文档库 最新最全的文档下载
当前位置:文档库 › 高考一轮复习:变量间的相关关系与统计案例

高考一轮复习:变量间的相关关系与统计案例

高考一轮复习:变量间的相关关系与统计案例
高考一轮复习:变量间的相关关系与统计案例

第3讲 变量间的相关关系与统计案例

【2015年高考会这样考】

以选择题或填空题的形式考查回归分析及独立性检验中的基本思想方法及其简单应用. 【复习指导】

高考在该部分的主要命题点就是回归分析和独立性检验的基础知识和简单应用.复习时要掌握好回归分析和独立性检验的基本思想、方法和基本公式.

基础梳理

1.相关关系的分类

从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关. 2.线性相关

从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线. 3.回归方程

(1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法.

(2)回归方程:两个具有线性相关关系的变量的一组数据: (x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b

^x +a ^,则 ??

???

b ^=∑i =1n (x i

-x )(y i

-y )∑i =1n (x i

-x )2

∑i =1n

x i y i

-n x

y

∑i =1

n

x 2i

-n x

2

a

^=y -b ^ x .

其中,b 是回归方程的斜率,a 是在y 轴上的截距. 4.样本相关系数

r=

i=1

n

(x i-x)(y i-y)

i=1

n

(x i-x)2∑

i=1

n

(y i-y)2

,用它来衡量两个变量间的线性相关关系.

(1)当r>0时,表明两个变量正相关;

(2)当r<0时,表明两个变量负相关;

(3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.

5.线性回归模型

(1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误差.

(2)相关指数

用相关指数R2来刻画回归的效果,其计算公式是:R2=,R2的值越大,说明残差

平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归效果越好.

6.独立性检验

(1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等.

(2)列出的两个分类变量的频数表,称为列联表.

(3)一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:

2×2列联表

y1y2总计

x1 a b a+b

x2 c d c+d

总计a+c b+d a+b+c+d

K2=n(ad-bc)2

(a+b)(a+c)(c+d)(b+d)

(其中n=a+b+c+d为样本容量),可利用独立性检验

判断表来判断“x与y的关系”.

这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.

两个规律

(1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.

(2)当K2≥3.841时,则有95%的把握说事A与B有关;

当K2≥6.635时,则有99%的把握说事件A与B有关;

当K2≤2.706时,则认为事件A与B无关.

三个注意

(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.

(2)线性回归方程中的截距和斜率都是通过样本数据估计而来的,存在误差,这种误差会导致预报结果的偏差;而且回归方程只适用于我们所研究的样本总体.(3)独立性检验的随机变量K2=3.841是判断是否有关系的临界值,K2≤3.841应判断为没有充分证据显示事件A与B有关系,而不能作为小于95%的量化值来判断.

双基自测

1.(人教A版教材习题改编)下面哪些变量是相关关系().

A.出租车车费与行驶的里程B.房屋面积与房屋价格

C.身高与体重D.铁块的大小与质量

解析A,B,D都是函数关系,其中A一般是分段函数,只有C是相关关系.

答案 C

2.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据(u i、v i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断

().

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关

解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关.

答案 C

3.(2012·南昌模拟)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是().

A.y^=-10x+200

B.y^=10x+200

C.y^=-10x-200

D.y^=10x-200

解析因为销量与价格负相关,由函数关系考虑为减函数,又因为x,y不能为负数,再排除C,故选A.

答案 A

4.(2012·枣庄模拟)下面是2×2列联表:

y1y2合计

x1 a 2173

x2222547

合计 b 46120

则表中a,b的值分别为().

A.94,72 B.52,50 C.52,74 D.74,52

解析∵a+21=73,∴a=52,又a+22=b,∴b=74.

答案 C

5.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(有关,

无关).

解析由观测值k=27.63与临界值比较,我们有99%的把握说打鼾与患心脏病有关.答案有关

考向一相关关系的判断

【例1】?山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg):

施化肥量x 15202530354045

棉花产量y 330345365405445450455

(1)画出散点图;

(2)判断是否具有相关关系.

[审题视点] (1)用x轴表示化肥施用量,y轴表示棉花产量,逐一画点.

(2)根据散点图,分析两个变量是否存在相关关系.

解(1)散点图如图所示

(2)由散点图知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y 具有线性相关关系.

利用散点图判断两个变量是否有相关关系是比较简便的方法.在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系.即变量之间具有函数关系.如果所有的样本点落在某一函数的曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.

【训练1】根据两个变量x,y之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).

解析从散点图看,散点图的分布成团状,无任何规律,所以两个变量不具有线性相关关系.

答案否

考向二独立性检验

【例2】?(2010·全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

性别

是否需要志愿者

男女

需要4030

不需要160270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区老年人是否需要志愿者提供帮助与性别有关?

