文档库 最新最全的文档下载
当前位置:文档库 › 阴阳性1

阴阳性1

阴阳性1
阴阳性1

阳性名词:阴性名词:无阴阳性之分:acteur 男演员actrice 女演员chercheur 研究员facteur 邮递员factrice 女邮递员journaiste 记者avocat 律师avocate 女律师styliste 服装设计师moniteur 教练员monitrice 女教练员pilote 飞行员

vélo 自行车jupe 裙子économiste 经济学家parfum 香水guitare 吉他professer 教师

livre 书voiture 汽车cinéaste 电影编导drapeau 旗revue 杂志chimiste 化学家papier 纸veste 上衣secrétaire 秘书verre 玻璃杯serviette 毛巾rouge 红色

stylo 钢笔couleur 颜色jaune 黄色

vert 绿色verte 绿色ingénieur 工程师noir 黑色noire 黑色médecin 医生

bleu 蓝色bleue 蓝色

roman 小说radio 收音机

manuel 教材robe 连衣裙

magnétophone 录音机moto 摩托车

manteau 大衣chaise 椅子

banc 长板凳lettre 信

document 文件cassette 磁带

disque 唱片brosse 刷子

peigne 梳子rivière 河流

lac 湖泊peinture 画

pantalon 裤子chemise 衬衣

timbre 邮票enveloppe 信封

tableau 画幅pomme 苹果

mur 墙壁banane 香蕉

technicien 技术员technicienne 技术员

étuiant 大学生étudiante 女大学生

ouvrier 工人ouvrière 工人

pharmacien 药剂师pharmacienne 药剂师

chanteur 歌手chanteuse 女歌手

vendeur 售货员vendeuse 女售货员

chinois(e)中国人fleur 花

francais(e)法国人table 桌子

espagnol(e)西班牙人porte 门

américain(e)美国人poche 口袋

indien(ne)印度人carte 证件

japonais(e)日本人école 学校

instituteur男小学教师insititutrice 女小学教师

crayon 铅笔usine 工厂

cahier 笔记本mère 母亲

camion 卡车année 年级

magasin 商店étranger(ère)外国的aspirteur 吸尘器premier(ère)第一ticket 票证china 中国

soldat(e)士兵heure 小时

offiicier 军官étude 学习

age 年龄chambre 宿舍

an年ami(e)朋友

frère 兄弟anglais(e)英国人dialogue 对话coréen(ne)朝鲜人

département 系italien(ne)意大利人exercice 练习international(ale)国际的cours课程lecon 课

programme 计划maison 住宅

jour 日子天dizaine 十个左右

repos 休息retraite 退休

soir 晚上femma 妻子

les devoirs 作业vingtaine 二十个左右temps 时间france 法国

monument 纪念性建筑australie 澳大利亚journal 报纸amérique 美国

dessin 素描

enregistrement 录音

peuple 人民

texte 课文

courrier 信件

étage 楼层

escalier 楼梯

ascenseur 电梯

immeuble 大楼

plaisir 高兴

japon 日本

portuga 葡萄牙

mexique 墨西哥

pérou 秘鲁

viet-nan 越南

Singapour 新加坡

Chili 智利

分形几何的早期历史研究

分形几何的早期历史研究 分形几何学是20世纪70年代诞生的一门数学分支,它是继非欧几何创立之后几何学史上的又一次重大革命。作为大自然的几何学,它在现实生活中有着非常广泛的应用。 因此,研究分形几何的早期历史具有非常重要的意义。本文在研读原始文献及其相关研究文献的基础上,通过历史分析和文献考证的方法,以“为什么数学”为指导思想,全面系统地考察了分形几何早期历史的内容和思想,深入剖析了分形几何创立的原因。 取得的研究结果如下:1.全面考察了分析严格化的背景下,魏尔斯特拉斯函数、康托尔集和科赫曲线等早期经典分形集产生的背景、原因、过程和影响。魏尔斯特拉斯为了搞清函数的连续性和可微性之间的关系,构造了一条连续但处处不可微的病态函数。 康托尔在单位区间上构造了一个完备但处处不稠密的病态点集。科赫运用递归法的思想,构造了一条可以几何直观表示的连续但处处不可切的病态曲线。 这些病态的函数、曲线和集合的出现是推动分形几何创立的内因。2.系统梳理了分数维数概念的产生过程。 为了准确测量出康托尔集的大小,康托尔、波莱尔和勒贝格等数学家相继提出了解决问题的办法和思路,但得到的结果不令人满意。直到卡拉泰奥多里在q 维空间中定义了p维测度集,才使问题取得了一些进展。 豪斯多夫在卡拉泰奥多里工作的基础上,将维数的取值范围由整数推广到分数,解决了康托尔集的测量问题。贝西科维奇完善了豪斯多夫关于分数维数的定义,给出了分数维数的确切概念。

