中以简单的水合离子和复杂的无机、有机络合物形式存在。也可以存在于胶体,悬浮物和颗粒物中,可能是二价,也可能是三价的。而且水样暴露于空气中,二价铁易被迅速氧化为三价,样品pH>3.5时,易导致高价铁的水解沉淀。样品在保存和运输过程中,水中细菌的繁殖也会改变铁的存在形态。样品的不稳定性和不均匀性对分析结果影响颇大,因此必须仔细进行样品的预处理。 铁及其化合物均为低毒性和微毒性,含铁量高的水往往带有黄色,有铁腥味。如作为印染、纺织、造纸等工业用水时,则会在产品上形成黄斑,影响质量,因此这些工业用水的铁含量必须在0.1mg/L以下。水中铁的污染来源主要是选矿、冶炼、炼铁、机械加工、工业电镀、酸洗废水等。 1.方法的选择 原子吸收法操作简单、快速、结果的精密度、准确度好,适用于环境水样和废水样的分析;邻菲啰啉光度法灵敏、可靠,适用于清洁环境水样和轻度污染水的分析;污染严重,含铁量高的废水,可用EDTA络合滴定法。避免高倍数稀释操作引起的误差。 2.水样的保存与处理 测总铁,在采样后立刻用盐酸酸化至pH1保存;测过滤性铁,应在采样现场经0.45μm 的滤膜过滤,滤液用盐酸酸化至pH1;测亚铁的样品,最好在现场显色测定,或按方法(二)操作步骤处理。 (一)火焰原子吸收分光光度法 GB11911--89 概述 1.方法原理 在空气—乙炔火焰中,铁的化合物易于原子化,可于波长248.3nm处测量铁基态原子对铁空心阴极灯特征辐射的吸收进行定量。 2.干扰及消除 影响铁原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰;这些干扰的程度随着硅浓度的增加而增加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁的火焰原子吸收法的基体干扰不太严重,由分子吸收或光散射造成的背景吸收也可忽略。但对于含盐量高的工业废水,则应注意基体干扰和背景校正。此外,铁的光谱线较复杂,例如,在铁线248.3 nm附近还有248.8 nm线;为克服光谱干扰,应选则最小的狭缝或光谱带。 3.方法的适用范围 本法的铁检出浓度分别是0.03 mg/L,测定上限分别为5.0 mg/L。本法适用于地表水、地下水及化工、冶金、轻工、机械等工业废水中铁的测定。

矿石中全铁量的测定

矿石中全铁量的测定 试剂 1、浓盐酸(比重1.19、12N) 2、氯化亚锡(6%):称取6克氯化亚锡[SnCL2、2H2O]溶于20毫升热盐酸中,用水稀释至100毫升,加几粒纯锡备用。 3、氯化汞饱和溶液:取约10克HgCL2溶于100毫升热水中,冷却后使用。 4、硫磷混和酸:取150毫升浓硫酸缓慢的注入700毫升水中,冷却后,再加入150毫升浓磷酸,混匀即可。 5、二笨胺磺酸钠指示剂:0.5%的水溶液。 6、重铬酸钾标准溶液(0.1N):精确称取K2Cr2O7(已在105℃至130℃烘干2小时)4.9035克置于小烧杯中,用少量水溶解后,移入一升容量瓶中,用水稀释至刻度,摇匀即可。(若用的是基准试剂,而且称量准确,可不必标定,即可作为标准溶液应用。否则,应称取0.1克还原铁粉按操作法标定)。 三、分析方法 准确称取试样0.2000克置于250毫升锥瓶中,加少量水润湿后,加入10-15毫升浓盐酸,低温加热溶解,至瓶底无黑色颗粒即溶完。用少量热水吹洗瓶壁,趁热滴加氯化锡溶液并充分摇动,滴至黄色刚好消失再过量1-2滴,流水冷却至室温加水50-100毫升,加入5毫升氯化汞饱和溶液,摇匀,静置3-5分钟,硫磷混酸20毫升,二笨胺磺酸钠指示剂5滴,用0.1NK2Cr2O7标准溶液滴定,至呈稳定的紫色即为中点。 全铁TFe%=NV×0.05585/g×100(或=TFeV/G×100) G——试样重量(克)

