文档库 最新最全的文档下载
当前位置:文档库 › 硒的形态分析方法概述及其在生物有效性研究中的应用

硒的形态分析方法概述及其在生物有效性研究中的应用

硒的形态分析方法概述及其在生物有效性研究中的应用
硒的形态分析方法概述及其在生物有效性研究中的应用

硒的形态分析方法概述及其在生物有效性研究中的应用

摘要:硒的形态研究是了解环境中硒的毒性、生物可利用性、迁移和生物地球化学循环等方面的基础。本文总结了环境样品中硒形态的研究方法,及其形态分析在生物有效性研究中的应用。

关键词:硒;形态分析;方法;生物有效性;应用

1前言

硒位于第六主族, 是一种准金属元素。地壳中硒的丰度仅为0.05-0.09 μg/g, 但由于人为因素与自然因素的影响使硒在自然界中分布日益广泛, 一般大气、水、土壤中硒水平为μg/g-ng/g级。

一定条件下, 各种形态的硒类化合物可相互转化。有报道以葡萄糖作为外加碳源, 研究天然水体中亚硒酸钠通过微生物反应转化为单质硒和挥发态硒(如二甲基硒、二甲基二硒) 的实验。

1957年,Schwar首先证明硒作为谷胱甘肽过氧化物酶的活性中心, 是人体必需的微量元素。近年来, 适量的硒摄入水平与癌症、心血管病、糖尿病、白内障、老年痴呆症等各种疾病的密切相关性日益引起人们的重视。我们在贫硒地区通过口服亚硒酸钠来治疗预防克山病、大骨节病。

硒作为多种重金属元素(如Cd、Hg等)的天然解毒剂、可拮抗环境中多种有害物质的毒性。

硒化合物的生理、生物活性,及其在环境中的迁移转化规律,同硒存在的化学形态及不同化学形态下硒的浓度水平直接相关。硒分析方法在研究生命科学、环境科学、材料科学等领域均具重要意义。

1 环境中硒的存在形式

硒存在形式的早期研究主要集中于矿床学、矿物学和环境地球化学。朱建明等[1]于

2003年对已发现的107种硒矿物进行了总结和归类,概述了表生环境中硒的存在形式。环境中硒主要以无机和有机硒形式存在(表1)[2-4,5],不同硒形态间会因pH、Eh和生物作用(如甲基化)等因素的影响而发生转变,其中pH-Eh是主要的影响因素。图1给出了常温常压下不同形态硒稳定存在的pH-Eh范围。

表一环境中主要的硒化合物[2,5]

Table 1 The major selenium compounds in the environment

硒化合物化学式存在条件

无机硒

硒化氢(-Ⅱa) H

2

Se b气体,不稳定,水中易分解成Se0

硒氢化物(-Ⅱ) Se2-还原环境,金属硒化物,土壤中元素硒(0) Se0还原环境稳定存在,水中不溶解

亚硒酸盐(Ⅳ) SeO

3

2-弱氧化条件,易溶解,如土壤或大气颗粒

偏亚硒酸盐(Ⅳ) HSeO

3

2-酸性或中性条件,易还原,如土壤中

二氧化硒(Ⅳ) SeO

2

化石燃料燃烧放出的气体,易溶于水

硒酸盐(Ⅵ) SeO

4

2-弱氧化条件,易还原,易为植物利用

硒酸根(Ⅵ) SeO

4

2-,HSeO

4

-一般土壤环境

有机硒

二甲基硒化物(DMSe) (CH

3

)

2

Se b土壤中微生物、细菌形成的挥发组分

二甲基二硒化物(DMDSe) (CH

3

)

2

Se

2

b植物形成的挥发组分

二甲基硒砜(CH

3

)

2

SeO

2

b DMSe的前期还原挥发产物,由代谢形成

三甲基硒(CH

3

)

3

Se+动物代谢产物,以尿形式排放

注:a表示无机硒化合物中硒的价态;b表示该硒化合物具有挥发性。

此外,生物体内还有硒代半胱氨酸(Selenocysteine)、硒代胱氨酸

(Selenocystine)、硒代蛋氨酸(Selenomethionine)、硒乙硫基氨基酪酸(Selenothionine)、硒甲基硒代半胱氨酸( Se-methyl selenocysteine)、硒甲基硒代蛋氨酸(Se-methyl selenomethionine)、γ-谷氨酰硒甲基硒代半胱氨酸(γ-glutamyl-Se-methyl selenocysteine)、硒蛋白(Selenoprotein)等有机硒化合物[5,6],对它们的分离和定量分析一般要用仪器联用技术。

图1 常温常压下硒的pH-Eh图[7]

Fig.1 Eh-pH diagram of selenium species at 25℃,1atm ,and ∑Se=10-6M

2总硒测定

2.1分子荧光分析法和吸光光度法

现行中华人民共和国标准中采用 2,3-二氨基萘荧光法[8]。原理是利用四价硒与DAN(2,3-二氨基萘)反应生成强荧光特性的4,5-苯并苤脑,用有机溶剂萃取后在荧光分光光度计上于激发波长366nm、发射光波长520nm处测定荧光强度。此法选择性好、灵敏度高,但操作繁琐费时且试剂需进口且对人体有害。王守兰等[9]用该法测定富硒米、富硒茶中痕量硒,检出限为1ng。常规荧光法测定硒时,存在485nm杂质荧光峰与519.2nm 检测荧光峰相重叠,干扰了硒的测定,使结果偏高。胡益水[10]采用一阶导数荧光法测定

茶叶中的硒,有效地消除干扰,改善了灵敏度和检测限。

紫外及可见分光光度法为硒的常用分析方法,常用试剂有环戊酮、硫代乙醇酸苯肼、二氨柯嗪、邻苯二胺等、以及3,3-二氨基联苯(DAB)和2,3-二氨基萘(DAN)应用最为广泛[11-13]。杨明敏等[14]在0.5mol/L盐酸介质中用巯基棉富集水中硒(Ⅳ),解吸后用一种新的萃取分光光度法测定,本法基于硒(Ⅳ)将碘离子氧化成碘络离子,碘络离子和结晶紫分子形成的配合物被二甲苯萃取,检测下限可达0.5μg/L。此外,催化光度法也常用于食品中痕量硒的分析。郝素娥[15]应用催化光度法测定了硒酵母中有机硒的含量,测定原理是四价硒能够催化氯酸钾氧化苯肼生成偶氮离子,继而与变色酸偶合生成的红色偶氮染料的吸光度在一定范围内与硒成正比。刘长久[16]利用阻抑氧化甲基橙动力学光度法测定四价硒,研究了反应的最佳条件及动力学参数,建立了动力学光度法测定痕量硒的新方法。寻找高灵敏度的显色试剂和建立高灵敏的显色体系依然是光度法今后的研究方向。

2.2原子光谱法

原子吸收光谱法是基于物质所产生的原子蒸汽对特定谱线的吸收作用来进行定量分析的一种方法。石墨炉原子吸收光谱法存在硒的挥发损失、干扰等问题。张奇等[17]在用石墨炉原子吸收法测定样品中硒时采用不同的基体改进剂均获得较好的效果。王宏[18]采用石墨炉平台技术和塞曼扣背景系统消除基体干扰,并用铜基体改进剂,测定了鸡蛋中微量硒,也获得满意结果。

氢化物石墨炉原子吸收光谱法是近年来发展起来的一项技术。它使测定元素转化成气态氢化物与基体分离,受干扰较小、灵敏度高、重现性好。马玉平[19]将流动注射技术与之结合,克服了间歇式氢化物发生器操作复杂,测定速度慢的缺点,使该法的实用价值得到提高。样品不经分离,直接进样测定。刘波静等[20]用氢化物原子吸收法测定螺旋藻中痕量硒,结果令人满意。该方法下限可达17ng/g,样品回收率为98.89%-101.20%。

氢化物原子荧光光谱法[21]原理是将样品中硒转化为Se(Ⅳ),用NaBH

4或 KBH

4

作还原

剂,将Se(Ⅳ)在HCl介质中还原成SeH

4

,由载气带入原子化器中进行原子化,在硒特制空心阴极灯照射下,基态硒原子被激发至高能态,在去活化回到基态时,发射出特征波长的荧光,其荧光强度与硒含量成正比。氢化物原子荧光光谱法,测定食品中硒准确度高、灵敏度、精密度好,线性范围宽,所用试剂毒性小,实用性强,已列入国标法。

在任何高温气体中,如有1%以上原子或分子被电离,该气体即具有相当大的电导率,这种自由电子、离子和中性原子或分子组成的中性气体,即称为等离子体[20]。HG-ICP-AES