(3)根据(2)的结论,能否提出更好的调查方法来估计该地区老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

附:

P(K2≥k)0.0500.0100.001

k 3.841 6.63510.828

K2=n(ad-bc)2

(a+b)(c+d)(a+c)(b+d)

[审题视点] 第(2)问由a=40,b=30,c=160,d=270,代入公式可求K2,由K2的值与6.635比较断定.第(3)问从抽样方法说明.

解(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,

需要志愿者提供帮助的老年人的比例的估计值为70

500=14%.

(2)K2=500×(40×270-30×160)2

70×430×200×300

≈9.967.

由于9.967>6.635,所以有99%的把握认为该地区老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,采用分层抽样方法,这要比采用简单随机抽样方法更好.

独立性检验的步骤:

(1)根据样本数据制成2×2列联表;

(2)根据公式K2=

n(ad-bc)2

(a+b)(a+c)(b+d)(c+d)

计算K2的观测值;

(3)比较K2与临界值的大小关系作统计推断.

【训练2】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:

甲厂:

分组[29.86,

29.90)

[29.90,

29.94)

[29.94,

29.98)

[29.98,

30.02)

[30.02,

30.06)

[30.06,

30.10)

[30.10,

30.14)

频数1263861829261 4 乙厂:

分组[29.86,

29.90)

[29.90,

29.94)

[29.94,

29.98)

[29.98,

30.02)

[30.02,

30.06)

[30.06,

30.10)

[30.10,

30.14)

频数297185159766218

(1)试分别估计两个分厂生产零件的优质品率;

(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.

甲厂乙厂合计

优质品

非优质品

合计

附 K 2

=n (ad -bc )2

(a +b )(c +d )(a +c )(b +d )

P (K 2≥k )

0.05 0.01 k

3.841

6.635

解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360

500×100%=72%;

乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320

500×100%=64%. (2)

甲 厂 乙 厂 合 计 优质品 360 320 680 非优质品 140 180 320 合 计

500

500

1 000

K 2

=1 000×(360×180-320×140)2500×500×680×320

≈7.35>6.635,

所以有99%的把握认为“两个分厂生产的零件的质量有差异”.

考向三 线性回归方程

【例3】?(2012·菏泽模拟)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.

x 3 4 5 6 y

2.5

3

4

4.5

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^; (3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程.预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

[审题视点] (2)问利用公式求a

^、b ^,即可求出线性回归方程. (3)问将x =100代入回归直线方程即可. 解 (1)由题设所给数据,可得散点图如图所示.

(2)由对照数据,计算得:∑i =14

x 2i =86,

x =

3+4+5+64=4.5(吨),y =2.5+3+4+4.5

4=3.5(吨). 已知∑i =1

4

x i y i =66.5, 所以,由最小二乘法确定的回归方程的系数为:

b

^=∑i =14

x i y i -4x ·y

∑i =1

4

x 2i -4x 2

66.5-4×4.5×3.5

86-4×4.52

=0.7,

a

^=y -b ^x =3.5-0.7×4.5=0.35. 因此,所求的线性回归方程为y ^=0.7x +0.35.

(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为: 90-(0.7×100+0.35)=19.65(吨标准煤).

在解决具体问题时,要先进行相关性检验,通过检验确认两个变量是否具

有线性相关关系,若它们之间有线性相关关系,再求回归直线方程.

【训练3】 (2011·江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:

父亲身高x /cm 174 176 176 176 178 儿子身高y /cm 175

175

176

177

177

则y 对x 的线性回归方程为( ). A .y =x -1

B .y =x +1

C.y=88+1

2x D.y=176

解析由题意得x=174+176+176+176+178

5=176(cm),

y=175+175+176+177+177

5=176(cm),由于(x,y)一定满足线性回归方程,

经验证知选C.

答案 C

阅卷报告15——数据处理不当导致计算错误而失分

【问题诊断】由于大多数省市高考要求不准使用计算器,而线性回归问题和独立性检验问题仍是近几年新课标高考的常考点,并且大多是考查考生的计算能力,就计算方面常有不少考生因计算出错而失分.

【防范措施】平时训练时首先养成勤于动手的习惯,亲自动手计算,再者考场上要保持心态放松,做题时细心认真,最终可减少错误的发生.

【示例】?(2011·安徽)某地最近十年粮食需求量逐年上升,下表是部分统计数据:

年份2002200420062010

需求量(万吨)236246257276286

(1)利用所给数据求年需求量与年份之间的回归直线方程y^=bx+a;

(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.