V——滴定毫升数 N——K2Cr2O7当量浓度 TFe——K2Cr2O7标准溶液对铁的滴定度(克/毫升) 硫磷混酸溶样法 1、试剂:硫磷混酸1:1 2、分析方法 称取试样0.2000克置于250毫升锥瓶中,加少量水润后,加10毫升硫磷混酸,高温加热`数分钟到白烟至瓶口,取下自然冷却,加入10毫升浓盐酸煮沸,趁热缓慢滴加氯化锡溶液并充分摇动,到黄色消失约带黄色为止,流水冷却到室温加入50毫升水(3-5)毫升氯化汞饱和溶液,摇匀,静置3-5分钟,滴加5滴二笨胺磺酸钠指示剂用0.1NK2Cr2O7标准溶液滴定至呈稳定的紫色即为终点。 (丁) 硝硫磷混酸溶样法 试剂 硝酸 硫磷混酸1:1 高锰酸钾3% 三、分析方法 称取试样0.1000克置于250毫升锥形瓶中,加少量水润后,加2毫升硝酸酸10毫升硫磷混酸,高温加热溶解数分钟到冒白烟,取下自然冷却,用少量热水吹洗瓶壁,滴加3%高锰酸钾至约带紫红色,加入10毫升盐酸煮沸,用氯化亚锡还原至约带黄色,流水冷法到室温,加`50毫升水,3-5毫升氯化汞静置5分钟,加5滴二笨胺磺酸钠指示剂,用0.05K2Cr2O7标液溶液滴定至呈稳定的紫色即为终点(其余同甲)

重铬酸钾容量法测定全铁含量

重铬酸钾容量法测定全铁含量 1、方法提要 试样用硫磷混酸分解,在盐酸介质中,先用氯化亚锡还原大部分高价铁,以钨酸钠为指示剂,再用三氯化钛将全部高价铁还原成低价至生成“钨蓝”,用重铬酸钾氧化至蓝色消失,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定,借此测定全铁量。测定范围10%以上。 2、试剂 除说明外,皆为分析纯 2.1 硫磷混酸:将500ml硫酸(ρ1.84g/ml)在不断搅拌下缓缓加入500ml水中,再加入500ml磷酸(ρ1.70g/ml)混匀。 2.2 盐酸(1+1)。 2.3 氯化亚锡(10%):称取10g氯化亚锡,溶于20ml盐酸(ρ1.19g/ml)中,用水稀释到100ml,加入数粒锡粒,混匀。 2.4 钨酸钠溶液(25%):称取25g钨酸钠溶于适量的水中,加入5ml磷酸(ρ1.70g/ml)用水释至lOOml,混匀。 2.5 三氯化钛(1+9):取三氯化钛溶液(15%~20%)10ml,用(1+4)盐酸稀释到100ml,混匀。 2.6 二苯胺磺酸钠溶液(O.5%)。 2.7 重铬酸钾标准溶液C(K2Cr207)=0.008333mol/L:称取2.4515g预先在150℃烘干1h的重铬酸钾(基准试剂)溶于100ml水中,移入1000ml容量瓶中,用水稀释至刻度,摇匀。

2.8 重铬酸钾溶液:取一定量的重铬酸钾标准溶液(2.7)稀释三至四倍。 3、分析步骤 称取O.2000g试样于250ml锥形瓶中,加入15ml硫磷混酸(2.1),在高温电炉上加热分解,至冒硫酸白烟并腾空距瓶底3~4cm时,取下稍冷,加15ml热的HCl(1+1)溶液,将试液加热近沸,趁热滴加10%SnCl2溶液至试液呈浅黄色,冷却至室温,用水稀释至1OOml左右;加15滴钨酸钠溶液,用三氯化钛溶液滴至呈蓝色,再滴加重铬酸钾溶液至无色,加2滴二苯胺磺酸钠溶液,立即用重铬酸钾标准溶液滴至稳定的紫色。 4、分析结果的计算 按下式计算全铁的百分含量 TFe%= ×0.0027925 V m ×100 式中:V——滴定所消耗的重铬酸钾标准溶液的体积(ml); O.0027925——1ml0.008333mol/L重铬酸钾溶液相当于铁 量(g); m——试样量(g)。 5、注意事项 5.1 矿样中含碳量过高,妨碍滴定终点观察时,可预先将矿样在700℃~800℃高温炉中灼烧10~15min;或在硫磷混酸溶样时,加5ml 硝酸氧化碳。 5.2 氯化亚锡不能过量,否则影响结果;如不慎过量,可滴加1%

实验分光光度法测定铁

实验分光光度法测定铁 The following text is amended on 12 November 2020.