已广泛应用于啤酒、蜂蜜、猪肉中痕量硒的分析[22]。在天然药物中该法也常被使用。2.3电化学法

测定硒的电化学法有电位滴定法、溶出伏安法、催化极谱法、离子选择电极法等,应用较多的是溶出伏安法和催化极谱法,具有仪器简单、灵敏度高、应用范围广等特点。葛宣宇[23]自制的玻碳金膜电极采用微分电位溶出伏安法测定了矿泉水中的硒,最低检出限0.5μg/L。汪振辉等[24]用Nafion修饰金膜玻碳电极溶出伏安法测定痕量硒,解决了非汞电极测定硒时重现性差的问题,同时改善了灵敏度和选择性。硒在很多底液中都能

产生良好的极谱波,但以Na

2SO

3

-NH

4

Cl-HClO

4

-KIO

3

底液法测定硒灵敏度最高。汪模辉

[25]用催化极谱法测定茶叶和大麻笋中的痕量硒,采用二阶导数法测定,线性范围为0-50ng/25ml,检出限为1.44ng/25ml。极谱法存在的缺点是电极易被污染,电活性物质有毒性。

2.4其它分析方法

气相色谱法(GC)测定四价硒有很高的灵敏度和可靠性。原理是利用邻苯二胺及其衍生物选择性地与四价硒生成苯并硒二唑,通过色谱法分离,用电子捕获器进行检测。靳利娥[26]将枸杞用密封消化罐分解消化,加入KBH

4

将其中的硒转化为氢化物,用液氮冷阱捕集、浓缩,通过GDX-104色谱柱进行分离,检出限为8.6×10-11g,分析了大同、太原、运城和忻洲四地所产枸杞中硒的含量。高效液相色谱法(HPLC)与GC原理相似,使用的是荧光检测器。离子色谱配以电导检测器多用于样品中硒的形态分析。

中子活化技术测定硒具有快速、准确、灵敏度高且能同时分析许多元素等优点,但一般实验室不具备该实验仪器设备,还未得到广泛应用。使用电感耦合等离子质谱法(ICP-MS)测定硒灵敏度高,但基体干扰严重,适当的前处理有助于清除干扰,改进进样技术也可使检测限进一步降低。

3形态分析

食品中的硒多以硒蛋白和硒代氨基酸等有机态存在。目前,测定有机硒的方法大多是测其总量-先测定无机硒(Ⅳ)含量,再测总硒含量,两者差值即为有机硒的含量,对其中硒的形态研究较少。然而食品中硒的形态不同,在人体内代谢途径不同,产生的功效也不同,因此,分析硒的形态也十分必要。

3.1硒蛋白的分离纯化

硒蛋白的分离纯化方法有盐析法、离子交换法、薄层色谱、凝胶色谱、气相色谱及

电泳法等。吴永尧等[27]用(NH

4)

2

SO

4

分段盐析,分子筛柱层析,分离出水稻中硒蛋白组分。

聚丙烯酰胺凝胶电泳法(SDS-PAGE)对蛋白质分子量的确定有很好的精确性,而且样品的预处理简单,适合对未知蛋白质的分离和测定。谢申猛等[28]采用凝胶电泳技术分离恩施高硒地区大豆中含硒蛋白组分,分辨出27条蛋白条带,用高效液相色谱荧光法对这些条带分别进行硒含量测定,发现13条硒蛋白,用标准分子量蛋白标定含硒蛋白组分的分子量。

3.2硒蛋白及氨基酸的检测

普遍认为,在谷物、大豆和硒酵母中硒主要以硒代蛋氨酸形式存在,而动物组织中硒主要以硒代半胱氨酸存在,约占总量的50%以上。郝素娥等[15]用透析法使硒酵母中有机硒和无机硒分离,再用氨基酸分析仪测定了硒酵母中硒代胱氨酸和硒代蛋氨酸,采用低速长柱,与其它氨基酸的分离度达90 %以上。农晋琦等[29]将硒半胱氨酸甲基化,硒胱氨酸还原后再甲基化生成甲基硒半胱氨酸与溴化氰发生专一性反应生成硒氰酸甲酯,再用气相色谱法测定了硒酵母和硒蛋白中的硒氨基酸。

随着现代分析仪器的发展,各种联用技术的使用使硒的形态分析更加广泛和深入。吴永尧等[27]将硒蛋白经酸水解后采用标准样对照法用高效液相色谱分离,检出硒代氨基酸,再用质谱法进一步确定其形态。李方实[30]提出了一种高效液相色谱分离和ICP-MS 或FAAS作为元素专一检测器在线测定硒的化学形态方法,用ESAⅢ阳离子色谱柱以柠檬酸铵为流动相,分离测定三甲基硒离子、硒代蛋氨酸、亚硒酸和硒酸盐。各种联用技术中HPLC-ICP-MS和CE-ICP-M灵敏度较高。文献[31,32]用 RP-HPLC-ICP-MS分析海鸥蛋中的有机硒化合物,分析出6种硒化合物,其中两种用标准加入法确证为硒半胱氨酸和硒胱氨酸。HPLC-ICP-MS和CE-ICP-MS联用技术进行形态分析常需同标准物质对照完成,尽管可灵敏提供样品分离后相应元素测量信息,但不能给出对应的结构组成,电喷雾质谱技术ESI-MS与HPLC、CE等分离手段联用可完全地分析溶液中存在的金属类生物大分子化合物的化学键结构与金属结合或螯合的特定蛋白质、氨基酸分子的结构,但其灵敏度较低。今后,在提高硒检测方法灵敏度和准确度的同时,要发展对硒的各种形态分离富集技术和高灵敏度、高选择性的分析方法。

4形态分析在研究微量元素生物有效性中的应用

食品中微量元素的形态分析不能停留在静态检测,而应该将该技术应用到如何提高微量元素的生物有效性和开发功能食品的研究上。微量元素在人体和其他生物体内的代谢过程和生物活性的研究与功能食品的开发具有密切的关系,前者可以为功能食品的研究开发提供重要的指导作用和质量控制的生物标准,而后者的发展可以提高食品中微量元素的生物有效性,从而提高食品的营养价值。

4.1微量元素在生物体内代谢和生物活性的研究

金属/非金属元素在生物体内的消化吸收、代谢、排泄等生物系统过程中通常存在多种化学形式[33,34],通过测定元素的化学形态,对于研究元素在生物体内的生物活性或毒性以及代谢过程,对开发含有某种微量元素的功能食品及提高微量元素在人体内的生物有效性具有重要的意义。

H.González Iglesias等[35]利用HPLC-ICP-MS,以74Se和77Se为追踪同位素,测定老鼠身体组织液中的硒形态,研究硒在体内的主要反应和代谢情况。亚硒酸盐在生物体内很容易和血红蛋白结合,与谷胱甘肽反应被还原为硒化物,然后部分流入到血浆与白蛋白结合,转移到肝脏(GSSeSG);一部分在血流中与蛋白结合,形成硒蛋白。Y.Ueda 等[36]还以82Se 为追踪同位素用HPLC-ICP-MS研究老鼠体内硒蛋白P(Sel P)和细胞外谷胱甘肽过氧化物酶(eGPx) 的代谢情况,显示在老鼠体内注射示踪82Se 后,硒蛋白P(Sel P)中的82Se明显增加,而6-9h后含量下降;而eGPx中的82Se含量在6h后还持续增加。该研究证明了硒可以在肝脏中快速并有效地转化为Sel P,并转移到血浆中,而在肾脏中转化为eGPx并转移到血浆的过程比较缓慢。

食品中微量元素的生物活性与其形态密切相关,例如SeMet是主要的硒氨基酸,是人和其他动物摄取硒的主要来源,具有较高的生物有效性。通过食品中微量元素的形态分析,了解微量元素的生物活性可以作为评价日常食品营养价值的生物标准。Reyes等[37]用二维色谱(排阻-反相)研究了富硒酵母中的含硒化合物的生物有效性,并采用ESI-MS在线与HPLC联用模拟测定肠胃消化过程中产生的低分子量硒化合物,结果发现SeMet是胃肠酶提取物中的主要成分,而SeOMet是长时间保存后的主要降解产物。溶剂提取物和残留物中的硒总量测定显89±3%的硒化合物可以通过胃肠消化提取,但是其中只有34±1%是自由态的SeMet,其余的硒化合物主要分别以低、中、高分子量的形式存在。实验说明胃肠液可以有效地融解酵母中与蛋白结合的硒形态,然而将他们转化为自

由态的SeMet的效率较低。残留物中经SDS提取发现其中只有13±2%的硒化合物被提取出来,说明了残留物中的硒主要以非蛋白的形式存在,并且与不溶的基体化合物结合。

