文档库 最新最全的文档下载
当前位置:文档库 › 燃机压气机效率计算

燃机压气机效率计算

燃机压气机效率计算
燃机压气机效率计算

理想循环过程中压气机效率计算

受环境的影响,压气机运行过程中,叶片不会结垢,甚至腐蚀,影响的压气机的性能。为恢复压气机的性能,必须对压气机进行水洗。GE公司推荐,如果压气机效率下降10%,建议进行离线水洗。分析压气机的效率,可为燃机离线水洗周期的提供理论参考。

燃机轮机以空气为介质,基于Brayton循环为理论基础,如下图:

压气机入口空气状态为1,经过压缩后,压气机排气点空气状态为2,如为理想循环,即空气经过等熵压缩过程,则排气口空气的状态2s。

为简化计算,计算理想循环状态下的压气机效率,根据Brayton循环,理想循环下压气机效率计算公式为:

Nc = (h2s-h1)/(h2-h1) = (T2s-T1)/(T2-T1)

其中:

Nc—压气机效率

h2s—经等熵压缩后压气机排气口空气的焓值

h2—压气机排气口空气实际焓值

h1—压气机进气口空气焓值

T2s—经等熵压缩后压气机排气口热力学温度

T2—压气机排气口空气实际热力学温度,即CTD

T1—压气机进气口空气热力学温度

注:公式所有温度为热力学温度,在华氏温标下,需在实际测得的温度基础上加460℉.

上述公式中,T1,T2为可直接从现场测点,只需计算T2s即可,根据Brayton循环公式

T2s =(P2/P1)^[k/(k-1)]*T1

其中:

P2—压气机排气口空气压力,即CPD

P1—压气机进气口空气压力,对于燃机而言,等于大气压力

k—比热比,即定压比热Cp与定容比热Cv之比,k=Cp/Cv,在空气动力学中,空气的k值常取为1.40。

所以通过测量T1,P1,P2的数值,便可计算T2s,从而计算压气机效率。

下面就以#1机为例,计算燃机水洗后满负荷工况下压气机效率变化趋势。

从上表可知,#1燃机运行1个月后,压气机效率下降了1.48%,

由于压气机内空气流运是一个十分复杂的工况,加上抽气,空气压缩后比热比的变化,实际效率的与计算值有一定的偏差,关于压气机效率的准确计算还须进一步研究。

压缩机功率对照表以及压缩机详细技术参数

各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 ... 各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 企业名称产品 规格 制冷剂 汽缸容积 (cm3) 名义功率 (HP) 制冷量 (W) 输入功率 (W) 效率 (W/W) 油的 粘度 电机 类型 湖北南光制冷设备有限公司QD56 R12 5.6 132 120 1.1 32 YUR QD63 R12 6.3 145 132 1.1 32 YUR QD72 R12 7.2 165 150 1.1 32 YUR QD80 R12 8.0 186 165 1.12 32 YUR QD88 R12 8.8 200 180 1.11 32 YUR QD96 R12 9.6 233 208 1.12 32 YUR QD110 R12 11 261 238 1.1 32 YUR QD58 R134a 5.8 132 120 1.1 32 YUR QD71 R134a 7.1 148 134 1.1 32 YUR QD78 R134a 7.8 162 145 1.11 32 YUR QD86 R134a 8.6 185 162 1.14 32 YUR Q-5 R22 5.6 750 315 2.38 32 YYR Q-6 R22 6.7 890 370 2.4 32 YYR Q-7 R22 7.1 1000 410 2.44 32 YYR Q-8 R22 8.6 1150 460 2.5 32 YYR 西安远东公司航空工业总公司QD24 R12 2.4 55 75 0.73 22 RSIR QD30 R12 3.0 75 95 0.78 22 RSIR QD45A R12 4.5 113 116 0.95 22 RSIR QD52A R12 5.2 132 139 0.95 22 RSIR QD57A R12 5.7 142 137 1.05 22 RSIR QD62A R12 6.2 154 154 0.95 32 RSIR QD62G A R12 6.2 154 134 1.07 32 RSCR QD75G R12 7.5 190 168 1.09 32 RSCR