实验十四邻二氮菲分光光度法测定铁的含量 一、实验目的 1.学习吸光光度法测量波长的选择方法; 2.掌握邻二氮菲分光光度法测定铁的原理及方法; 3. 掌握分光光度计的使用方法。 二、实验原理 分光光度法是根据物质对光选择性吸收而进行分析的方法,分光光度法用于定量分析的理论基础是朗伯比尔定律,其数学表达式为:A=εb C 邻二氮菲(又称邻菲罗啉)是测定微量铁的较好试剂,在pH=2~9的条件下,二价铁离子与试剂生成极稳定的橙红色配合物。摩尔吸光系数ε=11000 L·mol-1·cm-1。在显色前,用盐酸羟胺把Fe3+还原为Fe2+。 2Fe3++2NH 2OHHCl→2Fe2++N 2 +4H++2H 2 O+2Cl- Fe2+ + Phen = Fe2+ - Phen (橘红色) 用邻二氮菲测定时,有很多元素干扰测定,须预先进行掩蔽或分离,如钴、镍、铜、铅与试剂形成有色配合物;钨、铂、镉、汞与试剂生成沉淀,还有些金属离子如锡、铅、铋则在邻二氮菲铁配合物形成的pH范围内发生水解;因此当这些离子共存时,应注意消除它们的干扰作用。 三、仪器与试剂 1.醋酸钠:l mol·L-1; 2.盐酸:6 mol·L-1; 3.盐酸羟胺:10%(用时配制); 4.邻二氮菲(%):邻二氮菲溶解在100mL1:1乙醇溶液中; 5.铁标准溶液。 (1)100μg·mL-1铁标准溶液:准确称取(NH 4) 2 Fe(SO 4 ) 2 ·12H 2 0于烧杯中, 加入20 mL 6 mol·L-1盐酸及少量水,移至1L容量瓶中,以水稀释至刻度,摇匀. 6.仪器:7200型分光光度计及l cm比色皿。 四、实验步骤 1.系列标准溶液配制 (1)用移液管吸取10mL100μg·mL-1铁标准溶液于100mL容量瓶中,加入2mL 6 mol·L-1盐酸溶液, 以水稀释至刻度,摇匀. 此溶液Fe3+浓度为10μg·mL-1. (2) 标准曲线的绘制: 取50 mL比色管6个,用吸量管分别加入0 mL,2 mL,4 mL, 6 mL, 8 mL和10 mL10μg·mL-l铁标准溶液,各加l mL盐酸羟胺,摇匀; 经再加2mL邻二氮菲溶液, 5 mL醋酸钠溶液,摇匀, 以水稀释至刻度,摇匀后放置 10min。 2.吸收曲线的绘制 取上述标准溶液中的一个, 在分光光度计上,用l cm比色皿,以水为参比溶液,用不同的波长,从440~560 nm,每隔10 nm测定一次吸光度,在最大吸收波长

实验十 铁矿中全铁含量的测定

实验十铁矿中全铁含量的测定(无汞定铁法) 一、实验目的 1.掌握K2Cr2O7标准溶液的配制及使用。 2.学习矿石试样的酸溶法。 3.学习K2Cr2O7法测定铁的原理及方法。 4.对无汞定铁有所了解,增强环保意识。 5.了解二苯胺磺酸钠指示剂的作用原理。。 二、实验原理 K2Cr2O7直接配制标准溶液。 1.测定: Cr2O7 2-+ 6 Fe2++ 14H+===2Cr3++6 Fe3+ +7H2O 2.预还原: 2FeCl4- + SnCl42- + 2Cl- =====2FeCl42- + SnCl62- 过量SnCl2:SnCl2 + 2HgCl2===== SnCl4 + Hg2Cl2(汞污染) 使用甲基橙指示SnCl2还原Fe3+: (CH3)2NC6H4N=NC6H4SO3Na 2H+ (CH3)2NC6H4N-NC6H4SO3Na 2H+ (CH3)2NC6H4H2N + H2NC6H4SO3Na(产物不消耗K2Cr2O7) 三、实验步骤 1. K2Cr2O7标准溶液的配制 准确称取0.65~0.70g左右已在150~180oC干燥2h的K2Cr2O7于小烧杯中,加水溶解,定量转移至250ml容量瓶中,加水稀释至刻度,摇匀。 2. 铁矿中全铁含量的测定 准确称取铁矿石粉1.5g左右于250 mL烧杯中,用少量水润湿,加入20 mL浓HCl溶液,盖上表面,在通风柜中低温加热分解试样,若有带色不溶残渣,可滴加20~30滴100g/L SnCl2助溶。试样分解完全时,残渣应接近白色(SiO2),用少量水吹洗表面皿及烧杯壁,冷却后转移至250ml容量瓶中,稀释至刻度并摇匀。 移取试样溶液25.00mL于锥形瓶中,加8mL浓HCl溶液,加热近沸,加人6滴甲基橙,趁热边摇动锥形瓶边逐滴加人100g·L-1 SnCl2还原Fe3+。溶液由橙变红,再慢慢滴加50g·L-1 SnCl2