4.2功能食品及食品质量控制

Clark等[38]的研究及美国国家研究委员会[39]建议摄取硒量控制在200μg/d可以达到预防疾病的效果,仅靠日常普通食品摄取硒元素根本无法达到这个标准;而在食品中直接添加的微量元素,人体并不能很好地吸收利用(一些元素的利用率不到1%),只有存在于自然食品中的以各种生物化学态结合的微量元素才能更有效地被人体吸收利用或保留。因此,通过自然添加微量元素而开发的功能食品是人类摄取充分微量元素的健康食品,例如谷物可以从土壤中吸收硒元素,然后通过食物链进入人体被人体吸收利用。

植物生长的环境对植物中微量元素的含量及形态起着决定性作用。通过这种微量元素在植物中的积累和转化作用,可以通过在土壤中添加某种微量元素达到发展功能农作物的目的。Stadlober等[40]研究了奥地利在土壤中加入含硒化物的复合肥使不同的谷物硒浓度增加情况。在实验中,作者利用阴离子交换色谱与ICP-MS联用鉴定并定量分析谷物中的硒化合物,以10mmol/L含2%甲醇的柠檬酸缓冲溶液为流动相,4种硒化合物selenate、selenite、SeCys和SeMet6min可以达到基线分离。他们还研究了其他5种硒化合物Sehcys、Secysta、Seet、TmSe和DmpSe的保留行为,比较了水提取和酶水解生物基体提取硒总量,结果发现水提取率仅3%-9%,然而用酶水解提取率可以达到80%-95%,谷物中主要的硒形态是SeMet。

土壤或其他生长环境中微量元素含量过高,会导致农作物中微量元素浓度过高,从而对人体造成危害。可以通过某些植物能吸收并积累有毒微量元素的作用,即植物对土壤的修复作用,来改善农作物的生长环境,如Brassica juncea可以吸收积累土壤中的硒。利用植物修复作用可以作为解决环境特别是土壤环境重金属污染的措施,这是一个经济有效的方法。研究元素在植物中的元素形态,了解微量元素在植物中的积累和转化过程,对研究植物修复作用有着重要的意义。Kahakachchi等[41]用HPLC-ICP-MS和GC-AED 考察了在不同硒形态组织液培养条件下,Brassica juncea中根和芽不同部位对硒形态的吸收积累及代谢过程。实验结果显示根和芽不同部位对硒形态的吸收积累量不同,并且硒酸盐比亚硒酸盐更容易被植物的根吸收和在该植物中积累。从而探索了利用该植物的元素积累特征,除去环境中某些污染元素的一个有效方法。

Montes-Bayón等[42]用离子对反相色谱与ICP-MS和ESI-MS联用测定了Brassica

juncea中的硒形态,研究了硒在植物中的积累和代谢情况,Brassica juncea在分别含有selenate、selenite和SeMet的溶液中培养,结果发现,硒在Brassica juncea体内生成非蛋白硒化合物如MeSeCys,说明该植物对硒的毒性有较大的耐受性,而植物体内硒的吸收积累量与最初的硒形态关系为:selenate>SeMet>selenite。Vonderheide 等[43]采用离子对色谱与ICP-MS、ESI-MS联用测定出Brassica juncea根释放物中含有

硒胱氨酸((SeCys)

2)、硒硫酸根离子(SSeO

3

2-)和二甲基硒(CH

3

SeCH

3

)。

4.3饲料添加剂

动物饲料中添加某些必需微量元素可以促进动物生长,并预防疾病。刘文龙等[44]用ICP-AES氢化物发生法测定生物样品中的痕量硒。他们对若干生物样品进行分析并进行加样回收试验,其中用高压微波消化法对饲料进行处理后,回收率可达93.1%-94.5%。

5展望

随着临床化学、毒理学和营养学等科学领域的不断发展,微量元素形态分析对21世纪分析化学工作者提出了严峻的挑战,特别是在食品、医药和环境等研究领域中的微量元素形态分析显得尤为重要和迫切。

采样、制备、消化和提取等前处理过程是形态分析至关重要的环节,必须保证此过程中不能破坏元素形态的结构,如温和、高效的酶水解消化和提取等方法。因此,发展稳定和高效的前处理方法是形态分析的重要任务之一。

在各种学科领域相互交叉的今天,特别是生物科学和化学相结合的领域,形态分析也会在更多的领域中得到应用:(1)在营养学上,人们越来越重视食品的营养价值及其安全性,建立一个安全、可靠的食品安全及营养评价体系至关重要,元素形态的分析可以为此提供鉴定的标准;(2)在功能食品的开发研究上,含有某些微量营养元素的功能食品已得到初步的发展(如市场上已经出现了富硒大米,富硒鸡蛋,营养品等健康食品),但是这些功能食品中微量元素的检测有待于进一步的完善,需要深入研究食品中的元素形态和微量元素形态的生物有效性,从而为食品工业开发功能营养食品提供重要信息和有利的生物标准,最终指导食品的生产、加工制备过程,以提高微量元素在人体的生物有效性;(3)通过研究植物中微量元素的形态,开发利用某类植物对环境的修复作用达到改善环境是一个具有很大前景的环境修复手段;(4)在药学、毒理学等领域,形态分析也可以发挥积极的作用。

6.参考文献

[1]朱建明,梁小兵,凌宏文,等.环境中硒存在形式的研究现状[J].矿物岩石地球化学通报,2003,22(6):73-811.

[2]Frankanberger W T,Benson S.Selenium in the environment[M].New York:Marcel Dekker,Inc.,1994,1-416.

[3]彭安,王子健,Whanger P,等.硒的环境生物无机化学[M].北京:中国环境科学出版社,1995,1-204.

[4]Templeton D M, Ariese F,Cornelis R ,Danielsson L G,Muntau H ,Leeuwen H V,Lobinski A R.Guidelines for terms related to chemical speciation and fractionation of elements. Definitions,structural aspects,and methodological approaches[J].Pure Appl. Chem.,2000,72(23):453-1470.

[5]徐辉碧,黄开勋.硒的化学、生物化学及其在生命科学中的应用[M].武汉:华中理工大学出版社,1994,1-383.

[6]Hymer C B,Caruso J A.Selenium speciation analysis using inductively coupled plasma-mass spect rometry [J].J. Chromatogr,2006,1114(89):1-20.

[7]Séby F,Potin-Gautier M,Giffaut E,Borge G,Donard O F X.A critical review of thermodynamic data for selenium species at 25℃[J].Chem. Geol.,2001,171(65):173-194.

[8]杨惠芬,李明元,金秀华,等.食品卫生理化检验手册[M].北京:中国标准出版社,1998.

[9]王守兰,陈永刚.荧光光度法测定富硒米和富硒茶中痕量硒含量[J].光谱试验室,1998,15 (1):34-36.

[10]胡益水,苏文周.一阶导数荧光法测定茶叶中的硒[J].分析化学,1996,24(3):371.

[11]熊彪,周大寨,邓礼君.3,3'-二氨基联苯胺比色法测定薇菜中的微量硒[J].食品研究与开发,2003,24(1):84.

[12]贺立东.分光光度法测定富硒酵母中有机硒的含量[J].食品工业科技,2000,21(5):67.

[13]李剑华,龚书椿.饮用水中硒的形态分析- 2,3 -氨基萘光度法测定硒(Ⅳ)、硒(Ⅵ)及总硒含量[J].食品与发酵工业,1999,25(2):47.

[14]杨明敏,吕波,郑修文.巯基棉分离-萃取分光光度法测定水中痕量硒(Ⅳ)[J].分析化学,1996,24(1):117.

[15]郝素娥,滕冰.硒酵母中有机硒及硒代氨基酸含量的测定方法[J].分析测试学报,1999,18(3):72.

[16]刘长久,羊细群,刘继声.阻抑氧化甲基橙动力学光度法测定硒[J].分析化学,2001,29(9):1030.

[17]张奇,李海涛,杨锦发,等.采用基体改进剂的原子吸收法测定食品中微量硒[J].无锡轻工业学院学报,1994,13(4):338-341.

[18]王宏.应用微波技术和自吸收原子吸收法快速测定鸡蛋中的锌和铁[J].理化检验-化学分册,1991,27(3):36.

[19]马玉平.流动注射氢化物石墨炉原子吸收法测定铅锑合金中微量硒[J].理化检验-化学分册,1994,30(1):29.

[20]刘波静,钱利纯.连续流动氢化物发生2原子吸收光谱法测定螺旋藻中痕量硒[J].光谱学与光谱分析,1999,19(4):610-612.

[21]杨惠芬,李明元,沈文.食品卫生理化检验手册[M].北京:中国标准出版社,1998,171-174.