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

轴流压气机设计流程

轴流压气机设计 压气机是航空发动机的核心部件,压气机内部流场存在很大的逆压梯度,有着高度的三维性、粘性及非线性和非定常性,而多级压气机还存在复杂的级间匹配,这些都使得压气机的设计难度很大,一直是发动机研制中的瓶颈技术。 一、压气机设计方法的发展 一个世纪以来,伴随着气动热力学和计算流体力学的发展!轴流压气机的设计系统在不断进步,带动着压气机设计水平的提高。 20世纪初采用螺桨理论设计叶片;20-30年代采用孤立叶型理论设计压气机;30年代中期开始,由于叶栅空气动力学的发展和大量平面叶栅试验的支持,研制了一系列性能较高的轴流压气机;50年代开始采用二维设计技术,用简单径向平衡方程计算子午流面参数,叶片由标准叶型进行设计;70年代建立了准三维设计体系,流线曲率通流计算和叶片流动分析是这一体系的基础,可控扩散叶型等先进叶型技术开始得到应用;90年代初以来,以三维粘性流场分析为基础的设计体系促进了压气机设计技术的快速发展。 风扇/轴流压气机的设计体系以流动的物理模型发展为线索,以计算能力的高速发展为推动力,大致经历了一维经验设计体系、二维半经验设计体系、准三维设计体系、三维设计体系四个阶段。并正在朝着压气机时均(准四维)和压气机非定常(四维)气动设计体系发展。 目前的压气机的设计体系大致可以分为四个阶段:初始设计、通流设计、二维叶型设计、三维叶型设计。 二、压气机设计体系 1.初始设计 这是一个建立压气机的基本轮廓的阶段,根据给定的流量、压比、效率、稳定裕度等参数,来确定压气机级数、级压比、效率、子午面流道、各排叶片数等,并可以进一步可估算重量。而且整体设计的决策还要统筹风险、技术水平、时间和花费等。 初始设计主要依据一维平均流线计算程序进行计算,在给定设计点流量、压比、转速及转子进口叶尖几何尺寸的条件下,可确定压气机级数、轴向长度、并且优化载荷轴向分布,得到设计点在平均半径处的速度三角形和各级平均气动参数。初始设计阶段包括压气机主要参数的确定以及同其它部件的协调,并且为S2流面计算提供初始流道几何尺寸。而这个程序主要依赖于经验以及以往积累的数据库。 初始设计它是方案设计中的基础阶段,不管计算流体动力学如何发展,该设计过程仍是压气机设计中不可缺少的一部分。正是这个部分是整个设计过程中最重要的部分,因为如果在这里发生了基本的错误,之后就无法通过优化或者其他改变来纠正这一情况,压气机基本结构设计出现错误会带来严重的后果。 2.通流设计 通流设计根据叶片扭向设计规律,采用S2流面流场计算方法,分析并确定各排叶片进出口速度三角形及各排叶片匹配关系。 S2流面气动计算一般采用流线曲率法,求解S2平均流面上的完全径向平衡方程。最初的压气机通流设计计算采用忽略流线坡度和流线曲率的“简化径向平衡方程”获取叶片设计需要的速度三角形,这种方法在低压比的压气机设计中起着基本的作用。后来发展了考虑流线坡度和流线曲率影响的“完全径向平衡方程”和S2流面理论,使压气机的设计计算结果更加准确,特别是针对跨音速流也促进了压气机性能的提高。不过,直到上世纪80年代,由于理论和数值计算方法的原因,通流设计求解方法都是在忽略了气流粘性的影响的简化方程下完成。随着压气机设计的实践的深入和计算方法的发展,上世纪80年代开始在压气机

燃机压气机效率计算

理想循环过程中压气机效率计算 受环境的影响,压气机运行过程中,叶片不会结垢,甚至腐蚀,影响的压气机的性能。为恢复压气机的性能,必须对压气机进行水洗。GE公司推荐,如果压气机效率下降10%,建议进行离线水洗。分析压气机的效率,可为燃机离线水洗周期的提供理论参考。 燃机轮机以空气为介质,基于Brayton循环为理论基础,如下图: 压气机入口空气状态为1,经过压缩后,压气机排气点空气状态为2,如为理想循环,即空气经过等熵压缩过程,则排气口空气的状态2s。 为简化计算,计算理想循环状态下的压气机效率,根据Brayton循环,理想循环下压气机效率计算公式为: Nc = (h2s-h1)/(h2-h1) = (T2s-T1)/(T2-T1) 其中: Nc—压气机效率 h2s—经等熵压缩后压气机排气口空气的焓值 h2—压气机排气口空气实际焓值 h1—压气机进气口空气焓值 T2s—经等熵压缩后压气机排气口热力学温度 T2—压气机排气口空气实际热力学温度,即CTD T1—压气机进气口空气热力学温度 注:公式所有温度为热力学温度,在华氏温标下,需在实际测得的温度基础上加460℉. 上述公式中,T1,T2为可直接从现场测点,只需计算T2s即可,根据Brayton循环公式 T2s =(P2/P1)^[k/(k-1)]*T1 其中: P2—压气机排气口空气压力,即CPD P1—压气机进气口空气压力,对于燃机而言,等于大气压力 k—比热比,即定压比热Cp与定容比热Cv之比,k=Cp/Cv,在空气动力学中,空气的k值常取为1.40。 所以通过测量T1,P1,P2的数值,便可计算T2s,从而计算压气机效率。