实验3水中微量铁的测定

实验三水中微量铁的测定——邻菲啰啉分光光度法 一、实验目的 1.学习选择分光光度法实验条件的方法; 2.掌握分光光度法测定铁的基本原理及方法; 3.掌握分光光度计的使用方法。 二、实验原理 应用可见光分光光度法测定物质含量时,通常将被测物质与显色剂反应,使之生成有色物质,然后测量其吸光度,进而求得被测物质的含量。因此,显色反应的完全程度和吸光度的物理测量条件都影响到测定结果的准确性。 显色反应的完全程度取决于介质的酸度、显色剂的用量、反应的温度和时间等因素。在建立分析方法时,需要通过实验确定最佳反应条件。为此,可改变其中一个因素(例如介质的pH值),暂时固定其他因素,显色后测量相应溶液的吸光度,通过吸光度-pH曲线确定显色反应的适宜酸度范围。其它几个影响因素的适宜值,也可按这一方式分别确定。此外,加入试剂的顺序,离子价态,干扰物质的影响等都应加以研究,以便拟定合适的分析步骤,使实验快捷、准确。本实验通过对Fe2+-邻菲啰啉反应的几个基本条件实验,学习分光光度法测定条件的选择。 邻菲啰啉法是测定微量铁的一种常用的方法。一般情况下,铁以Fe3+状态存在时,盐酸羟胺可将其还原为Fe2+,反应如下: 2 Fe3++2 NH2OH·HCl═2 Fe2+ +N2 ↑+4 H+ +2 H2O+2 Cl- 在pH=2 9的溶液中,试剂与Fe2+生成稳定的1:3橘红色配合物,其lgK稳=21.3,在510 nm有最大吸收,ε=1.1×104 L·cm-1 mol-1。测定时,控制溶液酸度在pH=5左右为宜。酸度高时反应较慢;酸度太低,离子则容易水解,影响显色。 Cu2+、Co2+、Ni2+、Cd2+、Hg2+、Mn2+、Zn2+等离子也能与邻菲啰啉生成稳定配合物,这些离子含量较低时不影响测定,含量较高时可用EDTA掩蔽或经分离除去。 本实验通过绘制吸收曲线选择最大吸收波长或选择适宜的测量波长;通过变动某实验条件,固定其余条件,确定测定最佳酸度和显色剂用量。 三、仪器和试剂 仪器:Unico 2100型分光光度计(配1 cm比色皿)、酸度计(或精密pH试纸)、容量瓶、刻度吸量管等。 试剂 1. 铁标准溶液:100 μg·mL-1(准确称取0.2159 g分析纯硫酸铁铵(NH4Fe (SO4)2·12H2O)于小烧杯中,加水溶解,加入6 mol·L-1 HCl溶液5 mL,定量转移至250 mL容量瓶中,用水定容后摇匀,所得溶液每毫升含铁0.100 mg) 2. 邻菲啰啉溶液:0.2%(称取1g邻菲啰啉,先用5~10 mL 95%乙醇溶解,再用蒸馏水稀释到500 mL,临用前新配)

铁测定方法全铁的测定方法有些

铁测定方法全铁的测定方法有些 溶解性铁 地壳中含铁量(Fe)约为5.6%,分布很广,但天然水体中含量并不高。 实际水样中铁的存在形式是多种多样,可以在真溶液中以简单的水合离子和复杂的无机、有机络合物形式存在。也可以存在于胶体,悬浮物和颗粒物中,可能是二价,也可能是三价的。而且水样暴露于空气中,二价铁易被迅速氧化为三价,样品pH>3.5时,易导致高价铁的水解沉淀。样品在保存和运输过程中,水中细菌的繁殖也会改变铁的存在形态。样品的不稳定性和不均匀性对分析结果影响颇大,因此必须仔细进行样品的预处理。 铁及其化合物均为低毒性和微毒性,含铁量高的水往往带有黄色,有铁腥味。如作为印染、纺织、造纸等工业用水时,则会在产品上形成黄斑,影响质量,因此这些工业用水的铁含量必须在0.1mg/L以下。水中铁的污染主要是选矿、冶炼、炼铁、机械加工、工业电镀、酸洗废水等。 1.方法的选择 原子吸收法操作简单、快速、结果的精密度、准确度好,适用于环境水样和废水样的分析;邻菲啰啉光度法灵敏、可靠,适用于清洁

环境水样和轻度污染水的分析;污染严重,含铁量高的废水,可用EDTA络合滴定法。避免高倍数稀释操作引起的误差。 2.水样的保存与处理 测总铁,在采样后立刻用盐酸酸化至pH1保存;测过滤性铁,应在采样现场经0.45?m的滤膜过滤,滤液用盐酸酸化至pH1;测亚铁的样品,最好在现场显色测定,或按方法(二)操作步骤处理。 (一)火焰原子吸收分光光度法 GB11911--89 概述 1.方法原理 在空气—乙炔火焰中,铁的化合物易于原子化,可于波长248.3nm 处测量铁基态原子对铁空心阴极灯特征辐射的吸收进行定量。 2.干扰及消除 影响铁原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰;这些干扰的程度随着硅浓度的增加而增加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁的火焰原子吸收法的基体干扰不太严重,由分子吸收或光散射造成的背景吸收也可忽略。但对于含盐量高的工业废水,