[22]路纯明,牛安妮,叶维明.实用仪器分析[M].北京:航空工业出版社,1997,35.

[23]葛宣宇.微分电位溶出伏安法测定矿泉水中硒[J].理化检验-化学分册,1997,33(11):514.

[24]汪振辉,张宏忠,周漱萍.Nafion修饰金膜玻碳电极溶出伏安法测定痕量硒的研究[J].理化检验-化学分册,1997,33(11):494.

[25]汪模辉,郎春燕,雷琴.微波消解催化极谱法测定茶叶及大麻笋中的痕量硒[J].分析试验室, 1998,34(3):22.

[26]靳利娥.气相色谱法测定枸杞中的硒[J].山西大学学报,2002,25(3):238.

[27]吴永尧,罗泽民,陈建英,等.水稻硒蛋白及其硒结合形态研究[J].华中师范大学学报,2000,34(2):223.

[28]谢申猛,王子健.SDS-PAGE和HPLC-荧光检测分离鉴定恩施高硒大豆中含硒蛋白[J].环境科学,1994,15(5):61.

[29]农晋琦,蔡瑞仁,欧阳政.硒半胱氨酸和硒胱氨酸的间接气相色谱法测定-溴化氰-气相色谱法[J].色谱,1994,12(1):28.

[30] Li Fang-shi, Walter Goessler and Kurt J Irgolic.Determination of selenium compounds by HPLC with ICP-MS or FAAS as selenium-specific detector.CHINESE JOURNAL OF CHROMATOGRAPHY,1999,17(3):240.

[31]I.Feldmann,N.Jakubowski,D. Stuewer.Application of a hexapole collision and reaction cell in ICP-MS Part I:Instrumental aspects and operational optimization[J].Fresenius J Anal. Chem.,1999,365(5):415-421.

[32]I.Feldmann,N Jakubowski,C Thomos,et al.Application of a hexapole collision and reaction cell in ICP-MS Part II:Analytical figures of merit and first applications[J].Fresenius J Anal. Chem.,1999,365(5):422-428.

[33]Szpunar J.Speciation of metal-carbohydrate complexes in fruit and vegetable samples by size-exclusion HPLC-ICP-MS [J].Anal.Bioanal.Chem.,2004,378:54-56.

[34]Emmie D,Frank V,Rita C.Genotyping by RAPD-PCR analyses of Malassezia furfur strains from pityriasis versicolor and seborrhoeic dermatitis patients [J].Anal.Bioanal.Chem.,2006,385(7):1304-1323.

[35]H.González Iglesias,M.L.Fernández Sánchez,J.I.García Alonso,et https://www.wendangku.net/doc/1817531125.html,e of enriched 74Se

and 77Se in combination with isotope pattern deconvolution to differentiate and determine

endogenous and supplemented selenium in lactating rats[J].Anal. Bioanal.

Chem.,2007,389(78):707-713.

[36]Y.Ueda,P.D.Whanger,N.E.Forsberg.The effects of selenium deficiency on

differentiation,degradation,dand cell lysis of L8 rat skeletal muscle cells[J].Biological

Trace Element Research,1999,69(1):1-13.

[37]Reyes L H,Encinar J R,Sanz-Medel A,et al.Monitoring of Changes in Selenium

Concentration in Goat Milk During Short-Term Supplementation of Various Forms of

Selenium[J].J.Chromatogr.A ,2006,1110(986):108-116.

[38]Clark L C,Dalkin B,Krongrad A,et https://www.wendangku.net/doc/1817531125.html,ck of effects of selenium on executive and memory

functions in healthy male volunteers[J].British Journal of Urology,1998,81(19):730-734.

[39]US National Research C ouncil,Board on Agriculture,Committeeon Animal Nutrition, Subcommittee on Selenium.Selenium in Nutrition.Washington DC:National Academy Press,1983.

[40]Stadlober M,Sager M,Irgolic K J.The Effect of Soil Bacteria and Perlite on Plant Growth and Soil Properties in Metal Contaminated Samples[J].Food Chem.,2001,73(25):357-366. [41]Kahakachchi C,Boakye H T,Uden P C,et al.Determination of trace elements in marine plankton by inductively coupled plasma mass spectrometry (ICP-MS)[J].J.Chromatogr.A,2004,1054(2):303-312.

[42]Montes-Bayón M,le Duc D L,Caruso J A ,et al.A study of method robustness for arsenic speciation in drinking water samples by anion exchange HPLC-ICP-MS[J].Anal.Bioanal.Chem.,2002,373(7):664-668.

[43]Vonderheide A P,Mounicou S,Caruso J A ,et https://www.wendangku.net/doc/1817531125.html,paring a selenium accumulator plant (Brassica juncea)to a nonaccumulator plant (Helianthus annuus) to investigateselenium-containing proteins[J].Anal.Bioanal.Chem.,2006,34(386):1367-1378.

[44]刘文龙,陆小龙.ICP-AES氢化物发生法测定生物样品中的痕量硒[J].光谱学与光谱分析,1992,12(5):76-70.

硒在植物中的作用

硒在植物中的作用 硒在植物中的作用 土壤中的硒是植物的主要来源,大气中的硒也是植物硒的来源之一。根据植物对硒的吸收能力,可分硒积聚植物和硒非积聚植物两大类。硒积聚植物常被称为“硒指示植物”。包括两种:(1)原生硒积聚植物,如黄芪属(Astragalus)植物,含硒量常超过1000ug/g;(2)次生硒积聚植物,如紫苑属(Aster)植物,每克含硒量很少超过几百微克。许多杂草和大部分农作物类植物,是硒积聚植物,含硒量不超过30ug/g,其中十字花科植物对硒的积聚能力最强,其次是豆科,谷类最低。谷类中,小麦对硒的积聚最多。据研究,在土壤中增施硒肥或在植株叶面上喷洒硒剂溶液,可提高植物的含硒量。植物中的硒主要以有机硒化合物的形式存在。植物对硒的吸收是一个主动过程,但一些因素也会影响植物对硒的吸收。土壤类型不同,硒的存在形式和含量不同,植物对硒的吸收也不同。在酸性土壤中(pH值4.5~6.5),硒常以难溶解的碱式亚硒酸铁存在,不易被植物利用和吸收;在劫难在碱性土壤中(pH值7.5~8.5),硒可氧化成硒酸根离子而成水溶性的,易被植物吸收和利用。在某些气候极潮湿的地区,土壤中硒的大部分被雨水等淋滤掉了,植物含

硒量因此受影响。以不同形式存在的硒,它们被植物吸收的程度是不相同的。硒酸盐的吸收比亚酸盐更容易,单质硒不易为植物所吸收。由于硒酸盐、亚硒酸盐与硫酸盐、亚硫酸盐的相似性,硫对硒的吸收有竞争作用。植物所生长的环境以及植物的种类都将影响植物对硒的吸收。据研究报道,硫饥饿能促进番茄对厅的吸收和运输;在低浓度范围 (0.025mgSel-1)、硫(60mgsL-)对硒的吸收有协助作用,这有大豆、大麦、水稻吸收硒、硫的研究例证,但在较高浓度下对硒、硫的吸收表现出相互拮抗。 硒是硒积聚植物的必需微量元素。原生硒积聚植物总是生长在含有可利用形式的硒的土壤中,含硒量每克土高达几千微克的硒,而生长在其附近的同一类植物的硒非积聚各种,仅含有几微克的硒。硒不是硒非积聚植物生长所必需的微量元素。硒可能是高等植物生长的必需营养元素。据研究,用不同浓度的亚硒酸钠处理稻种,培养基中适量的硒 (0.1~1.0ug/g)可以促进水稻的生长、增加产量及籽粒中的硒含量。1.0ug/g的硒可明显提高水稻苗期的根系活力和分蘖期、孕穗期的谷胱甘肽过氧化物酶(GSH-Px)活性,籽粒中的氮含量、硒含量明显高于对照,空秕率大大降低。玉米植株叶面喷硒试验表明,不仅谷实硒含量提高了,还有增产的趋势。湖北省鄂西州将硒投放油菜田中,油菜增产1~3成。