3.详细论述了贝西科维奇、布利冈和柯尔莫戈洛夫等数学家对分数维数理论的贡献。贝西科维奇研究了分数维数集的密度性质和微积分,在实数理论中探讨了分数维数集的具体应用。 盒维数是一种重要的分数维数,它的最初模型由布利冈建立,庞特里亚金和施尼勒尔曼定义了具有数学表达式的盒维数,但缺乏严格性;柯尔莫戈洛夫和契霍洛夫给出了严格的盒维数定义;法尔科内则定义了现代意义下的盒维数。4.详尽阐述了莱维、莫兰和芒德勃罗等数学家对自相似理论的贡献。 自相似思想最早可追溯至古希腊时代,德谟克利特、亚里士多德以及我国古代的数学、哲学和医学著作中也有关于自相似思想的论述,但尚未形成严格的理论体系。莱维引入了参数和阶数等一些基本数学概念,他是第一个对自相似性进行系统研究的数学家。 莫兰将集合论引入自相似理论的研究,定义了自相似集的概念,形成了自相似理论的雏形。芒德波罗将统计性融入自相似理论,描绘了统计自相似性,解决了长期困扰大家的海岸线长度问题。 5.细致探究了分形几何的创立过程,深入剖析了分形几何的创立原因。通过论文“英国的海岸线有多长”和著作《大自然的分形几何》,细致探究了分形几何的创立过程。 在原始文献和相关研究文献的基础上,指出病态函数、曲线和集合的激励,数学理论发展的推动,实际问题的鞭策,以及创立者自身的优势是分形几何创立的主要原因。

分形几何与分形艺术

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

分形几何学

2 分形几何学的基本概念 本章讨论分形几何学的一些基本内容,其中:第1节讨论自相似性与分形几何学的创立;第2节讨论分形几何学的数学量度,即三种不同的维数计算方法;第3节讨论应用分形几何方法所实现的对自然有机体的模拟。 2.1自相似性与分形几何学 无论人们通过怎样的方式把欧几里得几何学的形体与自然界关联起来,欧氏几何在表达自然的本性时总是会遇到一个难题:即它无法表现自然在不同尺度层次上的无穷无尽的细节。欧氏几何形体在局部放大后呈现为直线或光滑的曲线,而自然界的形体(如山脉、河流、云朵等)则在局部放大后仍呈现出与整体特征相关的丰富的细节(图版2-1图1),这种细节特征与整体特征的相关性就是我们现在所说的自相似性。

自相似性是隐含在自然界的不同尺度层次之间的一种广义的对称性,它使自然造化的微小局部能够体现较大局部的特征,进而也能体现其整体的特征。它也是自然界能够实现多样性和秩序性的有机统一的基础。一根树枝的形状看起来和一棵大树的形状差不多;一朵白云在放大若干倍以后,也可以代表它所处的云团的形象;而一段苏格兰的海岸线在经过数次局部放大后,竟与放大前的形状惊人地相似(图版2-1图2)。这些形象原本都是自然界不可琢磨的形状,但在自相似性这一规律被发现后,它们都成为可以通过理性来认识和控制的了。显然,欧氏几何学在表达自相似性方面是无能为力了,为此,我们需要一种新的几何学来更明确地揭示自然的这一规律。这就是分形几何学产生的基础。