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中-制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率;

风扇压气机设计技术

风扇/压气机设计技术 ——气动设计技术;间隙控制;旋转失速;防喘技术 ——发动机;风扇;压气机; 定义与概念:压气机是燃气轮机的重要部件,它的作用是提高空气的总压。压气机包括"转子"和"静子"两部分,"转子"是沿轮缘安装许多叶片的几个轮盘组合而成的,每个轮盘及上面的叶片称为一个"工作轮",工作轮上的叶片称为工作叶片。"静子"是有几圈固定在机匣上的叶片组成的。每一圈叶片称为一个整流器。工作轮和整流器是交错排列的,每一个工作轮和后面的整流器为一个"级"。 风扇是涡轮风扇发动机的重要部件之一,它的作用与压气机的相同。风扇后面的空气分为两路,一路是外涵道,一路是内涵道。风扇一般为一级,使结构简单。 风扇/压气机设计技术主要包括气动设计技术、全三元计算技术、间隙控制技术、旋转失速和喘振控制技术、结构设计技术、材料与工艺技术等方面。 国外概况:目前,战斗机发动机的推重比在不断提高,因此要求风扇/压气机级压比不断提高但又保持效率在可接受范围内,这始终是风扇/压气机设计所追求的目标。美国80年代中期开始实施的"综合高性能涡轮发动机技术"计划(即IHPTET计划)的目标是在下世纪初验证推重比为20的战斗机发动机技术,风扇结构最终实现单级化,压气机也由9级减为3级。俄罗斯的风扇/压气机的研制计划与美国IHPTET计划相类似。也就是说,研制高压比风扇/压气机已经成为风扇/压气机的发展趋势。美国、俄罗斯等国家都已制订研究计划并已取得阶段性成果。 风扇单级压比在目前最先进战斗机发动机F119上已达1.7;在预研的试验件上,美国达2.2,叶尖速度475m/s;而俄罗斯试验件单级压比达2.4和3.2,叶尖速度则分别为577m/s和630m/s。转子叶片展弦比则减小到1.0左右。 对于核心压气机,也呈现大致相同的发展趋势。核心压气机平均级压比从50年代的1.16提高到90年代的1.454,而叶尖速度从291m/s提高到455.7m/s。目前,美国现役战斗机发动机和正处于工程和制造发展阶段的90年代先进战斗机(ATF),其核心压气机基本上是70年代研制成功的。GE公司下一代核心压气机正处于研究起步阶段,目标是比目前最高级压比再提高25%。由此可见,追求更高的级压比一直是各国研制风扇/压气机的发展方向。 风扇/压气机的级压比的提高主要有以下途径:一是进一步发展传统的跨音级风扇/压气机。传统的跨音级风扇/压气机是指转子相对来流叶尖超音、叶根亚音,静子绝对来流亚音。目前各国现役发动机风扇/压气机进口级均属此类型。进一步发展传统的跨音级风扇/压气机即进一步提高叶尖切线速度,如采用小展弦比前缘后掠式叶片,将叶片设计成掠式几何形状以合理控制通道激波的强度,在利用气流跨越激波产生压比突跃的同时控制激波的损失。二是研制超音通流风扇。80年代后期NASA 刘易斯研究中心开始实施一项超音通流风扇计划,研制出的此类风扇进出口轴向气流速度均超音。与传统跨音风扇相比,当叶尖切线速度相同时,超音通流风扇可实现更高的级增压比。

风机性能参数公式

风机性能参数相关公式 A . 改变介质密度ρ,转速n 的换算式: 1、 1122q n q n = 2、 2111()222p n p n ρ=ρ 3、31 1 1()22 P n P n ρ=ρ2 4、η1=η 2 B . 改变转速n ,大气压力p a , 气体温度t 时的换算式: 1、 1122q n q n = 2、 2122127311()()()22273a a p t p n p n p t +=+ 3、21 2212731 1 ()()()22273a a p t P n P n p t +=+ 4、η1=η 2 以上式中:1、q ―――流量(m 3/h ); p ―――全压(Pa ); P ―――轴功率(KW );η―――全压效率;ρ―――密度(Kg/m 3); n ―――转速(r/min ); t ―――温度(℃);p a ―――大气压(Pa )。 2、注脚符号“2”表示已知的性能及其关系参数,注脚符号 “1”表示所求的性能及关系参数。