系统生物学综述doc

系统生物学:整合各种组学的信息和方法 姓名:王玉锋 学号:061023050 20世纪生物学经历了由宏观到微观的发展过程,由形态、表型的描述逐步分解、细化到生物体的各种分子及其功能的研究。70年代出现的基因工程技术极大地加速和扩展了分子生物学的发展;90年代启动的人类基因组计划是生命科学史上第一个大科学工程,开始了对生物全面、系统研究的探索;2003年已完成了人和各种模式生物体基因组的测序,第一次揭示了人类的生命密码。人类基因组计划和随后发展的各种组学技术把生物学带入了系统科学的时代。 系统生物学是在细胞、组织、器官和生物体整体水平研究结构和功能各异的各种分子及其相互作用,并通过计算生物学来定量描述和预测生物功能、表型和行为。也就是说,系统生物学是以整体性研究为特征的一种大科学。系统生物学将在基因组序列的基础上完成由生命密码到生命过程的研究,这是一个逐步整合的过程,由生物体内各种分子的鉴别及其相互作用的研究到途径、网络、模块,最终完成整个生命活动的路线图。 借助于基因组和转录组的序列、功能基因组和蛋白质组的方法,可以绘制特定有机体的转录组图、蛋白质组图、相互作用图谱、表型组图及所有转录物和蛋白的定位图。这种整合的组学信息可以帮助我们消除单种组学研究方法中带来的假阳性和假阴性,给出基因产物及其相互作用和关系的更好的功能性注释,有利于相关的生物性假设的生成。基于这些整合数据的计算学的方法可以模拟生物过程的进程。系统生物学可以被看作是个种组学方法的整合、数据的整合、生物的系统化和模型化。 系统生物学的特点: 和以往系统科学研究复杂系统相比,系统生物学的研究将更为复杂和困难。非生物的复杂系统一般由相对简单的元件组合产生复杂的功能和行为,而生物体是由大量结构和功能不同的元件组成的复杂系统,并由这些元件选择性和非线性的相互作用产生复杂的功能和行为。因此,我们要建立多层次的组学技术平台,研究和鉴别生物体内所有分子,研究其功能和相互作用,在各种技术平台产生的大量数据的基础上,通过计算生物学用数学语言定量描述和预测生物学功能和生物体表型和行为。 系统生物学也将使生物学研究发生结构性的变化。长期以来,生物学研究是在规模较小的实验室进行的,系统生物学研究将由各种组学组成的大科学工程和小型生物学实验室有机结合实施的。系统生物学研究也将在更大范围和更高层次进行学科交叉和国际合作,如人类基因组计划、人类单体型图谱计划、人类表观基因组学计划等。 系统生物学的技术平台: 系统生物学的主要技术平台为基因组学、转录组学、蛋白质组学、代谢组学、相互作用组学和表型组学等。基因组学、转录组学、蛋白质组学、代谢组学分别在DNA、mRNA、蛋白质和代谢产物水平检测和鉴别各种分子并研究其功能。相互作用组学系统研究各种分子间的相互作用,发现和鉴别分子机器、途径和网络,构建类似集成电路的生物学模块,并在研究模块的相互作用基础上绘制生物体的相互作用图谱。表型组学是生物体基因型和表型的桥梁,目前还仅在细胞水平开展表型组学研究。 计算生物学可分为知识发现和模拟分析两部分。知识发现也称为数据开采,是从系统生物学各个组学实验平台产生的大量数据和信息中发现隐含在里面的规律并形成假设。模拟分析是用计算机验证所形成的假设,并对体内、外的生物学实验进行预测,最终形成可用于各种生物学研究和预测的虚拟系统。 系统生物学的工作流程: 系统生物学的基本工作流程有这样四个阶段。首先是对选定的某一生物系统的所有组分进行了解和确定,描绘出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理,以此构造出一个初步的系统模型。第二步是系统地改变被研究对象的内部组成成分(如基因突变)或外部生长条件,然后观测在这些情况下系统组分或结构

硒的形态分析方法概述及其在生物有效性研究中的应用

硒的形态分析方法概述及其在生物有效性研究中的应用 摘要:硒的形态研究是了解环境中硒的毒性、生物可利用性、迁移和生物地球化学循环等方面的基础。本文总结了环境样品中硒形态的研究方法,及其形态分析在生物有效性研究中的应用。 关键词:硒;形态分析;方法;生物有效性;应用 1前言 硒位于第六主族, 是一种准金属元素。地壳中硒的丰度仅为0.05-0.09 μg/g, 但由于人为因素与自然因素的影响使硒在自然界中分布日益广泛, 一般大气、水、土壤中硒水平为μg/g-ng/g级。 一定条件下, 各种形态的硒类化合物可相互转化。有报道以葡萄糖作为外加碳源, 研究天然水体中亚硒酸钠通过微生物反应转化为单质硒和挥发态硒(如二甲基硒、二甲基二硒) 的实验。 1957年,Schwar首先证明硒作为谷胱甘肽过氧化物酶的活性中心, 是人体必需的微量元素。近年来, 适量的硒摄入水平与癌症、心血管病、糖尿病、白内障、老年痴呆症等各种疾病的密切相关性日益引起人们的重视。我们在贫硒地区通过口服亚硒酸钠来治疗预防克山病、大骨节病。 硒作为多种重金属元素(如Cd、Hg等)的天然解毒剂、可拮抗环境中多种有害物质的毒性。 硒化合物的生理、生物活性,及其在环境中的迁移转化规律,同硒存在的化学形态及不同化学形态下硒的浓度水平直接相关。硒分析方法在研究生命科学、环境科学、材料科学等领域均具重要意义。 1 环境中硒的存在形式 硒存在形式的早期研究主要集中于矿床学、矿物学和环境地球化学。朱建明等[1]于

2003年对已发现的107种硒矿物进行了总结和归类,概述了表生环境中硒的存在形式。环境中硒主要以无机和有机硒形式存在(表1)[2-4,5],不同硒形态间会因pH、Eh和生物作用(如甲基化)等因素的影响而发生转变,其中pH-Eh是主要的影响因素。图1给出了常温常压下不同形态硒稳定存在的pH-Eh范围。 表一环境中主要的硒化合物[2,5] Table 1 The major selenium compounds in the environment 硒化合物化学式存在条件 无机硒 硒化氢(-Ⅱa) H 2 Se b气体,不稳定,水中易分解成Se0 硒氢化物(-Ⅱ) Se2-还原环境,金属硒化物,土壤中元素硒(0) Se0还原环境稳定存在,水中不溶解 亚硒酸盐(Ⅳ) SeO 3 2-弱氧化条件,易溶解,如土壤或大气颗粒 偏亚硒酸盐(Ⅳ) HSeO 3 2-酸性或中性条件,易还原,如土壤中 二氧化硒(Ⅳ) SeO 2 化石燃料燃烧放出的气体,易溶于水 硒酸盐(Ⅵ) SeO 4 2-弱氧化条件,易还原,易为植物利用 硒酸根(Ⅵ) SeO 4 2-,HSeO 4 -一般土壤环境 有机硒 二甲基硒化物(DMSe) (CH 3 ) 2 Se b土壤中微生物、细菌形成的挥发组分 二甲基二硒化物(DMDSe) (CH 3 ) 2 Se 2 b植物形成的挥发组分 二甲基硒砜(CH 3 ) 2 SeO 2 b DMSe的前期还原挥发产物,由代谢形成 三甲基硒(CH 3 ) 3 Se+动物代谢产物,以尿形式排放 注:a表示无机硒化合物中硒的价态;b表示该硒化合物具有挥发性。 此外,生物体内还有硒代半胱氨酸(Selenocysteine)、硒代胱氨酸 (Selenocystine)、硒代蛋氨酸(Selenomethionine)、硒乙硫基氨基酪酸(Selenothionine)、硒甲基硒代半胱氨酸( Se-methyl selenocysteine)、硒甲基硒代蛋氨酸(Se-methyl selenomethionine)、γ-谷氨酰硒甲基硒代半胱氨酸(γ-glutamyl-Se-methyl selenocysteine)、硒蛋白(Selenoprotein)等有机硒化合物[5,6],对它们的分离和定量分析一般要用仪器联用技术。

SPSS在环境统计分析中的应用

SPSS在环境统计分析中的应用 班级姓名学号日期 (一)、实验目的 理解并掌握SPSS软件包有关的数据文件创建和整理的基本操作,学习如何将收集的数据输入计算机,建成一个正确的SPSS数据文件,并掌握如何对原始数据文件进行整理,包括数据查询,数据修改、删除,数据的排序等等。利用SPSS进行描述性统计分析。要求掌握频数分析、描述分析、探索分析,统计推断,方差分析,相关分析与回归分析。 (二)、实验准备 1软件准备; 2数据准备; 某航空公司38名职员性别和工资情况的调查数据。 (三)、操作步骤 1 启动SPSS; 2 输入数据; 3 数据保存; 4 整理数据: (1)将数据文件按性别分组:选择菜单【数据】【数据拆分】【性别】【按组组织输出】 (2)查找工资大于40000美元的职工:选择菜单【数据】【选择个案】【如果条件满足】输入Salary>40000 (3)插入一个变量income,定义为数值变量:进入变量视图添加 (4)当工资大于40000美元时,职工的奖金是工资的20%;当工资小于40000美元时,职工的奖金是工资的10%,假设实际收入=工资+奖金,计算所有职工的实际