化验室检测铁含量测定

Confidential密级:仅供内部使用Document Ref. Code文件代码: SOP-QA-WT-006 Version Number版本号 第1.0版Page 1of 4 Prepared by/编制者:Reviewed by/审阅者:Authorized by/批准者:____________________ ____________________ ____________________ Date/日期:Date/日期:Date/日期:

Confidential密级:仅供内部使用Document Ref. Code文件代码: SOP-QA-WT-006 Version Number版本号 第1.0版Page 2of 4 1.0目的 正确测定铁含量 2.0范围 原水/砂滤水/炭滤水 3.0职责 水处理工程师、领班、品控员负责此文件的执行。 4.0定义 无 5.0程序 5.1仪器与试剂 5.1.1铁含量测定仪(“HACH” TPTZ 型号) 5.1.2铁含量试剂药包(“HACH”TPTZ Iron Reagent for 25 ml sample) 5.2取样 5.2.1取样前水处理系统应至少已运行10分钟。 5.2.2取样时应打开取样阀排水3~5分钟。 5.3分析步骤 5.3.1水样中有铁存在时,溶解的铁含量试剂(“HACH”TPTZ Iron Reagent for 25 ml sample)会使水样变成蓝色,如果水样中铁的浓度太高,需将水样中铁的浓度 稀释至0.2~1.2mg/l,制成待测水样。 5.3.2当待测水样中铁浓度低(0~0.20 mg/l)时:

土壤全铁测定方法

FHZDZTR0122 土壤全铁的测定邻菲啰啉光度法 F-HZ-DZ-TR-0122 土壤—全铁的测定—邻菲啰啉光度法 1 范围 本方法适用于土壤中全铁量的测定。 测定范围:质量分数为0.05%~2.5%铁。 2 原理 土壤用氢氟酸-高氯酸-硝酸分解。铁(Ⅲ)离子以盐酸羟胺还原为铁(Ⅱ),在pH 2~9范围内与邻菲啰啉生成红色络合物,在波长510nm处测量其吸光度。 3 试剂 3.1 高氯酸(ρ 1.66g/mL),优级纯。 3.2 硝酸(ρ 1.42g/mL),0.16mol/L。优级纯。 3.3 氢氟酸(ρ 1.15g/mL)。 3.4 盐酸(ρ 1.19g/mL),(1+1),优级纯。 3.5 盐酸羟胺溶液[ρ (NH2OH·HCl)=100g/L]:称取10g盐酸羟胺溶于水中,稀释至100mL。 3.6 邻菲啰啉溶液[ρ (C12H8N2·H2O)=1g/L]:称取1g邻菲啰啉溶于水中,稀释至1L。 3.7 乙酸钠溶液[ρ (CH3COON·3H2O)=100g/L]:称取100g乙酸钠溶于水中,稀释至1L。 3.8 铁标准溶液 3.8.1 铁标准贮备溶液:100.0μg/mL,称取0.1000g高纯金属铁丝,溶于50mL硝酸(1+1)中,稍加热(约60℃)溶解后,冷却,移入1000mL容量瓶中,用水稀释至刻度,摇匀。此溶液1mL 含100.0μg铁。 4 仪器 分光光度计。 5 试样制备 风干粉末土样,粒度应小于0.147mm。在称样测定时,另称一份试样测定吸附水,最后换算成烘干样计算结果。 6 操作步骤 6.1 空白试验:随同试样的分析步骤进行空白试验。 6.2 试样的测定 6.2.1 待测液的制备:称取0.50g风干土样,精确至0.0001g。置于30mL聚四氟乙烯坩埚中,加2滴~3滴水湿润试样。加8mL氢氟酸、10mL浓硝酸和1mL高氯酸,先低温消煮,随后加温,待坩埚内连续出现小气泡逸出,蒸发至冒尽高氯酸烟。用2mL盐酸(1+1)溶解残渣,将坩埚内容物移入50mL容量瓶中,用水稀释至刻度,摇匀。放置澄清或干过滤。 6.2.2 显色、测量吸光度:吸取部分清液(铁含量控制在1μg/mL ~5μg/mL)于50mL容量瓶中,加少量水冲洗瓶颈,加1mL盐酸羟胺溶液(100g/L),摇匀后加8mL乙酸钠溶液(100g/L),使溶液的pH为5,再加10mL邻菲啰啉溶液(1g/L)进行显色,用水稀释至刻度,摇匀。2h后在分光光度计上以试剂空白为参比。于波长510nm处测量吸光度。从工作曲线上查出相应的铁量。 6.3 工作曲线的绘制:吸取0、0.50、1.00、1.50、2.00、2.50mL铁标准溶液(100.0μg/mL)分别放入50mL容量瓶中,以下按第6.2.2条操和步骤进行显色测量吸光度。制备成0、1.00、2.00、3.00、4.00、5.00μg/mL铁标准系列溶液。并绘制工作曲线。 7 结果计算 按下式计算全铁的含量,以质量百分数表示:

实验一 分光光度法测定微量铁的含量0

实验一分光光度法测定微量铁的含量 Ⅰ.实验目的 (1)掌握用邻二氮菲显色法测定铁的原理和方法。 (2)了解分光光度计的构造及分光光度计的正确使用。 (3)学会工作曲线的制作和样品的测定。 Ⅱ.实验用品 仪器:721型(或其他型号)分光光度计、50mL容量瓶、吸量管。 药品:(NH4)2 Fe(SO4)2·6H2O(分析纯)、邻二氮菲(分析纯)、盐酸羟胺(分析纯)、NaAc(分析纯)、无水乙醇(分析纯) 溶液配制:(1). 10.0 μg·mL-1(即0.01 mg·mL-1)铁标准溶液:准确称取0.4286g(NH4)2 Fe(SO4)2·6H2O于烧杯中,用2 mol·L-1盐酸15 mL溶解,移入500 mL容量瓶中,以水稀释至刻度,摇匀。再准确稀释10倍成为含铁10 ug·mL-1标准溶液;(2). 0.15%邻二氮菲溶液(临时配制):先用少许乙醇溶解,再用水稀释;(3). 盐酸羟胺溶液10%(临时配制);(4). NaAc溶液1mol·L-1。 Ⅲ.实验原理 在测定微量铁时,通常以盐酸羟胺或抗坏血酸还原Fe3+为Fe2+,在pH=2~9范围内,使Fe2+与邻二氮菲反应生成稳定的橙红色配合物[Fe(C12H8N2)3] 2+,其lgK f=21.3,λmax=510nm。反应式如下: 本方法不仅灵敏度高(摩尔吸光系数ε= 1.1×104L·mol·cm-1),而且选择性好,相当于含铁量40倍的Sn2+,Al3+,Ca2+,Mg2+,Zn2+,SiO32-,20倍的Cr3+,Mn2+,PO43-;,5倍的Co2+,Cu2+等均不干扰测定。在分光光度法中,一般均选用有色物质的最大吸收波长λmax作为入射光波长(除非在该波长下有干扰),这样,测量的灵敏度和准确度都较高。 λmax通常通过制作吸收曲线得到,方法是:取待测物的1个标准溶液,在不同的波长(λ)下测量其吸光度(A),以A对λ作图,便得吸收曲线,曲线波峰所对应的波长即为最大吸收波长。 Ⅳ.实验步骤 1.测定波长的确定 (1)显色溶液的配制在序号为1~6的6只25mL容量瓶中,用吸量管分别准确加入10.0 μg·mL-1铁标准溶液0.0、1.00、2.00、3.00、4.00、5.00mL,再分别加入10%盐酸羟胺溶液1mL,摇匀后放置2min,再各加入1mol·L-1NaAc溶液2.5mL及0.15%邻二氮菲溶液1mL,

分光光度法测定铁

实验1 邻二氮菲分光光度法测定铁 一、实验原理 邻二氮菲(phen)和Fe2+在pH3~9的溶液中,生成一种稳定的橙红色络合 物Fe(phen) 32+,其lgK=21.3,κ508=1.1 ×104L·mol-1·cm-1,铁含量在0.1~6μg·mL-1范围内遵守比尔定律。其吸收曲线如图1-1所示。显色前需用盐酸羟胺或抗坏血酸将Fe3+全部还原为Fe2+,然后再加入邻二氮菲,并调节溶液酸度至适宜的显色酸度范围。有关反应如下: 2Fe3++2NH2OH·HC1=2Fe2++N2↑+2H2O+4H++2C1- 图1-1 邻二氮菲一铁(Ⅱ)的吸收曲线 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,即可计算试样中被测物质的质量浓度。 二、仪器和试剂 1.仪器721或722型分光光度计。 2.试剂 (1)0.1 mg·L-1铁标准储备液准确称取0.702 0 g NH4Fe(S04)2·6H20置于烧杯中,加少量水和20 mL 1:1H2S04溶液,溶解后,定量转移到1L容量瓶中,用水稀释至刻度,摇匀。 (2)10-3 moL-1铁标准溶液可用铁储备液稀释配制。 (3)100 g·L-1盐酸羟胺水溶液用时现配。 (4)1.5 g·L-1邻二氮菲水溶液避光保存,溶液颜色变暗时即不能使用。