实录(1)x=2 006,y=236+246+257+276+286

5=260.2.

b=

(2002-2006)(236-260.2)+(2004-2006)(246-260.2)+(2006-2006)(257-260.2) (2002-2006)2+(2004-2006)2+(2006-2006)2+(2008-2006)2+(2010-2006)2

+(2008-2006)(276-260.2)+(2010-2006)(286-260.2)

(2002-2006)2+(2004-2006)2+(2006-2006)2+(2008-2006)2+(2010-2006)2=6.2,

错因求b时计算出错,b值不准确.a=y-b x=260.2-6.2×2 006=-12 177. ∴y

^=6.2x-12 177.

(2)y ^

=6.2×2 012-12 177=297.4.

正解 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:

年份-2006

-4

-2 0 2 4 需求量-257 -21

-11

19

29

对预处理后的数据,容易算得, x =0,y =3.2,

b =(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02

=260

40=6.5,a =y -b x =3.2.

由上述计算结果,知所求回归直线方程为y -257=b (x -2 006)+a =6.5(x -2 006)+3.2,

即y ^=6.5(x -2 006)+260.2.①

(2)利用直线方程①,可预测2012年的粮食需求量为 6.5(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).

高中数学第三章统计案例3.1独立性检验假设检验(hypothesistesting素材苏教版选修2_3202012251102

假设检验(hypothesis testing) 方法演变:t检验、z检验、F检验、卡方检验,方差分析( ANOVA) ?概述 假设检验是分析数据的一种方法。回答此类问题:“随机发生的事件的概率是多少?”另一方面的问题是:“我们从数据中发现的结果是真的吗?”当问题是有关大的总体而只能得到总体的一个样本时用假设检验。这种方法被用来回答在质量改进中一系列重要的问题,如“我们在过程中所做的改变对产出创造了有意义的差别吗?”或”顾客对场地A的满意度是不是比其他场地高?” 最常用的检验是:z检验、t检验、F检验、卡方(χ2)检验和方差分析。这些检验和其他的检验都是基于均值、方差、比例及其他统计量所形成的具有常见模式的频率分布。最有名的分布就是正态分布,它是:检验的基础。t检验、F检验和卡方(χ2)检验是基于t分布、F分布和卡方分布。 ?适用场合 ·想知道一组或更多组数据的平均值、比例、方差或其他特征时; ·当结论是基于更大总体中所取得的样本时。 例如: ·想确定一个过程的均值或方差有否改变; ·想确定很多数据集的均值或方差是否不同: ·想确定两组不同的数据集的比例是否不同; ·想确定真正的比例、均值或方差是否和一个定值相等(或大于或小于)。 ?实施步骤 假设检验的步骤由三部分组成:理解要解决的问题并安排检验(以下步骤1~3);数字计算通常由计算机完成(步骤4和步骤5);应用数值结果到实际问题中(步骤6)。虽然计算机能处理数字,但理解假没检验隐含的观念对第1部分和第3部分至关重要。 如果第一次接触假设检验,那么从看“注意事项”中的术语和定义开始。这些定义解释了假设检验的慨念,然后再回来看这个步骤。 本书不可能详细地涉及假设检验。这个步骤是个综述和快速参考。要得到更多的信息,查阅统计学参考书或请教统计学家。 1确定要从数据中获得的结论。选择适当的检验方法。用哪种检验取决于检验的目的和数据的种类。可以用表5.7和表5.8概括的常用的假设检验,或者请教统计学家以得到帮助。 2建立零假设和备择假设。确定问题是属于双尾检验、左尾检验还是右尾检验。 3选择显著性水平。。 4计算检验统计量,可借助计算机软件。 5用统计分布的统计表或计算机程序等来确定检验统计量的P值。对于z检验可用表A.1正态曲线以下的曲线。 6把P值与左尾或右尾检验的α或者双尾检验的α/2作比较,如果P值较小,那么拒绝零假设并会得到备择假设可能正确的结论。否则,不能拒绝零假设,并得出没有足够证据支持备择假设的结论。 ?备择步骤 步骤1~4同上。然后: 5用统计表或计算机程序确定如下所示的检验统计量的临界值和拒绝域。以z检验作为示例,对t检验、F检验或卡方检验,用统计量f、F或χ2来替换z。 6比较检验统计量和拒绝域。如果检验统计量值落在拒绝域内,拒绝零假设,结论是备择假设可能止确。否则,不拒绝零假设,结论是没有足够的证据支持备择假设。 ?示例:t检验