1977年,曼德布罗特(Benoit Mandelbrot)出版了《自然的分形几何学》(The Fractal Geometry of Nature)一书,自此分形几何学得以建立,并动摇了欧氏几何学在人们形态思维方面的统治地位。分形几何学的研究对象是具有如下特性的几何形体:它们能够在不断的放大过程中,不停地展现出自相似的、不规则变化着的细节(图2-1图3)。这些几何形状不同于欧氏几何形体的一维、二维或三维形状,它们的维数不是简单的1、2或3,而是处于它们之间或之外的分数。 科赫曲线(Koch Curve)是分形几何学基本形体中的一个典型实例,它是由这样一种规律逐次形成的:用一根线段做为操作对象,对其三等分,把中间一段向侧面旋转60度,并增加另一段与之长度相同的线段把原来的三条线段连接为一体,这四条线段组成的形状就是第一代的科赫曲线;分别对它的每一条线段重复上述的操作,将形成第二代科赫曲线;再对其每一条线段进行上述操作,可得第三代,等等;如此迭代下去(图版2-1图4)。显然,对每一代的构成元素的同样操作决定了自相似性的代代传递,使形成的科赫曲线已经明确地具有了自然的特征。如果再进一步在操作中增加一点随机成分的话,那么所得的随机科赫曲线的自然性就更强列了。[回本章页首] 2.2维数计算:分形几何学的数学量度 既然分形几何学是一种严格的数学,那么它一定有自身的数学量度。分形几何学的数学量度是分形几何形体的维数。如前所述,分形几何形体的维数不是整数而是分数,它的计算是分形几何的创立者们在总结归纳的基础上产生的。 分形几何体的维数计算的数学推导是复杂的,也不是我们所关心的内容。但维数计算所代表的形象意义却值得我们关注。如前所述,分形几何形体的本质属性是自相似性,而这一自相似性一定是在同一形体的不同层次之间(不论是对自然形体的不同程度的放大,还是对人工形体迭代操作所得到的不同代)得以体现的。因而,分形几何形的维数正是在形状的不同层次的比较之间所反映出来的规律。这一规律所代表的是分形几何形状在空间中的扩张趋势。维数越大,就表明它在空间的扩张趋势越强,形状本身的变化可能性也越丰富。

数学类展板(分形)

分形几何简介 普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。有学者这样说过:“为什么世界这么美丽,因为我眼睛看到的都是分形”,大到海岸线、山川形状、天空的云朵,小到一片树叶、一片雪花、皮蛋里的花纹,分形无处不在,无处不有。 分形几何的产生 客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学,如物理学中的湍流,海岸线的形状等。 分形几何的内容 分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,成为自相似性。分形理论认为维数也可以是分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。 分形几何学的应用 分形几何学已在自然界与物理学中得到了应用。如布朗运动的轨迹研究、粘滞物的沉积生长,云彩边界的几何性质、植物的分叉生长等。 近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。

数学家Mandelbrot被誉为“分形之父”,右边的图形是一个“Mandelbrot集合”,是 由复二次多项式定义的,也被称为“上帝的指纹”。 “Mandelbrot集合”局部放大图像:揭示整个宇宙以一种出人意料的方式构成自相似的结构,Mandelbrot 集合图形的边界处具有无限复杂和精细的结构。如果计算机的精度是不受限制的话 您可以无限地放大她的边界。 大自然中的“自相似性”

第6讲分形几何学

实用标准文案 第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分

15 分形几何(上)

课题:分形几何(上) 【教学目标】分形几何的发现和发展 【教学重点】分形几何的特点 【教学过程】 引入: 分形几何学是一门以不规则几何形态为研究对象的几何学。相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。分形几何学的研究对象为分数维数,如0.63、1.58、2.72。因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。 一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。 一、分形几何的由来 分形(英语:Fractal),又称碎形,通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。分形思想的根源可以追溯到公元17世纪,而对分形使用严格的数学处理则始于一个世纪后卡尔·魏尔施特拉斯、格奥尔格·康托尔和费利克斯·豪斯多夫对连续而不可微函数的研究。但是分形(fractal)一词直到1975年才由本华·曼

德布劳恩特创造出,来自拉丁文frāctus,有“零碎”、“破裂”之意。一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。 二、分形的特征 分形一般有以下特质: ?在任意小的尺度上都能有精细的结构; ?太不规则,以至无论是其整体或局部都难以用传统欧氏几何的语言来描述; ?具有(至少是近似的或统计的)自相似形式; ?一般地,其“分形维数”(通常为豪斯多夫维数)会大于拓扑维数(但在空间填充曲线如希尔伯特曲线中为例外); ?在多数情况下有着简单的递归定义。 因为分形在所有的大小尺度下都显得相似,所以通常被认为是无限复杂的(以不严谨的用词来说)。自然界里一定程度上类似分形的事物有云、山脉、闪电、海岸线、雪片、植物根、多种蔬菜(如花椰菜和西兰花)和动物的毛皮的图案等等。但是,并不是所有自相似的东西都是分形,如实直线虽然在形式上是自相似的,但却不符合分形的其他特质,比如说它能被传统的欧氏几何语言所描述。