C . 风机性能一般均指在标准状态下的风机性能,技术文件或订货要 求的性能除特殊定货外,均按标准状态为准。 标准状态系指大气压力p a =101325Pa 、大气温度t=20℃、相对湿度 ?=50%时的空气状态,标准状态下的空气密度ρ=1.2kg/m 3. D. 风机所需功率按下式求出: P = 1000m q p K ??η?η 式中:q ―――流量(m 3/s ); p ―――风机全压(Pa ); η―――全压效率; ηm ―――机械效率; K ―――电动机容量安全系数(一般为1.05~1.25)。 E. 由无因次参数计算有因次参数的等式: 1、Q=900πD 22·υ2· ? (m 3/h) 2、 22 3.51212/[(1)1]101300354550P K ρυψρυψ=+- 3、 p=212ρυψ/P K 4、 P i = 23 2124000D πρυλ 5、P r =i m P K η

压缩机的热力性能和计算

§2.2.1压缩机的热力性能和计算 一、排气压力和进、排气系统 (1)排气压力 ①压缩机的排气压力可变,压缩机铭牌上的排气压力是指额定值,压缩机可以在额定排气压力以内的任意压力下工作,如果条件允许,也可超过额定排气压力工作。 ②压缩机的排气压力是由排气系统的压力(也称背压)所决定,而排气系统的压力又取决于进入排气系统的压力与系统输走的压力是否平衡,如图2-20所示。 ③多级压缩机级间压力变化也服从上述规律。首先是第一级开始建立背压,然后是其后的各级依次建立背压。 (2)进、排气系统 如图所示。

①图a的进气系统有气体连续、稳定产生,进气压力近似恒定;排气压力也近似恒定,运行参数基本恒定。 ②图b的进气系统有气体连续、稳定产生,进气压力近似恒定;排气系统为有限容积,排气压力由低到高逐渐增加,一旦达到额定值,压缩机停止工作。 ③图c的进气系统为有限容积,进气压力逐渐降低;排气系统压力恒定,一旦低于某一值,压缩机停止工作。

④图d的进、排气系统均为有限容积,压缩机工作后,进气压力逐渐降低;排气系统压力不断升高,当进气系统低于某一值或排气系统高于某一值,压缩机停止工作。 二、排气温度和压缩终了温度 (1)定义和计算 压缩机级的排气温度是在该级工作腔排气法兰接管处测得的温度,计算公式如下: 压缩终了温度是工作腔内气体完成压缩机过程,开始排气时的温度,计算公式如下: 排气温度要比压缩终了温度稍低一些。 (2)关于排气温度的限制 ①汽缸用润滑油时,排气温度过高会使润滑油黏度降低及润滑性能恶化;另外,空气压缩机中如果排气温度过高,会导致气体中含油增加,形成积炭现象,因此,一般空气压缩机的排气温度限制在160°C以内,移动式空气压缩机限制在180°C以内。

压气机的理论压缩功

第9章压气机 一、教案设计 教学目标:使学生熟悉压气机热力过程,活塞式压气机工作原理,耗功量计算;余隙容积对压气机性能的影响;多级压缩与级间冷却;叶轮式压气机的工作原理。知识点:活塞式压气机工作原理,耗功量计算;余隙容积对压气机性能的影响;多级压缩与级间冷却;叶轮式压气机的工作原理。 重点:压气机耗功量的计算方法,提高压气机效率的方法和途径。 难点:多级压缩过程中各级增压比的确定,提高压气机效率的方法和途径。教学方式:讲授+多媒体演示+课堂讨论 师生互动设计:提问+启发+讨论 问:余隙容积的存在使压气机产气量下降,对实际耗功有没有影响?。 问:活塞式压气机为什么应采用隔热措施? 问:为什么若实施定温压缩产生高压气体,可不必分级压缩、中间冷却? 问:为什么活塞式压气机适用于高压比、小流量;叶轮式压气机适用于小压比、大流量? 学时分配:2学时 二、基本知识 第一节气体的压缩及压气机的耗功 一、气体压缩 1压气机:用来压缩气体的设备 2.。压气机的分类 1)压气机按其产生压缩气体的压力范围,习惯上常分为: ①通风机(pg<0.01MPa); ②鼓风机(0.01MPa0.3Mpa)。 2)按压缩原理和结构分压气机分为: 活塞式、叶轮式(离心式和轴流式)及引射式。

三、压气机的实际耗功(压气机的效率)21 '2'1 cs cs cs w h h w h h η-== -21 '2'1 cs cs cs w T T w T T η-= = -1.压气机的实际耗功 对于理想气体 1 2s p 1 p 2 s T 22.压气机的绝热效率 '2'1 cs w h h =-压气机的实际耗功 第二节 单机活塞式压气机 一、单机活塞式压气机工作过程