收入,并将结果添加到income变量中:选择菜单【转换】【计算变量】在数字表达式输入框中输入新变量的计算表达式【如果】输入满足条件 操作完成后显示结果如下图: 5 描述统计 频数分析:选择菜单【分析】【描述统计】【频率】;确定所要分析的变量,例如性别;在变量选择确定后,在同一窗口,选择统计输出选项以及图表类型 输出结果如下: (四)、结果讨论 本次SPSS上机实验让我对这门软件有了较深刻的认识,SPSS是一款菜单式的软件,操作简便,易于理解。利用将有助于提高工作效率。利用SPSS进行统计分析,变量和数据是必不可少的,数据输入后通常需要对数据进行进一步的处理。

细胞生物学课程论文

无限增殖的小鼠胚胎成纤维细胞系胰高血糖素样免疫反应的 建立及特性描述 XXX 湖北师范学院生命科学学院生物科学专业 1101班 201111XXXXXXX 摘要 1.背景: Hh信号是一种保守的形态形成通路,它在胚胎发育中扮演至关重要的角色,新兴的证据也支持这一角色在治疗和修复过程以及肿瘤发生中的作用。胰高血糖素样免疫反应性家族的转录因子(Gli1,2和3)通过调节下游靶基因的表达来调解刺猬形态形成的信号。我们以前用来自小鼠胰高血糖素样免疫反应性的一系列胚胎成纤维细胞来描述Gli蛋白在Hh目标基因调节中的个体与合作的角色。 2.结果: 本文中,我们描述了缺乏单个和多个Gli基因自发地无限增值的老鼠胚胎成纤维(iMEF)细胞系的建立。这些非无性繁殖系的细胞系概括了独特的配体介导的转录响应早期的MEFs。然而许多Gli1对目标基因的诱导不起作用,已发现的Gli2空细胞会减弱目标基因的感应而Gli3空细胞表现出提高基底部并促进配体诱导的表达。在Gli1 - / 2 - / - iMEFs中的目标基因反应严重地降低而Gli2 - / 3 / - iMEFs 不能引发转录反应。然而,我们发现Gli1 / 2 - / -和Gli2 / 3 - / - iMEFs对Hh配体都表现出强劲的白三烯依赖性的综合迁移,这证明了这种反应不是依赖性的转录。

3.结论: 本研究提供了一系列Gli-null iMEFs转录和非转录的Hh反应的基本特征。向前推移,在Hh 反应程控中,这些细胞系被证明是一套有价值的工具,用来研究独特功能的调控。 背景 对于多种多样的生物过程,包括发育模式和器官形成,Hh信号通路是一个至关重要的调控子。这条路径从上游的Hh配体结合起始,到跨膜转运受体的碎片蛋白(Ptc1)。这减轻了碎片蛋白介导对Smoothened(Smo)的抑制,引发了复杂的下游信号级联(综述[1]]。Gli1和Ptc1是保守的Hh目标基因并且其表达水平被认为是路径活动的可靠指标。大多数Hh信号介导的生物学效应似乎都是通过Hh目标基因的转录调控被调节的,就连最近的一个非转录反应也被确定[2、3]。 在确定Hh在生长和组织与器官的形态发生中发放信号的角色时,空小鼠模型是至关重要的。在探索在通路调节中个体Hh信号介质的功能时,这些模型也被证明是很有价值的。在细胞分析中,Gli1的过度表达已经被发现可以诱导Hh目标基因的表达。小鼠的Gli1 发育正常的这一发现,推断Gli1的功能对于正常发育是可有可无的[4]。小鼠的Gli2 表现出神经管缺陷并且证明减退的Hh目标基因表达在几个组织中[5 - 7]。它支持来自基于细胞分析的研究结果[8],即把Gli2的功能作为一个关键的目标基因的激活剂。对于Gli3空小鼠,在来自于野生型的器官中,增加的目标基因的表达暗示,Gli3的功能是抑制转录。

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

生物学进展综述

浅析澳洲苷蔗蟾蜍入侵及其启示 课程名称:生物学进展 姓名:戚德涛 学号: 2201150219 班级:临床医学(五年制)二班

浅析澳洲苷蔗蟾蜍入侵及其启示 临床医学五年制二班 2201150219 戚德涛 摘要:随着人类社会的发展,各个大陆、国家之间的交流日益丰富,然而伴随着人们的各种生活、生产活动,很多“多动”的动植物也都搭上了顺风车,进行了漫长而又辉煌的“迁徙之旅”,这就是生物入侵。人们后来才意识到自己将为自己的行为付出代价,经济损失、环境破坏,对抗还是接纳生物入侵这一事件也许还未可知。 1、生物入侵的方式 1.1有意引入 福寿螺、克氏原螯虾、牛蛙或水葫芦等是人们出于观赏、养殖有意引入的,在野外放养或弃养后任其自生自灭,最后在野外形成自然种群对动物区系中的土著种造成一定危害,并对当地农业经济造成一定影响[1]。 1.2无意引入 像植物还可能由邻近地域借助河流、风力等方式自然扩散或随交通工具传播进入、随植物引种进入、国际上商品交易或压舱水由于检查不严格随商品带入并发展为野生等方式,动物则多是依附于植物而进入外地。 1.3甘蔗蟾蜍入侵起始 1935年澳大利亚价值不菲的糖类作物,即将被贪婪的蔗糖甲虫破坏殆尽,政府想尽办法,希望能阻止这场由本土蔗糖甲虫引发的噩梦。科学家们不负众望,很快就找到了答案——那就是中美洲的苷蔗蟾蜍。苷蔗蟾蜍在原产地就以甲虫为食。这个由外来物种抑制本土害虫的办法听上去既廉价又有效,获得了人们的一致赞同。同一年科学界们引进了102只苷蔗蟾蜍,进行大范围试验。一开始,澳大利亚人像欢迎救世主一样欢迎这些蟾蜍,不幸的是,这些蟾蜍却另有打算,它们放过那些极难捕捉的蔗糖甲虫,却开始大肆捕食田野中数量庞大的其他昆虫,试验结果错得可怕。失望透顶的科学家们,只得使用杀虫剂来解决甲虫问题。终于获得成功的他们,彻底忘记了失败的蟾蜍试验。然而这些被遗忘的外来物种是不会自行离开的。于是,一场新的噩梦开始了。苷蔗蟾蜍的繁殖能力远远超出了科学家们的想象。甘蔗蟾蜍的繁殖是爆发式的,远远超过了他们在中美洲的繁殖速度,几年时间。原先的102只蟾蜍,十分轻易地变成了数百万只。一场新的战争,开始了... 2、生物入侵的危害 2.1对动植物健康的危害 生物入侵还对人类健康甚至生命产生严重危害并影响国际贸易。一些重大人畜疾(疫)病,给人类健康和社会稳定带来威胁与恐慌,成为影响国际贸易的技术壁垒之一。时下,“疯牛病”、“口蹄疫”、“西尼罗河脑炎”、“猪霍乱”、“鸡流感”等动物疾病的传播均称为“生物入侵”,其特点是不受时间和国界限制可以传播到世界各地,传染给其它生物。大多数传染性的疾病本身在其主要分布区域里都是人类传播的生物入侵者,如天花。另外引入种亦可作为疾病的载体,

细胞生物学在药学方面的研究综述

细胞生物学在药学方面的研究综述 摘要:细胞是生命的基础,一切生命问题的真正解决都必须在细胞中得到真正解决。细胞生物学所面临的主要任务是探索药物在细胞中的作用机制,理解新的药物靶标的细胞学基础。细胞生物学采用现代细胞生物学的原理与技术,通过揭示细胞生命活动的本质,在细胞与分子水平研究药物的吸收、转运与作用机制,来解决新药筛选,细胞工程制药等方面的难题。 关键词:细胞生物学药物筛选制药 1.新药筛选 1.1细胞周期与抗肿瘤药物 癌症的进展涉及无休止的基因突变,并通过进化选择成为最具侵袭性的肿瘤表型。这些基因突变形成了癌症的几种特质:漠视增殖、分化停止信号的存在;具备无限增殖的能力;逃避凋亡;侵袭性;新生血管生成的能力。其中前三种特质与细胞周期密切相关并为诊断及临床治疗提供了思路。[1] 林晓钢等人据Hela 细胞中的芳香族氨基酸、嘌呤以及嘧啶在细胞分裂过程中的相应变化引起的光谱变化建立Hela细胞的紫外吸收光谱模型,并且可以通过该光谱模型判读出Hela 群体大致处于细胞周期的哪一时相。[2]通过此项研究可以从细胞分子水平的变化来了解肿瘤细胞增殖周期的规律。研究细胞周期的规律与调控机制对于探索肿瘤发生机制、抗癌药物的设计和作用机制具有重要的指导意义。 1.2DNA与靶向药物 脱氧核糖核酸(DNA)是生物的基本遗传物质,是遗传信息的载体。许多分子能与DNA结合,破坏DNA的模板作用,影响基因调控和表达功能,从而诱发很多生物效应。因此DNA与靶向药物分子相互作用的研究是分子生物学和生物化学的重要领域。DNA与靶向药物分子相互作用的研究不仅可以从分子水平阐明生命过程机理、疾病的致病机制,而且可以引导药物的设计与合成、药物体外筛选以及探讨药物的治病机理。另外,对双链DNA(或单链DNA)具有选择性结合或具有序列特异性结合的靶向药物分子可以作为DNA分子杂交与否或识别特定序列