论分形几何学在首饰设计中的应用

论分形几何学在首饰设计中的应用 论分形几何学在首饰设计中的应用作者:来源:浏览次数:5909标签:分形设计饰设 随着人们生活水平的提高和消费观念的改变,珠宝首饰在人们心目中的地位越来越高。传统的首饰是由设计人员先在头脑中构思,再通过图纸和计算机表现出来。设计者往往在阅读大量资料的基础上,对传统的图形进行修改和变换,设计思路受到较大的限制,越来越难以满足人们求新、求美、求异的要求。 针对目前首饰设计领域的“瓶颈”,亟待在艺术构思、图案设计、制作工艺等方面进行创新。如果将分形图形与首饰设计结合起来,把抽象的分形理论应用到实际的首饰设计中去,可以给首饰设计人员提供新的创作灵感。 1 分形几何学理论及应用 分形几何学简称分形,分形一词由法国数学家B. B. Mandelbrot在1967年的“英国的海岸线有多长———统计自相似性与分数维数”论文中首次提出。作为分形,其最显著的特征就是自相似性,即在分形上任选一个局部,无论是将其放大或缩小,其形态、复杂程度、不规则性等均不会发生变化,所得到的图形仍显示原图的特征。这种自相似性可以是近似的,也可以是统计意义的。 分形大致可分为两类:一类是几何分形,它不断地重复同一种图案;另一类是随机分形,它抽象地描述了大自然的许多不规则形态。应用分形理论既可以产生由直线、圆、多边形等构成的较为规则的图形,体现出传统美学中的平衡与对称,还可以产生奇妙的非线性图形,超越标准的新的表现形式。分形图案作为技术与美学的结合,对首饰设计具有特别重要的意义,把它引入首饰设计领域,将挑战传统的设计理念,使设计者的思路和视野得到更广泛的拓展。作为研究和处理不规则图形的强有力工具, 目前分形几何学已在物理学、化学、地质学、生物学、材料学等领域取得了较大的进展。近年来,随着对准晶体物质的深入研究,分形理论在微观领域的应用也逐渐引起了人们的重视。分形理论在计算机仿真、艺术设计、室内装饰等领域也逐渐显示出其极高的应用价值,特别是分形几何学在服装设计领域取得了突破性进展,为分形理论在首饰设计领域的应用奠定了基石。 2 在首饰设计中的应用 首饰设计一般分为手绘和电脑设计,前者主要是用手工绘制的方法将设计思想在图纸上表现出来,后者则是借助计算机辅助设计软件得以实现。无论采用哪种方式,设计者在整个设计过程中都必须遵循对比与调和或者对立与统一的原则,因为首饰设计作为一种艺术创作,它不单是造型元素的简单叠加,更多的是通过对不同材质与色彩的有机组合,营造整体的和谐与统一,从而真正体现首饰的艺术价值。 2.1 作为构成元素参与首饰设计 传统首饰设计的构成元素主要是欧氏几何中描述的具有整数维数的规则图形,设计出的首饰往往比较单一、朴素。而分形作为大自然的几何抽象,能给设计者提供一种新的设计思路。把分形中自相似性的某一重复单元作为一种新的构成要素参与首饰设计。当经过与传统几何要素相同的拉伸、旋转、变形后,新的首饰将呈现出一个更加复杂、精美的分形式造型,从而实现首饰设计的创造性和新颖性。和传统的首饰设计相比,分形首饰的特点[5 ] 在于: (1) 和谐性分形表现最多的是形状的重复,应用到首饰设计中就是造型元素的重复。这就打破了完全对称产生的呆板,给人和谐统一的视觉感。当然,仅仅借助单一结构不能达到对比的效果,