西北工业大学航空发动机结构分析课后答案第3章压气机

第三章压气机 恰当半径:在盘鼓式转子中,随着圆周速度的增大,鼓筒和轮盘都会发生形变,这里有三种情况:一是在小半径处,轮盘的自由变形大于鼓筒的自由变形;二是在大半径处,轮盘的自由变形小于鼓筒的自由变形;三是在中间某个半径处,两者的自由变形相等。对于第三种情况,联成一体后,相互没有约束,即没有力的作用,这个半径称为恰当半径。 在第二种情况下,实际变形处于两者自由变形之间,对于鼓筒,自由变形变小,轮盘则相反。这种情况是盘加强鼓。 5.转子级间联接方法有哪些? 转子级间联接方法有用拉杆联接、短螺栓连接和长轴螺栓连接等几种。 7.如何区分盘鼓式转子和加强的盘式转子? 区分方法在于辨别转子的传扭方式。鼓盘式转子靠鼓筒传扭,而加强的盘式转子主要靠轴来传扭。 9.风扇叶片叶身凸台的作用是什么? 风扇叶片叶身凸台的作用:在叶片较长的情况下,为了避免发生危险的共振或颤震,叶身中部常常带一个减振凸台。 11.压气机机匣的功能是什么? 压气机机匣是发动机的主要承力壳体之一,又是气流通道的外壁。工作时,机匣承受静子的重力、惯性力,内外空气压差,整流器上的扭矩,轴向力,相邻组合件传来的弯矩、扭矩和轴向力等。此外,机匣还承受着热负荷和振动负荷,传递支撑所受的各种载荷,如径向力、剪力和弯矩等。

13.列举整流叶片与机匣联接的三种基本方法。 一、在锻造的分半式机匣内,机匣壁较厚,整流叶片用各种形式的榫头直接固定在机匣内壁机械加工的特定环槽内。 二、整流叶片还可以通过焊接直接与机匣联接。 三、在目前大多数整体式机匣和分段式机匣内,整流叶片广泛采用间接固定的方案。即整流叶片安装在专门的整环或半环内,组成整流器或整流器半环,然后固定在机匣内。15.简述篦齿密封的基本原理。 篦齿密封装置是由篦齿所形成的若干个空腔组成。工作时,封气装置两侧总的压差没有变化,但是由于篦齿的分割,漏气截面两端(相邻空腔)的压差减小。同时可以尽可能小地保留间隙,因为篦齿为刀刃式,齿尖做得很薄,一旦与静子相碰,也不会引起严重后果。这样在减少压差的同时又减少了漏气面积,因而有效地减小了漏气量。 17.简述压气机主要的防喘振措施及原理。 一、放气机构。把空气从压气机中间级放出(或从压气机后放出)是改善压气机特性,扩大稳定工作范围的简单而有效的方法,可用于防止前喘后涡型的喘振。 二、进口可转导流叶片和变弯度导流叶片。当压气机在非设计状态工作时,进口变弯度导流叶片的尾部扭转一个角度,使压气机进口预旋量改变。这样就可以使第一级转子叶片进口气流的攻角恢复到接近设计状态的数值,消除叶背上的气流分离,避免喘振发生。若采用进口可转导流叶片,则是整个叶身一起扭转。这样在改变第一机转子叶片进口气流攻角的同时,还改变了压气机进口的流通面积,减小空气流量。 三、多级可调静子叶片。使用多级可调静子叶片就可以使第一级后面的若干转子叶片进口气流的攻角恢复到接近设计状态的数值,使压气机的稳定工作范围更宽,达到更好的防喘作用。 四、机匣处理。在机匣内壁上加工成环槽、斜槽或安装蜂窝结构环,可使失速裕度大大改善,从而防喘。 五、双转子或三转子压气机。在相同总增压比及总级数时,当压气机转子分开后每个转子的级数减少,同时个转子可以在各自的最佳转速工作(如风扇要求的工作转速低,嘎亚压气机需要高转速以增大加功量。当压气机在非设计状态工作时,较少的技术可以减少前后各级压气机流通能力的差异。另外,转子的转速可以实现自动调节:前面的抵押压气机转速降低,从而减少进入压气机的空气流量;后面的高压压气机转速提高(但不超过最大限制速度),从而流通能力提高,因而使压气机前后各级的流通能力自动相匹配。