最新生物信息学考试复习

——古A.名词解释 1. 生物信息学:广义是指从事对基因组研究相关的生物信息的获取,加工,储存,分配,分析和解释。狭义是指综合应用信息科学,数学理论,方法和技术,管理、分析和利用生物分子数据的科学。 2. 基因芯片:将大量已知或未知序列的DNA片段点在固相载体上,通过物理吸附达到固定化(cDNA芯片),也可以在固相表面直接化学合成,得到寡聚核苷酸芯片。再将待研究的样品与芯片杂交,经过计算机扫描和数据处理,进行定性定量的分析。可以反映大量基因在不同组织或同一组织不同发育时期或不同生理条件下的表达调控情况。 3. NCBI:National Center for Biotechnology Information.是隶属于美国国立医学图书馆(NLM)的综合性数据库,提供生物信息学方面的研究和服务。 4. EMBL:European Molecular Biology Laboratory.EBI为其一部分,是综合性数据库,提供生物信息学方面的研究和服务。 5. 简并引物:PCR引物的某一碱基位置有多种可能的多种引物的混合体。 6. 序列比对:为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。

7. BLAST:Basic Local Alignment Search Tool.是通过比对(alignment)在数据库中寻找和查询序列(query)相似度很高的序列的工具。 8. ORF:Open Reading Frame.由起始密码子开始,到终止密码子结束可以翻译成蛋白质的核酸序列,一个未知的基因,理论上具有6个ORF。 9. 启动子:是RNA聚合酶识别、结合并开始转录所必须的一段DNA序列。原核生物启动子由上游调控元件和核心启动子组成,核心启动子包括-35区(Sextama box)TTGACA,-10区(Pribnow Box)TATAAT,以及+1区。真核生物启动子包括远上游序列和启动子基本元件构成,启动子基本元件包括启动子上游元件(GC岛,CAAT盒),核心启动子(TATA Box,+1区帽子位点)组成。 10. motif:模体,基序,是序列中局部的保守区域,或者是一组序列中共有的一小段序列模式。 11. 分子进化树:通过比较生物大分子序列的差异的数值重建的进化树。 12. 相似性:序列比对过程中用来描述检测序列和目标序列之间相似DNA碱基或氨基酸残基序列所占的比例。 13. 同源性:两个基因或蛋白质序列具有共同祖先的结论。

气相色谱在环境分析中的应用(精)

气相色谱法在环境分析中的应用 摘要:气相色谱法是一种很常见的环境分析检测方法,我们也经常将它应用在水、大气、固废等环境检测中。我们以检测非甲烷烃为例来进行探究和学习,(非甲烷烃是一种对人体健康有害的气体)因此我们利用带有双柱双氢火焰离子化检测器的气相色谱仪(岛津GC2014型)和自己所学的知识来对此进行气相色谱检测。并且通过这次检测来了解和复习流动相、检测器、色谱柱以及温度等色谱条件是如何选择以及定性、定量分析方法。 关键词:非甲烷总烃;气相色谱法;定性、定量分析; 1.非甲烷总烃 非甲烷烃(NMHC通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~C8,又称非甲烷总烃。主要包括烷烃、烯烃、芳香烃和含氧烃等组分。大气中的非甲烷总烃超过一定浓度,除直接对人体健康有害外,在一定条件下经日光照射还能产生光化学烟雾,对环境和人类造成危害[1]。 监测环境空气和工业废气中的NMHC有许多方法,但目前多数国家采用气相色谱法。由于直接测定NMHC所用仪器价格昂贵,因此我们采用双柱双氢火焰离子化检测器气相色谱法分别测出总烃和甲烷的含量,两者之差为NMHC的含量。在规定的条件下所测得的NMHC是于气相色谱氢火焰离子化检测器有明显响应的除甲烷外碳氢化合物总量,以碳计[2]。 目前我国基本采用气相色谱法测定非甲烷总烃, 按进样的不同有活性炭吸附一热解吸法及针筒采样一手动进样法,采用活性炭吸附一热解吸法[3]易受到活性炭吸附效率的影响,而针筒采样——手动进样法[4]则重复性较差、易熄火。而我们采用气袋采样—气体自动进样器进样分析气体中非甲烷总烃,而这样也最令人满意。此方法操作简单、重复性好、效率高、干扰少,且可用于其他挥发性有机物,如苯系物等的测定。 2.利用气相色谱法检测非甲烷总烃

硒的分析方法综述

硒的分析方法综述 摘要:就近年来国内外硒的分析方法进行了综述,着重介绍了吸光光度法、荧光光度法、原子吸收光谱法、电化学分析法。 关键词:硒;吸光光度法;荧光光度法;原子吸收光谱法;电化学分析;综述 1 前言 硒是人体不可缺少的一种微量元素,与机体免疫功能、抗氧化能力等密切相关。适当增加硒的摄入量,对改善机体免疫功能、增强抗癌能力、维持身体健康和预防某些疾病的发生等方面都具有明显的作用,但过量硒又能引起硒中毒,使人出现头发或指甲脱落、手指或脚趾麻木等病症[1]。因此,硒的分析和研究越来越受到重视,在食品、饮用水、化妆品、生物组织等样品中分析检测硒也显得更为重要。本文就近年来国内外硒的分析方法进行综述,着重介绍了吸光光度法、荧光光度法[2]、原子吸收光谱法[3]、电化学分析法。 2.1 吸光光度法 吸光光度法通常利用硒(IV)在酸性介质中与某些邻芳香二胺类试剂如3,3 '-二胺基联苯胺(DAB)、2,3-二氨基萘(DAN)等反应生成难溶于水的有色配合物,然后用环己烷或甲苯等溶剂将其萃取至有机相中再进行吸光度的测定,该类显色反应对硒几乎是特效,但由于灵敏度较低,因此该法只能用于测定硒含量较高的样品。 利用硫氰酸盐和碱性染料作为显色体系测定硒的吸光光度法也有报道,黄胜堂[4]研究了在表面活性剂吐温-8O存在下,硒(IV)与碘化物和罗丹明B可形成紫红色三元离子缔合物,通过测定该缔合物在580 nm波长处的吸光度,实现了血清、尿液中微量硒含量的测定,其摩尔吸光系数为4.66×1O5 L·mol-1·cm-1。刘黎[5]的研究表明,阿拉伯树胶作为表面活性对硒(IV)-I-1-孔雀绿形成的配合物能起到很好的增溶增敏的作用,据此,测定了中草药灵芝和黄芪中硒的含量,其摩尔吸光系数为2.5×1O5L·mol-1·cm-1,配合物的吸光度至少稳定24 h不变。 近年发展起来的催化动力学光度分析对于提高硒的光度分析灵敏度起到了积极的作用。催化光度法是利用硒催化加速或阻抑某一化学反应速度,而速率大小与催化剂的浓度存在一定关系,待反应进行一段时间后停止反应,通过测定溶液吸光度,进而实现硒的定量测定[6 ,7]。该法灵敏、设备简单,易于推广。白林 氧化靛蓝胭脂红褪色反应的催化作用及氯山等[8]研究了在室温25℃时硒对KBrO 3 化钠的活化作用,测定了茶叶中硒的含量,检出限为0.02 mg·L-1。在硝酸介质中,利用痕量硒(IV)催化溴酸钾氧化罗丹明B的褪色反应及动力学条件,建立的动力学光度法测定痕量硒(IV)的方法,其灵敏度为0.905 μg·L-1,测定范围O~9 6μg·L-1,已用于测定抗癌草药中的硒(IV)的测定,获得了满意的结果[9]。2.2 荧光光度法