变量之间的关系测试题及答案

第六章《变量之间的关系》测试题 一、填空题(每空2 分,共46分) 1、一个弹簧,不挂物体时长10 厘米,挂上物体以后弹簧会变长,每挂上一千克物体,弹 簧就会伸长1.5厘米,如果所挂物体总质量为X (千克),那么弹簧伸长的长度y (CM可以表示为 ________ ,在这个问题中自变量是_____ ,因变量是_____ ;如果所挂物体总质量 为X(千克)那么弹簧的总长度Y(CM可以表示为_______ ,在这个问题中自变量是_______ ,因变量是 ____ 。 2、为了美化校园,学校共划出84米 2 的土地修建4 个完全相同的长方形花坛,如果每个 花坛的一条边为X (米),那么另一条边y (米)可以表示为______ o 3、一辆汽车正常行驶时每小时耗油8 升,油箱内现有52 升汽油,如果汽车行驶时间为t (时),那么油箱中所存油量Q (升)可以表示为___ ,行驶3小时后,油箱中还剩余汽油 _____ 升,油箱中的油总共可供汽车行驶 ____________ 小时。___________ 4.一圆锥的底面半径是5cm,当圆锥的高由2cm变到10cm时,圆锥的体积由cm3变到 _______ cm3. 5.梯形上底长16,下底长X,高是10,梯形的面积s与下底长x间的关系式是 ____________ .当x = 0时,表示的图形是_______ ,其面积_________ . 4、如图6—1,甲、乙二人沿相同的路线前进,横轴表示时间,纵轴表示路程。 (1)刚出发时乙在甲前面____ 千米。(2)两人各用了_____ 小时走完路程。 (3)甲共走了___ 千米,乙共走了______ 千米。 5、如图6—2 是我国某城市春季某一天气温随时间变化的图象,根据图象回答,在这一天 中,最低气温出现在_____ 时,温度为_____ °C,在______ 时到 ____ 时的时段内,温度持续上升,这一天的温差是_____ ° C o 图6—1 图6—2 图6—3 6、如图6—3,a//b,直线c与a、b分别交于A、B两点,当直线b绕B点旋转时,/ 1 的大小会发生变化。直线a为保证与b平行,相应的/ 2的大小也会发生变化,如果 / 1度数为x度,那么/ 2的度数y可以表示为 _______ ,在这个问题中自变量是____

案例统计公式(绝对精华)

统计案例 一、回归分析 1. 线性回归方程???y bx a =+的求法 (1)求变量x 的平均值,即1231 ()n x x x x x n =+++???+ (2)求变量y 的平均值,即1231 ()n y y y y y n = +++???+ (3)求变量x 的系数?b ,即1 2 1 ()() ?() n i i i n i i x x y y b x x ==--=-∑∑(题目给出,不用记忆) 1 2 1()() ?() n i i i n i i x x y y b x x ==--=-∑∑ 1 1 1 1 2 2 1 1 1 2n n n n i i i i i i i i n n n i i i i i x y x y xy x y x xx x =======--+= -+∑∑∑∑∑∑∑1 22 21 2n i i i n i i x y nx y nx y nx y x nx nx ==--+= -+∑∑12 21 n i i i n i i x y nx y x nx ==-= -∑∑(理解记忆) (其中1 1 n n i i i x x nx ====∑∑,1 1 n n i i i y y ny ====∑∑,() ,x y 称为样本点中心) (4)求常数?a ,即??a y bx =- (5)写出回归方程???y bx a =+(?a ,?b 的意义:以?a 为基数,x 每增加1个单位,y 相应地平均增加?b 个单位) 注意:若?0b >则正相关,若?0b <则负相关. 2. 相关系数 假设两个随机变量的取值分别是()11,x y ,()22,x y ,……,(),n n x y ,则变量间线性相关系数的计算公式如下: ()() n n i i i i x x y y x y nx y r ---= = ∑∑ 相关系数r 的性质: (1)当0r >时,表明两个变量正相关;当0r <时,表明两个变量负相关;当0r =时,表明

(新)高中数学第一章统计案例1_1独立性检验假设检验素材新人教B版选修1-21

假设检验 1、某厂生产的化纤纤度服从正态分布 )04.0,(2 μN 。某天测得25根纤维的纤度的均值39.1=x ,问与原设计的标准值1.40有无显著差异?(取05.0=α) 解 设厂生产的化纤纤度为X ,则总体)04.0,(~2μN X ,且总体方差2204.0=σ已 知。顾客提出要检验的假设为 40 .1:0=μH , 40.1:1≠μH 因为已知总体标准差04.0=σ,所以选用U 检验,且在0H 成立的条件下有 )1,0(~25 04.00 N X U μ-= 针对备择假设40.1:1≠μH ,拒绝域的形式可取为 } /{0 c n X U W >-= =σμ 为使犯第一类错误的概率不超过05.0=α,就要在40.10 =μ时,使临界值c 满足 ()05 .0=>c U P 成立。由此,在给定显著性水平05.0=α时,得到临界值为 96 .1975.02/1===-u u c α 故相应的拒绝域为