离心压气机设计方法综述--

离心压气机设计方法综述 压缩机是把原动机的机械能转变为气体能量的一种机械,分为容积式和透平式两种。透平式压缩机是一种叶片式旋转机械,其中气体压力的提高是利用叶片和气体的相互作用来实现的,按照结构分为离心式压气机和轴流式压气机两种。离心式压气机中气体压力的提高,是由于气体流经叶轮时,由于叶轮旋转,使气体受到离心力的作用而产生压力,与此同时气体获得速度,而气体流过叶轮,扩压器等扩张通道时,气体的流动速度又逐渐减慢从而使气体压力得到提高。 设计一台离心压气机包括多方面的内容,主要有:结构设计;通流部分的选择和计算;强度与振动计算;工艺设计;自动控制和调节;以及驱动型式等问题。这里主要讨论前两项。 在离心压气机设计方法上,先后出现了几何设计方法,二维气动设计方法,准三维气动设计方法,全三维气动设计方法。以这些方法为理论基础,建立了离心压气机计算机辅助集成设计系统。这种设计系统的建立,为高性能离心压气机设计提供了有效工具。 最早用于离心压气机叶轮叶片的成形方法是几何成型方法,这是一种比较简单的成型方法。国内增压器研究领域在50年代从前苏联引进的径向叶片的“双回转中心法”是几何成型方法中的代表,并在国内涡轮增压器领域得到广泛的应用。该方法成型规律比较简单,使用该方法设计前倾后弯曲线不太可能。于是产生了离心压气机叶轮的“骨架成型法”,这种方法可以弥补“双补转中心法”的不足。但是,成型后弯叶片时,需要数控铣床。 早期设计离心压气机叶轮时,设计人员认为叶片型线是由二次曲线组成的,如使用圆弧线,抛物线等代表叶型、轮缘、轮毂型线形状。使用二次曲线表示的叶片型线形状的一般表达式为 f ez dr cz brz ar +++++=2222 2γθ 式中,r 为半径,z 为叶轮轴向坐标,a,b,c,d,e,f 为系数。系数决定叶轮进口角度和叶型型线。Eckerdt 即采用上式设计了Eckerdt 叶轮。Whitfield 等人认为叶轮型线可由下式表示:

风机离心风机的常识与选型(各种压效率概念计算等)

风机离心风机的常识与选型(各种压效率概念计算等) 风机类型 离心风机分类与结构离心风机(后简称风机)是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。离心风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;风洞风源和气垫船的充气和推进等。 离心风机分类 主要结构部件 一些常识1、压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有全压、动压、静压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、kPa、mH2O、mmH2O等。2、流量:单位时间内流过风机的气体容积的量,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h。3、转速:风机转子旋转速度。常以n来表示,其单位用r/min。4、功率:驱动风机所需要的功率。常以N来表示,其单位用KW。关于全压、动压、静压1、气流在某一点或某一截面上的总压等于该点截面上的静压与动压之和。而风机的全压,则定义为风机出口截面上的全压

与进口截面上的全压之差,即: Pt =(Pst2 +ρ2 V2 2/ 2)-( Pst1 +ρ1 V12/2) Pst2 为风机出口静压,ρ2为风机出口密度,V2为风机出口速度 Pst1 为风机进口静压,ρ1为风机进口密度,V1为风机进口速度2、气体的动能所表征的压力称为动压,即:Pd=ρV2/23、气体的压力能所表征的压力称为静压,静压定义为全压与动压之差,即:Pst = Pt–Pd注:我们常说的机外余压指的是机组出风口处的静压和动压之和。如下图所表示管道内全压、静压和动压: 静压(Pj)由于流体分子不规则运动而撞击于器壁,垂直作用在器壁上的压力叫静压,用Pj表示,单位用毫米水柱。计算时,以绝对真空为计算零点的静压称为绝对静压。以大气压力为零点的静压称为相对静压。空调中的空气静压均指相对静压。大于周围大气压的静压为正值,小于周围大气压时静压为负值。例如:风道上的静压力测点是从烟风道壁面上引出的,因此,仪表盘上的风压压力计指示的仅是静压。动压(Pd)流体在管道内或风道内流动时,由于速度所产生的压力称为动压或速度压头。动压值总是正的,用Pd表示,单位用毫米水柱。全压(Pq)是指某点上静压力和动压力的代数和,即:Pq=Pd+Pj;单位也是毫米水柱。全压=静压+动压