(5)1.0 mol·L-1叫乙酸钠溶液。 (6)0.1 mol·L-1氢氧化钠溶液。 三、实验步骤 1.显色标准溶液的配制在序号为1~6的6只50 mL容量瓶中,用吸量管分别加入0,0.20,0.40,0.60,0.80,1.0 mL铁标准溶液(含铁0.1 g·L-1),分别加入1 mL 100 g·L-1盐酸羟胺溶液,摇匀后放置2 min,再各加入2 mL 1.5 g·L-1邻二氮菲溶液、5 mL 1.0 mol·L-1乙酸钠溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制在分光光度计上,用1 cm吸收池,以试剂空白溶液(1号)为参比,在440~560 nm之间,每隔10 nm测定一次待测溶液(5号)的吸光度A,以波长为横坐标,吸光度为纵坐标,绘制吸收曲线,从而选择测定铁的最 大吸收波长。 3.显色剂用量的确定在7只50 mL容量瓶中,各加2.0 mL 10-3 mol·L-1铁标准溶液和1.0 mL 100 g·L-1盐酸羟胺溶液,摇匀后放置2 min。分别加入0.2, 0.4,0.6,0.8,1.0,2.0,4.0 mL 1.5 g·L-1邻二氮菲溶液,再各加5.0 mL 1.0 mol·L-1乙酸钠溶液,以水稀释至刻度,摇匀。以水为参比,在选定波长下测量各溶液的吸光度。以显色剂邻二氮菲的体积为横坐标、相应的吸光度为纵坐标,绘制吸光度-显色剂用量曲线,确定显色剂的用量。 4.溶液适宜酸度范围的确定在9只50 mL容量瓶中各加入2.0 mL10-3 mol·L-1。铁标准溶液和1.0 mL 100 mol·L-1盐酸羟胺溶液,摇匀后放置2 min。各加2 mL 1.5 g·L-1邻二氮菲溶液,然后从滴定管中分别加入0,2.00,5.00,8.00,10.00,20.00,25.00,30.00,40.00 mL 0.1 mol·L-1NaOH溶液摇匀,以水稀释至刻度,摇匀。用精密pH试纸或酸度计测量各溶液的pH。 以水为参比,在选定波长下,用1 cm吸收池测量各溶液的吸光度。绘制A —pH曲线,确定适宜的pH范围。 5.络合物稳定性的研究移取2.0 mL 10-3 mol·L-1铁标准溶液于50 mL容量瓶中,加入1.0 mL 100 g·L-1盐酸羟胺溶液混匀后放置2 min。2.0 mL 1.5 g.L-1邻二氮菲溶液和5.0 mL 1.0 mol·L-1。乙酸钠溶液,以水稀释至刻度,摇匀。以水为参比,在选定波长下,用1 cm吸收池,每放置一段时间测量一次溶液的吸光度。

铁含量测定(分析)

邻二氮菲分光光度法测定铁 一、实验目的 1.学会吸收曲线及标准曲线的绘制,了解分光光度法的基本原理。 2.掌握用邻二氮菲分光光度法测定微量铁的方法原理。 3.学会722型分光光度计的正确使用,了解其工作原理。 4.学会数据处理的基本方法。 5.掌握比色皿的正确使用。 二、实验原理 根据朗伯—比耳定律:A=εbc ,当入射光波长λ及光程b 一定时,在一定浓度范围内,有色物质的吸光度A 与该物质的浓度c 成正比。只要绘出以吸光度A 为纵坐标,浓度c 为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。同时,还可应用相关的回归分析软件,将数据输入计算机,得到相应的分析结果。 用分光光度法测定试样中的微量铁,可选用的显色剂有邻二氮菲(又称邻菲罗啉)及其衍生物、磺基水杨酸、硫氰酸盐等。而目前一般采用邻二氮菲法,该法具有高灵敏度、高选择性,且稳定性好,干扰易消除等优点。在pH=2~9的溶液中,Fe 2+与邻二氮菲(phen)生成稳定的桔红色配合物Fe(phen)32+, N N Fe 2+ 3 +Fe + 2 此配合物的lgK 稳=21.3,摩尔吸光系数ε510 = 1.1×104 L ·mol-1·cm-1,而Fe 3+能与邻二氮菲生成3∶1配合物,呈淡蓝色,lgK 稳=14.1。所以在加入显色剂之前,应用盐酸羟胺(NH2OH ·HCl)将Fe 3+还原为Fe 2+,其反应式如下: 2Fe 3+ + 2NH 2OH ·HCl → 2Fe 2+ + N 2↑ + 2H 2O + 4H + + 2Cl - 测定时控制溶液的酸度为pH ≈5较为适宜。 三、仪器与试剂 722型分光光度计、容量瓶(100mL,50mL)、吸量管 硫酸亚铁铵、硫酸(3mol ·L-1)、盐酸羟胺(10%)、NaAc(1mol ·L-1)、邻二氮菲(0.15%)。 四、实验步骤 1.溶液配制 1) 硫酸亚铁铵标准溶液的配制: 准确称取优级纯硫酸亚铁铵0.7020g 于烧杯中,加水50ml 和浓硫酸20ml ,溶解后转移入1000ml 容量瓶中,用水稀释至刻度,摇匀。此溶液每毫升含铁离子0.100mg 。 用水将铁标准溶液稀释10倍,得到浓度为0.0100mg/ml 的标准溶液。 2)乙酸钠(NaAc )1mol/L 。 3)ω=1%的盐酸羟胺水溶液,因不稳定,需临用时配制。 4)ω=0.15%的邻菲罗啉水溶液:先用少许乙醇溶解后,用水稀释,新近配制。 2.测定步骤 第一、绘制吸收曲线和标准曲线:取浓度为0.0100mg/ml 的硫酸亚铁铵标准溶液0.00、2.00、4.00、6.00、8.00、10.00分别置于6只50ml 容量瓶中,各依次加入5.0mL 1mol/L NaAc 、1mL 盐酸羟胺,2.0mL 邻菲罗啉加水至刻度,摇匀,放置10min 。(一)吸收曲线绘制:选取一标准溶液(选那个合适?mL 00.0=铁标准V 的行吗?),在480-540nm 测吸光度,绘制吸收曲线,找出最大吸收波长max λ= ;(2)在max λ处,以mL 00.0=铁标准V 溶液为参比,测定各溶液的吸光度。以吸光度为纵坐标、铁的毫克数为横坐标绘制标准曲线 第二、亚铁离子含量的测定