{} 96.1>=U W 利用来自总体的样本值求得 25 .125 /04.040.139.1-=-= u 即 975 .096.125.1u u =<= 成立。显然,样本未落在拒绝域内,因此在05.0=α水平上认为纤维的纤度与原设计的标准值1.40没有显著差异。 2、设某厂生产的洗衣机的使用寿命(单位:小时)X 服从正态分布),(2σu N 但2 ,σu 未 知。随机抽取20台,算得样本均值1832=X ,样本标准差=S 497,检验该厂生产的洗衣机的平均使用时数“2000=μ”是否成立?(取检验水平05.0=α) 解 待检验假设 2000 0=μ:H 20001≠μ:H H 的拒绝域: 21α - >t T =2.093 T 的观测值 512 .1/2000 -=-=n S X T W ∈ 不能拒绝 H ,可以认为洗衣机的平均使用时数“2000=u ”. 3、在正常情况下,某炼钢厂的铁水含碳量(%)X ~ ),.(2 554σN (σ未知)。一日测得5炉铁水含碳量如下:

变量之间的关系单元测试题

一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是( ) 2.已知变量x ,y 满足下面的关系 则x ,y 之间用关系式表示为( ) A.y =x 3 B.y =-3 x C.y =-x 3 D.y =3 x 3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关 A. B. C. D.

系的是() 4.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式20 y来表示,则y随x的增大而 35+ =x () A、增大 B、减小 C、不变 D、以上答案都不对 5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图1所示,则对于该厂生产这种产品的说法正确的是()A.1月至3月生产总量逐月增加,4,5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4,5两月均产总量与3月持平 C.1月至3月生产总量逐月增加,4,5两月均停止生产 D.1月至3月生产总量不变,4,5两月均停止生产 图2 6.如图2是反映两个变量关系的图,下列的四个情境比较合适该图的是()

A.一杯热水放在桌子上,它的水温与时间的关系 B.一辆汽车从起动到匀速行驶,速度与时间的关系 C.一架飞机从起飞到降落的速度与时晨的关系 D.踢出的足球的速度与时间的关系 7.如图3,射线l 甲 ,l 乙 分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是( ) A.甲比乙快 B.乙比甲快 C.甲、乙同速 D.不 一定 8.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( ) A.太阳光强弱 B.水的温度 C.所晒时间 D.热水器 9.长方形的周长为24厘米,其中一边为x (其中0>x ),面积为y 平方厘米,则这样的长方形中y 与x 的关系可以写为( ) A 、2x y = B 、()212x y -= C 、()x x y ?-=12 D 、()x y -=122 10如果没盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( ) (A )y=12x (B )y=18x (C )y=2 3 x (D )y=32 x 二、填一填,要相信自己的能力!(每小题3分,共30分) 1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)

【免费下载】概率论与数理统计案例

实例1 发行彩票的创收利润某一彩票中心发行彩票 10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖100个, 奖金各100元; 五等奖1000个, 奖金各10 元.每张彩票的成本费为 0.3 元, 请计算彩票发行单位的创收利润.解:设每张彩票中奖的数额为随机变量X , 则X 10000 5000 1000 100 10 0p 51/1052/10510/105100/1051000/100p 每张彩票平均能得到奖金 05512()10000500001010E X p =? +?++? 0.5(),=元每张彩票平均可赚20.50.3 1.2(), --=元因此彩票发行单位发行 10 万张彩票的创收利润为:100000 1.2120000().?=元实例2 如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资?解:设 X 为投资利润,则 X 8 -2p 0.3 0.7()80.320.71(),E X =?-?=万元存入银行的利息:故应选择投资.1050.5(),%?=万元实例3 商店的销售策略某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X (以年计),规定1,1500;12,2000;23,2500; 3,3000.X X X X ≤<≤<≤>一台付款元一台付款元一台付款元一台付款元10,1e ,0,()100, 0.x X x f x x Y -?>?=??≤? 设寿命服从指数分布概率密度为试求该商店一台家用电器收费的数学期望定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术、电气课校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料、电气设备调试高中中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并