如何计算空压机的能耗

空压机实际耗电及机器比功率的计算方法 前面我也发表了一篇关于《活塞机、螺杆机、滑片机哪个更省电?》的文章,里面讲到了“比功率”这个词。其实以本人对空压机行业的了解,现在的业务员,纯粹就是忽悠,瞎忽悠,真正懂空压机、懂节能的还真不多,这也是我为什么想再写一篇关于怎么计算“比功率”的文章的缘由,希望对你有用。 空气压缩机是否节能的唯一判断标准为―比功率‖。要了解一台螺杆空压机的比功率,首先要对其输入功率的概念有完整的认识。我们知道,用户要支付的电费不是整台机器的输出功耗,而是整台机器的输入功耗,即该台机器的总输入能耗。下面我分两种情况对输入功耗计算进行举例说明: 1、根据马达铭牌参数计算输入功耗。计算模式如下: (1)任何一台机器,其马达铭牌上均需注明的参数有(以常规的单级空压机132kw机型举例:流量=24m3/min,工作压力=7Bar举例): 马达额定功率(额定输出功率或额定轴功率):P = 132kw 马达效率(以华达电机举例):η = 94.7% 功率因子:COSφ=0.892 服务系数S.F=1.15 (也有厂家采用的服务系数S.F=1.2) 电机型号额定功率 满载时最大转矩 转动惯 量电流转速功率因素效率 额定转矩kw 380v 400v r/min COSφη =%kgm2 A A Y2-132M-4 132 237 226 1485 0.892 94.7 2.8 3.48 基于上述参数,我们可以知道: ? 该台机器的马达名义额定输入功率(不考虑服务系数且满载时): P1 = (马达额定输出功率P ÷马达效率η) = 132kw ÷ 94.7% = 139.39kw ? 该台机器的名义额定输入功率(考虑服务系数且满载时): P2 = (主马达额定输出功率P ÷主马达效率η)x (服务系数S.F-0.05) = (132kw ÷ 94.7%)x (1.15 – 0.05) = 153.33kw (注意:理论上计算服务系数时需考虑留5%的余量,不能满额计算) ? 该台机器的名义比功率(在7bar时,考虑服务系数且满载时): PB1 = P2 ÷ 24 m3/min = 6.39kw/( m3/min) 注意:如是风冷机器,同时还需要考虑进去风扇的输入功率。假如该台机器为风冷型机器,风扇马达的额定功率为4.5kw,效率为85%,则风扇马达的输入功耗为: PF = 4.5kw ÷ 85%

压气机

西安航空职业技术学院毕业设计论文涡扇发动机的压气机部件

目录 1概述 ................................................................................................................................................................ 2压气机的分类以及结构特点 ....................................................................................................................... 2.1 .................................................................................................................................................................. 2.2 .................................................................................................................................................................. 2.3 ................................................................................................................................................................. 2.3.1 ........................................................................................................................................................... 2.3.2 ........................................................................................................................................................... 2.3.3 ........................................................................................................................................................... 2.3.4 ........................................................................................................................................................... 2.3.5 .......................................................................................................................................................... 3压气机的工作原理 ........................................................................................................................................ 3.1离心式压气机的工作原理...................................................................................................................... 3.2轴流式压气机的工作原理...................................................................................................................... 4压气机的材料 ............................................................................................................................................... 5 6压气机常见故障的诊断以及维修 ................................................................................................................ ...................................................................................................................................................................... 谢辞 ............................................................................................................................................................... 参考文献 ........................................................................................................................................................... 附录 ................................................................................................................................................................

压缩机热力学计算解读

2 热力学计算 2.1 初步确定各级排气压力和排气温度 2.1.1 初步确定各级压力 本课题所设计的压缩机为单级压缩 则: 吸气压力:P s =0.1Mpa 排气压力:P d =0.8Mpa 多级压缩过程中,常取各级压力比相等,这样各级消耗的功相等,而压缩机的总耗功也最小。各级压力比按下式确定。 z i t εε= (2-1) 式中: i ε—任意级的压力比; t ε—总压力比; z —级数。 总压力比:t ε= 0.8/0.1=8 各级压力比: 83.28==ε i 压缩机可能要在超过规定的排气压力值下工作,或者所用的调解方式(如余隙容积调节和部分行程调节)要引起末级压力比上升而造成末级气缸温度过高,末级压力比值取得较低,可按下式选取: Z =εε t i )75.0~9.0( (2-2) 则各级压力比: ε 2=2.12~2.55=2.5 ε 1 =3.2 各级名义进、排气压力及压力比已经调整后列表如下 表2-1 各级名义进、排气压力及压力比 级数 名义进气压力 p 1(MPa ) 名义排气压力 p 2(Mpa ) 名义压力比 ε Ⅰ 0.1 0.32 3.2 Ⅱ 0.32 0.8 2.5