武汉大学-细胞生物学2001-2011考研真题

武汉大学2001年细胞生物学 一、名词解释(10*2.5) 1、apoptosis body 2、receptor mediated endocytosis 3、lamina 4、nuclease hypersensitive site 5、gap junction 6、hayflick limitation 7、kinetochore 8、molecular chaperones 9、leader peptide 10、dedifferentiation 二、简答题 (8*5) 1. 冰冻断裂术将溶酶体膜撕裂出PS,ES,PF,EF四个面,请绘一简图标明。 2. 医生对心脏已经停止跳动的病人采取电击抢救,请说明其心肌细胞是如何同步启搏的。 3. 为什么凋亡细胞的核DNA电泳图谱呈梯状分布带。而病理坏死细胞却呈弥散状连续分布? 4. 将某动物细胞的体细胞核移植到另一去核的体细胞之中,然后其余实验步骤完全按照动物克隆的方式,问能否培育出一头克隆动物来?为什么? 5. 切取病毒感染马铃薯植株的顶芽进行组织培养,这是大量繁育无毒苗的成功技术。试述其去除病毒的原因。 6. 有人认为既然已经有放大几十万倍的电镜,可以不用光镜了,请反驳这种观点的错误。 7. 出生6个月之内的婴儿可由母乳获得抗病的抗体,试述这些抗体是如何由母亲血液转移到婴儿血液中的。 8. 1999年报道,我国科学家成功实现将离体的B型血液改造成O型,请解释其原理。 三、问答题(前两题10分,最后一题15分) 1. 概述Cyclin与CDK在细胞周期调控的工作机制及其在各期引起的下游事件。 2. 试述在细胞质中合成的线粒体内膜蛋白及叶绿体类囊体膜蛋白是如何运送到位与装配的。 3. 综述细胞外被中糖蛋白在细胞内合成,组装和运输的全过程及其对于细胞的主要生理功能。 武汉大学2002年细胞生物学 一、名词解释(10*2.5) 1.nucleosome 2.contact inhibition 3.Telomerase

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

铅形态分析研究进展

Advances in Analytical Chemistry 分析化学进展, 2014, 4, 27-33 Published Online August 2014 in Hans. https://www.wendangku.net/doc/1817531125.html,/journal/aac https://www.wendangku.net/doc/1817531125.html,/10.12677/aac.2014.43005 Research Progress on Speciation Analysis of Lead Guojun Peng1,2, Xiaoyan Zhu1, Jianguo Chen1*, Xianzhong Jin1, Shaohong Chen1, Danyi Wei2 1Ningbo Entry-Exit Inspection and Quarantine Bureau, Ningbo 2Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo Email: chenjg@https://www.wendangku.net/doc/1817531125.html,, 410066810@https://www.wendangku.net/doc/1817531125.html, Received: Jun. 3rd, 2014; revised: Jun. 11th, 2014; accepted: Jun. 23rd, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/1817531125.html,/licenses/by/4.0/ Abstract A review on research progress of speciation analysis of lead was presented, with emphasis on the applications of chromatography and capillary electrophoresis hyphenated with spectrometry and mass spectrometry. The prospect of lead speciation analysis was also discussed. Keywords Lead, Speciation Analysis, Determination 铅形态分析研究进展 彭国俊1,2,朱晓艳1,陈建国1*,金献忠1,陈少鸿1,魏丹毅2 1宁波出入境检验检疫局,宁波 2宁波大学材料科学与化学工程学院,宁波 Email: chenjg@https://www.wendangku.net/doc/1817531125.html,, 410066810@https://www.wendangku.net/doc/1817531125.html, 收稿日期:2014年6月3日;修回日期:2014年6月11日;录用日期:2014年6月23日 摘要 围绕色谱、毛细管电泳与光谱、质谱的联用技术及其应用,综述了铅形态分析的研究进展,展望了铅形*通讯作者。

ISO9001-2015 内外部环境分析及SWOT方法的应用

ISO9001:2015 内外部环境分析及SWOT方法的应用 依据ISO9001:2015版标准的要求,组织应对内外部环境进行分析和评价,组织充分识别了内外部环境,并对其进行分析,以了解企业面临的内外部环境对组织业务的影响,利用SWOT分析的方法,确定组织的机遇和威胁,制定相应的措施。 组织的内外部环境的分析的具体内容及分析方法如下: 外部环境的分析 (一)、组织的宏观环境分析 1、政治和法律环境 (1)分析的内容 政治因素对组织有直接影响,但一般政府是通过法律对组织进行间接影响,法律环境环境的分析主要从以下4个方面: a)与组织相关的法律规范; b)国家司法机关和执法机关:工商、税务、技术监督、环境保护、安监等部门; c)组织的法律意识; d)国际法规定的国际法律环境和目标国的法律环境 (2)政治和法律环境特点: a)不可测性,组织很难预测国家的政治环境的变化; b)直接性,直接影响组织的活动、状况; c)不可逆转,一旦对组织有影响,就会发生十分迅速和明显的变化,而且是无法回避和转移这种变化的。 2、经济环境分析

是构成组织的生存和发展的社会状况和国家的经济政策。 a)社会经济结构:包括产业结构、分配结构、交换结构、消费结构、技术结构五个方面。最主要的是产业结构; b)经济发展水平:指标:GDP、人均GDP、经济增长速度。 c)经济体制:国家的经济组织形式。 d)宏观经济政策:国家经济发展目标的战略和策略,包括全国性的发展战略和产业政策、国民收入分配政策、物价政策、物资流通政策等。 e)当前的经济状况:经济的增长率取决于商品和服务需求的总体变化,影响因素包括:税收水平、通货膨胀率、贸易差额和汇率、失业率、利率、信贷政策及政府投放等。 f)其他一般经济条件:如工资水平、供应商及竞争对手的价格变化等。 3、社会和文化环境 组织所处的社会结构、社会风俗和习惯、信仰和价值观念、行为规范、生活方式、文化传统、人口规模和地理分布等因素的形成和变动。包括: ?人口因素 ?社会流动性 ?消费心理 ?生活方式的变化 ?文化传统 ?价值观 以上因素对组织制定营销、促销、开展业务、管理内部资源的战略产生影响。 4、技术环境

《细胞生物学》考试大纲.doc

《细胞生物学》考试大纲 一、大纲综述 细胞生物学作为现代生命科学发展的分支学科,是高等院校本科生物学各专业的必修专业基础课,是生命科学重要的基础学科之一。通过细胞生物学的学习,要求全面系统地掌握细胞生物学的基本内容和主要研究方法,并从分子水平上了解细胞的各基本生命活动过程及其调控。本考试大纲主要根据北京林业大学本科生物科学、生物技术专业《细胞生物学》教学大纲编制而成,适用于报考北京林业大学硕士学位研究生的考生。 二、考试内容 (1)绪论 细胞生物学的主要研究内容;当前细胞生物学研究的总趋势与重点领域;细胞的发现与细胞学说的建立及其所起的承前启后的重要作用,细胞学与细胞生物学发展简史。 (2)细胞的统一性与多样性 细胞相关的概念、细胞的基本共性;最小、最简单的细胞——支原体、原核细胞的两个重要代表:细菌与蓝藻;真核细胞的基本结构体系、细胞的大小及其分析、细胞形态结构与功能的关系、原核细胞与真核细胞的比较、植物细胞与动物细胞的比较。 (3)细胞生物学研究方法 细胞形态结构的观察方法和相关仪器的原理和应用范围、细胞化学组成及其定位和动态分析技术的原理和应用范围、细胞培养类型和方法、细胞工程的主要成就以及用于细胞生物学研究的模式生物。 (4)细胞质膜 生物膜的化学组成及结构模型、膜蛋白的种类及跨膜方式、膜的流动性和不对称性、细胞质膜的功能、膜骨架的结构与功能。 (5)物质跨膜运输 物质跨膜运输的主要方式、运输的基本过程及特征;胞饮作用和吞噬作用的过程及异同、受体介导的胞吞作用、组成型外排与调节型外排的过程及异同。 (6)细胞的能量转换——线粒体和叶绿体 线粒体的形态结构、化学组成、酶的定位和线粒体的功能;氧化磷酸化的分子基础、偶联机制和ATP 合成酶的作用机制;叶绿体的形态、结构、主要功能——光合作用;半自主性细胞器的概念;线粒体和叶绿体的蛋白质合成、运送与装配;线粒体和叶绿体的增殖、起源。 (7)真核细胞内膜系统、蛋白质分选与膜泡运输 细胞质基质的涵义、主要功能;细胞内膜系统的组成、动态结构特征与功能;高尔基体的极性及其与细胞内的膜泡运输;溶酶体的发生及其与过氧化物酶体的差异;信号假说与蛋白质分选信号;蛋白质分选

相关文档
相关文档 最新文档