分形理论及岩石破碎的分形特征

第22卷第1期武汉冶金科技大学学报(自然科学版) Vol.22,No.11999年3月J.of Wuhan Y ejin Uni.of Sci.&T ech.(Natural Science Edition ) Mar.,1999 收稿日期:1998-11-17 作者简介:盛建龙(1964-),武汉冶金科技大学资源工程系,副教授. 文章编号:1007-5445(1999)01-0006-03分形理论及岩石破碎的分形特征 盛建龙1 刘新波1 朱瑞赓2 (1.武汉冶金科技大学资源工程系,武汉,430081;2.武汉工业大学建筑学院,武汉,430070) 摘要:介绍了分形的基本概念,分析了4种分维数的确定方法,进而探讨了岩石破碎过程中的分形特征。关键词:分形;分维;岩石破碎 中图分类号:O18;P616.3 文献标识码:A 分形几何(fractal geometry )创立于本世纪70年代,是由法国数学家曼德尔布罗特(B.B.Man 2delbrot )提出的。分形(fractal )一词是B.B.Mandel 2brot 从拉丁文fractus (断裂)创造的新词[1],意思是破碎、细片、分数、分级,等等。分形几何学主要研究一些具有自相似性(self 2similar )的不规则曲线和形状,具有自反演性(self 2reverse )的不规则图形以及具有自平方性(self 2squaring )的分形变换和自仿射(self 2affine )分形集,等等。而自相似性的不规则曲线和形状是分形几何研究的主体内容[2]。因此,分形几何学的出现,为更准确地研究自然现象的内在机理提供了一种新方法。 近年来,分形几何被广泛地应用于物理学、生物学、地理学、冶金学、材料学、计算机图形学等领域。从几何学的角度来研究不可积系统即耗散结构图形或浑沌吸引子图形的自相似性,并把复杂多变的自然现象看作是无限嵌套层次的精细结构[3],使分形理论与耗散结构理论、协同论、混沌理论、渗透理论等这些与非线形复杂现象有关的理论成为新的思想和理论模型。 1 分形与分维 分维(fractal dimension )是分形几何学定量描 述分形集合特征和几何复杂程度的参数。经典的欧几里德几何的研究对象是极规则的几何图形,是拓扑学意义下的整数维(记为D T )。它反映的是确定一个点在空间的位置所需独立坐标的数目或独立方向的数目。在经典几何学中,一个点是 零维的,一条(光滑)曲线是一维的,一个曲面是二维的。豪斯道夫(Hausdorff )于1919年引入维数概念,以Hausdoff 度为基础,提出了维数可以是分数,即分数维。下面简要介绍4种常见的分维定义。1.1 相似性维首先以Von K och 曲线为例,通过曲线的构造过程来分析相似维数。如图1所示,起始于n =0的单位长度线段称为Von K och 曲线的零阶生成;将直线段中间的1/3用边长为1/3直线段长的等边三角形的另外两段取代,得到n =1的Von K och 曲线生成元,称为第一阶生成;把第一阶生成的4个直线段类似于第一阶生成进行变形,就得到Von K och 曲线的第二阶生成;类似地无穷变形下 去,最后得到的曲线(n →∞)就是Von K och 曲线 。 图1 V on K och 曲线的构造过程 由Von K och 曲线可以看出,每一折线与整

数学分支之分形几何

数学分支之分形几何 普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。 分形几何的产生 客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。 客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特鞒ざ取;褂械氖挛锩挥刑卣鞒叨龋?捅匦胪?笨悸谴有〉酱蟮男硇矶喽喑叨龋ɑ蛘呓斜甓龋??饨 凶?SPANlang=EN-US“无标度性”的问题。 如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。

在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题这依赖于测量时 所使用的尺度。 如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。 数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。 这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。电子计算机图形显示协助了人们推开分形几何的大门。这座

第6讲分形几何学

第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数

(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分数维描述的几何对象,都具有自相似性。 (2)自相似性与无标度区 所谓自相似性(self-similarity),是指事物或现象中局部与整体在形态、功能和信息等方面具有统计意义上的相似性。自然界中的许多客体,如云朵、山脉、海岸线、树、肺脏,甚至描述经济现象的图形,都具有“自相似性”,即局部与整体的形状相似,局部的局部也与整体相似。例如,一段用放大的比例尺画出来的海岸线与整条海岸线形状是相似的;一棵树干分为二支,每支又分为二支——这棵树的局部与整体的形状相似。事实上,地质体大多具有自相似性,一条断层可能以不同比例尺存在,而其外表却十分相像。因此,地质学家长期以来凭直觉认识到了这一基本事实,从而形成了一个不言而喻却是不可改变的原则,即任何地质体的照片必须附上一个比例尺参照物,在野外拍摄的地质照片中通常附上已知尺寸的某种普通物品,例如铅笔、地质锤或人体。 自然界事物自相似性只在一定尺度范围内才能出现,这个具有自相似性的范围叫做无标度区。在无标度区内,放大或缩小几何对象的尺寸,整个结构并不改变,即其形状与标度无关。在无标度区外,自相似现象不存在。

相关文档