统计案例一_----独立性检验

统计案例一独立性检验 研修学院数学教研室闻岩 一、课标要求 学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。 内容与要求 1.统计案例(约14课时) 通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。 (1)通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验(只要求22列联表)的基本思想、方法及初步应用。 (2)通过对典型案例(如“质量控制”“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见例1)。------删掉了 (3)通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及初步应用。------删掉了 (4)通过对典型案例(如“人的体重与身高的关系”等)的探究,进一步了解回归的基本思想、方法及初步应用。 说明与建议 1.统计案例的教学中,应鼓励学生经历数据处理的过程,培养他们对数据的直观感觉,认识统计方法的特点(如统计推断可能犯错误,估计结果的随机性),体会统计方法应用的广泛性。应尽量给学生提供一定的实践活动机会,可结合数学建模的活动,选择1个案例,要求学生亲自实践。对于统计案例内容,只要求学生了解几种统计方法的基本思想及其初步应用,对于其理论基础不作要求,避免学生单纯记忆和机械套用公式进行计算。 2.教学中,应鼓励学生使用计算器、计算机等现代技术手段来处理数据,有条件的学校还可运用一些常见的统计软件解决实际问题。 例1某地区羊患某种病的概率是0.4,且每只羊患病与否是彼此独立的。今研制一种新的预防药,任选5只羊做实验,结果这5只羊服用此药后均未患病。问此药是否有效。 初看起来,会认为这药一定有效,因为服药的羊均未患病。但细想一下,会有问题,因为大部分羊不服药也不会患病,患病的羊只占0.4左右。这5只羊都未患病,未必是药的作用。分析这问题的一个自然想法是:若药无效,随机抽取5只羊都不患病的可能性大不大。若这件事发生的概率很小,几乎不会发生,那么现在我们这几只羊都未患病,应该是药的效果,即药有效。 现假设药无效,5只羊都不生病的概率是 (1-0.4)5≈0.078. 这个概率很小,该事件几乎不会发生,但现在它确实发生了,说明我们的假设不对,药是有效的。 这里的分析思想有些像反证法,但并不相同。给定假设后,我们发现,一个概率很小几乎不会发生的事件却发生了,从而否定我们的“假设”。 应该指出的是,当我们作出判断“药是有效的”时,是可能犯错误的。犯错误的概率是0.078。也就是说,我们有近92%的把握认为药是有效的。 二、全国考纲的要求 17.统计案例 了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题. ①独立检验 列联表)的基本思想、方法及简单应用. 了解独立检验(只要求22

计数原理、概率、随机变量及其分布、统计、统计案例

计数原理、概率、随机变量及其分布、统计、统计案例 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=,则P (ξ≤-2)=( ) A . B . C . D . 2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( ) A .2,6 B .2,7 C .3,6 D .3,7 3.将4个颜色互不相同的球全部收入编号为1和2的两个盒 子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种 4.已知f (x )、g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )-f (x )g ′(x )<0,fx gx =a x ,f 1g 1+ f -1 g -1=52,则关于x 的方程abx 2+2x +5 2=0(b ∈(0,1))有两个不同实根的概率为( ) 5.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 6.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y 与x 负相关且y ^ =-; ② y 与x 负相关且y ^ =-+; ③y 与x 正相关且y ^ =+; ④y 与x 正相关且y ^ =--. 其中一定不正确的结论的序号是( ) A .①② B .②③

高中数学统计案例--独立性检验 同步练习

统计案例--独立性检验 同步练习 1、下列关于卡方2χ的说法正确的是( ) A.2χ在任何相互独立问题中都可用与检验是否相关 B. 2χ的值越大,两个事件的相关性越大 C.2χ是用来判断两个相互独立事件相关与否的一个统计量,它可以用来判断两个事件是否相关这类问题 D. ) )()()(() (2d b c a d c b a bc ad n ++++-= χ. 2、在吸烟与患肺病这两个分类变量的计算中,下列说法中正确的是( ) A. 若统计量635.62>χ,我们有99%的把握说吸烟与患肺病有关,则某人吸烟,那么他有99%的可能患有肺病 B. 若从统计中求出,有99%的把握说吸烟与患肺病有关,则在100个吸烟者中必有99人患有肺病 C. 若从统计量中求出有95%把握说吸烟与患肺病有关,是指有5%的可能性使得推断错误 D. 以上说法均错误 3 A. 种子经过处理跟是否生病有关 B. 种子经过处理跟是否生病无关 C. 种子是否经过处理决定是否生病 D. 以上都是错误的 4、若由一个22?列联表中的数据计算得013.42=χ,那么有 的把握认为两个变量有关系. 5、独立性检验所采用的思路是:要研究A 、B 两类型因子彼此相关,首先假设这两类因子彼此 ,在此假设下构造2χ统计量.如果2χ的观测值较大,那么在一定程度上说明假设 . 6、某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该搜集那些数据? . 7、打鼾不仅影响别人休息,而且可能与患某种疾病有关,下表是一次调查所得数据,试问:每一晚都打与患心脏病有关吗?有多大把握认为你的结论成立?

8、为了研究某种新药的副作用(如恶心等),给50位患者服用此新药,另外50名患者服用 9、某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革的关系,随机抽取了189名员工进行调查,其中支持企业改革的调查者中,工作积极的54人,工作一般的32人,而不太赞成企业改革的调查者中,工作积极的40人,工作一般的63人. (1)根据以上数据建立一个2 2 的列联表; (2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的 态度与其工作积极性是否有关系?