铁含量的测定

邻二氮菲分光光度法测定微量铁 实验目的: 1) 学习测定实验条件的方法和测定铁的分光光度法。 2) 掌握721型分光光度计的使用方法。 实验原理: 1.紫外-可见吸光光谱法原理及仪器: 紫外-可见吸光光谱法又称紫外-可见分光光度法,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。紫外-可见吸收光谱的产生是由于分子的外层电子跃迁的结果,但是电子能级跃迁的同时,不可避免地亦伴随有分子振动能级和转动能级的跃迁,因此,紫外-可见吸收光谱为带光谱。 紫外-可见吸收光谱法进行定量分析的依据是朗伯-比尔定律,其数学表达式为: lg I A I == εbc 其中:A 为吸光度;I 0和I 分别为入射光强度和透射光强度;ε为 摩尔吸光系数,b 为物质吸收层的厚度,c 为物质的浓度。 根据朗伯-比尔定律,物质的浓度可通过测量吸光度的方法测定。光度分析时,分别将空白溶液和待测溶液装入厚度为b 的两个洗手池中,让一束一定波长的平行光分别照射空白溶液和待测溶液,以通过空白溶液的透过光强为I 0,通过待测溶液的透过光强为I ,根据上式,又仪器直接给出吸光度。当吸收池及入射光的波长和强度一定时,吸光度正比于被测物的浓度,因此,可根据测得的吸光度值求出待测溶液的浓度。 紫外-可见吸收光谱法所使用的仪器成为分光光度计,它的主要组成部分有五个部分组成,即:光源,单色器,吸收池,检测器,信号显示器;可见光区采用钨灯光源,玻璃吸收池,单色器为光栅。 2.本次试验原理: 在可见光区分光光度法测量中。通常是将被测物质于显色剂反应,使之生成有色物质,然后测其吸光度。进而求得被测物质的含量。因此,显色反应的完全程度和吸光度的测定条件都会影响到测定结果的准确性。为了使测定有较高的灵敏度和准确度,必须选择适宜的显色反应条件和仪器测量条件。通常所研究的显色反应条件有显色温度和时间,显色剂用量,显色液酸度,干扰物质的影响及消除等。通常所研究的测量条件主要是测量波长和参比溶液的选择。 条件实验的一般步骤为改变其中一个因素,暂时固定其他因素,显色后测量相应溶液的吸光度,通过吸光度-pH 曲线确定显色反应的适宜酸度范围。其他因素的适宜值,也可按这一方式分别确定。 本实验以邻二氮菲为显色剂,选择测定微量铁的适宜显色条件和测量条件,并用于工业盐酸中全铁含量的测定。 邻二氮菲是光度法测定铁的优良试剂,在PH 2~9范围内(一般5~6),邻二氮菲与二价铁生成稳定的红色配合物,用盐酸羟胺将三价铁还原成二价,用邻二氮菲作显色剂,可测定试样中总铁含量。本实验选择性高,相当于铁含量40倍的S n (Ⅱ) Al (Ⅲ) Ca (Ⅱ) Mg (Ⅱ) Zn (Ⅱ) Si (Ⅱ) ,20倍的Cr (Ⅵ) V (Ⅴ) P (Ⅴ) ;5倍的Co (Ⅱ) Ni (Ⅱ) Cu (Ⅱ) 不干扰测定。 仪器及试剂 721型分光光度计;1cm 吸收池;10mL 吸量管;2mL 吸量管;5 mL 吸量管;50mL 比色管。 1.0×10-3 mol ·L -1 铁标准溶液,100ug ·mL -1 铁标准溶液,0.15%邻二氮菲水溶液,

相关文档