2.1.2 初步确定各级排气温度 各级排气温度按下式计算: 1n n d s i T T ε-= (2-3) 式中:T d —级的排气温度,K ; T s —级的吸气温度,K ; n —压缩过程指数。 在实际压缩机中,压缩过程指数可按以下经验数据选取。 对于大、中型压缩机:n k = 对于微、小型空气压缩机:(0.9~0.98)n k = 空气绝热指数k =1.4,则(0.9~0.98)(1.26~1.372)n k ==,取n =1.30 各级名义排气温度计算结果列表如下。 一级的吸气温度T s1=210C+273=294(K ) 一级的排气温度T d1==X =-2 .323 .0113.11 1 294ε T s 382(K) 二级的吸气温度T s2=400C+273=313(K ) 二级的排气温度:=X =-5 .223 .0113.12 2 313ε T s 471(K)=386(K) 表2-2 各级排气温度 级数 名义吸气温度T 1 压缩过程指数n n n 1-')(ε 名义排气温度T 2 ℃ K ℃ K Ⅰ 21 294 1.30 1.31 130 382 Ⅱ 40 313 1.30 1.313 1.23 386 2.2 确定各级的进、排气系数 2.2.1 计算容积系数v λ 容积系数是由于气缸存在余隙容积,使气缸工作容积的部分容积被膨胀气体占据,而对气缸容积利用率产生的影响。 )1(11 --=m v εαλ (2-4) 式中: v λ—容积系数; α —相对余隙容积; ε — 压力比。 各级膨胀过程指数m 按下表计算。

图说燃气轮机的原理与结构

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

压气机的设计过程

压气机的设计过程 设计过程大致可分为五个密切相关的步骤即初步设计、S2通流计算、叶片造型(二元)、叶片造型(三元)和放大尺寸的试验件研究。这五个步骤环环相扣, 每个阶段采用不同层次的数学物理模型和经验数据, 相互补充, 相互交叉检验, 最终将设计风险降到最小。西方研制的压气机效率较高, 是与这种设计体系有关的。以下对各设计步骤作简要说明。 初步设计—事先从整体上论证、预估所设计的风扇压气机方案的可行性 初步设计从压气机总性能的设计要求出发, 采用1D平均流线分析程序和经验数据, 计算出负荷的轴向匹配, 并估算压气机性能(流量、压比、效率和喘振裕度), 确定内外环壁形状、级数和总长度等。PW、RR和GE等公司都是这样做的。初步设计十分重要, 而且需要较多的经验。如这一步犯了基本的错误, 例如选取了较少的级数和较短的长度, 致使叶片负荷过高和展弦比太大, 在以下的通流计算和叶型设计中将无法纠正。初步设计确保了整个设计方案的可行性。 通流设计—S2程序与经验输入的协调设计 采用S2程序及损失等经验数据, 解决流场的径向平衡和匹配。开始时叶片展向压比和效率值取自初步设计, 此后在迭代中可进一步修正叶型损失和落后角这些经验数据。采用扩散因子以及静子根部马赫数限制等准则, 可以得到各流面叶栅的马赫数、气流转折角、扩散因子等的合理值。在多级压气机中的通流设计中, 环壁堵塞系数的选取

十分关键。如果选取不准, 则某些级流量会偏离设计点而导致整个压气机前后级不匹配。另外, 为考虑径向掺混的影响, 通流设计程序中的掺混系数等还须与试验相配合, 进而加以确定, 详见3.5节。 叶片造型(二元)—任意叶型的气动优化造型 20世纪70年代以前, 大多采用标准叶型和经验数据关联进行几何造型。目前英、法、德的发动机公司已采用S1BYL2、MISES等S1程序进行任意叶型的气动造型。即通过S2-S2系统, 用S1正问题程序反复计算和修改叶型, 采用叶表面速度分布、损失系数以及叶面附面层参数等准则, 使叶型得以气动优化。而美国的发动机公司虽没有报道S1程序的名称, 但如NAFCOT计划, 实际上也采用功能相同的S1程序, 即2DEuler解内含该公司积累的经验数据。这种二元造型法在叶高的大部分区域内是适用的, 但对叶尖、叶根等三元流动较强的区域, 以及弓形静子、前掠、后掠等使S1流面翘曲的叶片, 应采用3D N-S程序进行另外的修改。 叶片造型(三元)—叶片的三元优化造型 3DN-S程序与S2-S1程序相配合, 能在一定程度上算出风扇压气机内流场的细微结构, 这对控制二次流损失、激波邓村面层干扰损失等是有利的。但由于目前3DN-S程序计算精度还不够高,所以对叶片的三元修改不可能完全依靠计算, 还需经验和技巧。GE公司为发展先进的复合弯扭叶片, 在低速模拟试验器上进行了多种叶片的试验研究。RR 公司的Gallimore认为3DN-S计算用于修改叶片时还应凭经验来判断。放大尺寸的试验件研究—多级核心压气机研究平台

相关文档