(完整)七年级数学下册-变量之间的关系测试题

变量之间的关系 1.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价x,表示圆珠笔的支数,那么y与x之间的关系应该是( ) A.x y12 = B.x y18 = C.x y 3 2 = D.x y 2 3 = 2.在一定条件下,若物体运动的路程(s米)与时间(t秒)的关系式为1 2 32+ + =t t s,则当4 t=时,该物体所经过的路程为( ) A.28米B.48米C.57米D.88米 3.在某次试验中,测得两个变量m和v之间的4组对应数据如下表: m 1 2 3 4 v0.01 2.9 8.03 15.1 则m与v之间的关系最接近于下列各关系式中的( ) A.22 v m =-B.21 v m =-C. 33 v m =-D.1 v m =+ 4.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( ) 5.正常人的体温一般在C0 37左右,但一天中的不同时刻不尽相同,如图1反 映了一天24小时内小红的体温变化情况,下列说法错误的是( ) A.清晨5时体温最低B.下午5时体温最高 C.这一天小红体温T C0的范围是36.5≤T≤37.5 D.从5时至24时,小红体温一直是升高的 6.小王利用计算机设计一个程序,输入和输出的数据如下表: 输入… 1 2 3 4 5 … 输出 (1) 2 2 5 3 10 4 17 5 26 … 那么,当输入数据8时,输出的数据是( ) A. 8 61 B. 8 63 C. 8 65 D. 8 67 7.如图2,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( ) A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时 C.从第3分到第6分,汽车行驶了120千米 D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 8.向高为10厘米的容器中注水,注满为止,若注水量) (3 cm V与水深 36.5 17 12 5 T/()C0 t/h 24 37.5 图1 图2 图3 图4

随机变量、统计案例

随机变量的分布列及统计案例复习学案参考答案 例1、解析 ∵P (A )=C 22+C 23 C 25=25,P (AB )=C 22C 25 =110, ∴P (B |A )=P (AB )P (A )=1 4 . 答案 B 例2、解析 该题为几何概型,圆的半径为1,正方形的边长为2,∴圆的面积为 π,正方形面积为2,扇形面积为π4.故P (A )=2π,P (B |A )=P (A ∩B )P (A )=1 4. 答案 (1)2π (2)1 4 例3、 专题三 离散型随机变量的分布列、均值与方差 例4、 解 设A 、B 、C 分别为甲、乙、丙三台机床各自独立加工同一种零件是一等品的事件,依题意得 ?????????P (A ·B -)=14,P (B ·C -)=112,P (A ·C )=29,即???? ??? ??P (A )·(1-P (B ))=14,P (B )·(1-P (C ))=112,P (A )·P (C )=29, 得27[P (C )]2-51P (C )+22=0, 解得P (C )=23或P (C )=119 (舍). ∴P (A )=13,P (B )=14,P (C )=2 3 . 即甲、乙、丙三台机床各自独立加工的零件是一等品的概率分别为13,14,2 3. (2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件. P (D )=1-P (D -)=1-(1-P (A ))·(1-P (B ))·(1-P (C ))=1-23× 34×13=56,即从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.

变量间的相关关系同步练习题

变量间的相关关系同步练习题 1. 下列两个变量具有相关关系的是( ) A. 正方体的体积与边长 B. 人的身高与体重 C. 匀速行驶车辆的行驶距离与时间 D. 球的半径与体积 2. 两个变量成负相关关系时,散点图的特征是( ) A. 点散布在从左下角到右上角的区域内 B. 点散布在某带形区域内 C. 点散布在某圆形区域内 D. 点散布在从左上角到右下角的区域内 3. 由一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y ),得到回归方程a bx y +=∧ ,那么下面说法不正确的是( ) A. 直线a bx y +=∧ 必经过点(x ,y ) B. 直线a bx y +=∧至少经过点(1x ,1y ),(2x ,2y ),…,(n x ,n y )中的一个点 C. 直线a bx y +=∧的斜率为 ∑∑==--n 1 i 2 2i n 1 i i i x n x y x n y x D. 直线a bx y +=∧ 和各点(1x ,1y ),(2x ,2y ),…,(n x ,n y )的偏差 ()[]∑=+-n 1 i 2 i i a bx y 是该坐标平面上所有直线与这些点的偏差中最小的直线 4. 若施化肥量x (单位:kg )与水稻产量y (单位:kg )的回归方程为250x 5y +=∧ ,则当施化肥量为80kg 时,预计水稻产量为___________。 5. 相关关系与函数关系的区别是___________。 (1)作出这些数据的散点图; (2)通过观察这两个变量的散点图,你能得出什么结论? 7. 某化工厂为预测某产品的回收率y ,需要研究回收率y 和原料有效成分含量x 之间的相关关系,现取了8对观察值,计算得: ∑==8 1 i i 52x , ∑==8 1 i i 228y , ∑=8 1 i 2 i x 478=, ∑==8 1 i i i 1849y x ,则y 与x 的回归方程是( ) A. x 62.247.11y +=∧ B. x 62.247.11y +-=∧ C. x 47.2262.2y +=∧ D. x 62.247.11y -=∧

变量之间的关系测试题及答案

《变量之间的关系》单元测试题 一、填空题(每空2分,共46分) 1、一个弹簧,不挂物体时长10厘米,挂上物体以后弹簧会变长,每挂上一千克物体,弹簧就会伸长厘米,如果所挂物体总质量为X(千克),那么弹簧伸长的长度y(CM)可以表示为___,在这个问题中自变量是___,因变量是___;如果所挂物体总质量为X(千克)那么弹簧的总长度Y(CM)可以表示为___,在这个问题中自变量是___,因变量是___。 2、为了美化校园,学校共划出84米2的土地修建4个完全相同的长方形花坛,如果每个花坛的一条边为X(米),那么另一条边y(米)可以表示为___。 3、一辆汽车正常行驶时每小时耗油8升,油箱内现有52升汽油,如果汽车行驶时间为t (时),那么油箱中所存油量Q(升)可以表示为___,行驶3小时后,油箱中还剩余汽油___升,油箱中的油总共可供汽车行驶___小时。4.一圆锥的底面半径是5cm,当圆锥的高由2cm变到10cm时,圆锥的体积由________变到_________. 5.梯形上底长16,下底长x,高是10,梯形的面积s与下底长x间的关系式是_______.当x =0时,表示的图形是_______,其面积________. 4.如图6—1,甲、乙二人沿相同的路线前进,横轴表示时间,纵轴表示路程。 (1)刚出发时乙在甲前面___千米。(2)两人各用了___小时走完路程。 (3)甲共走了___千米,乙共走了___千米。 5、如图6—2是我国某城市春季某一天气温随时间变化的图象,根据图象回答,在这一天中, 最低气温出现在___时,温度为___°C,在___时到___时的时段内,温度持续上升,这一天的温差是___°C。 10121416182022 1 2 B A c b a 图6—1 图6—2 图6—3 6、如图6—3,ay=100+ B. y=100+ C. y=1+136x D. Y=1+ 2、某次实验中,测得两个变量v和m的对应数据如下表,则v和m之间的关系最接近于下列 关系中的()。

2015届高考数学总复习 基础知识名师讲义 第九章 第五节 变量间的相关关系、统计案例 理

第五节 变量间的相关关系、统计案例 知识梳理 1.散点图. (1)将变量所对应的点描出来,就组成了变量之间的一个图, 这种图为变量之间的________. (2)从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势可用一条光滑的曲线来近似,这种近似的过程称为曲线拟合. 答案:1.(1)散点图 2.相关关系. (1)从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为____________;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为____________. (2)线性相关:从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做____________. (3)若两个变量x 和y 的散点图中,所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关是______________的.如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. 答案:2.(1)正相关 (2)回归直线 (3)非线性相关 3.回归直线. (1)最小二乘法:如果有n 个点:(x 1,y 1),(x 2,y 2),…,(x n ,y n )可以用下面的表达式来刻画这些点与回归直线的接近程度: [y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2,使得上式达到最小值的y ^=b ^x +a ^ 就是我们要求的直线,这种方法称为最小二乘法. (2)在回归直线方程y ^=b ^x +a ^中,b ^ = ∑i =1 n x i -x y i -y ∑i =1 n x i -x 2 = ∑i =1 n x i y i -n x ·y ∑i =1 n x 2 i -n x 2 ,a ^1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 3.了解下列两种常用的统计方法,并能应用这些方法解决一些实际问题. (1)独立检验:了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用; (2)回归分析:了解回归分析的基本思想、方法及其简单应用.

高中数学 第三章 统计案例 3.1 独立性检验 卡方检验素材 苏教版选修2-3

2 χ 检验 (一) 掌握内容 1. 2χ检验的用途。 2. 四格表的2 χ检验。 (1) 四格表2 χ检验公式的应用条件; (2) 不满足应用条件时的解决办法; (3) 配对四格表的2 χ检验。 3. 行?列表的2 χ检验。 (二) 熟悉内容 频数分布拟合优度的2 χ检验。 (三) 了解内容 1.2 χ分布的图形。 2.四格表的确切概率法。 (一) 2χ检验的用途 2χ检验(Chi-square test )用途较广,主要用途如下: 1.推断两个率及多个总体率或总体构成比之间有无差别 2.两种属性或两个变量之间有无关联性 3.频数分布的拟合优度检验 (二) 2 χ检验的基本思想 1.2 χ检验的基本思想是以2 χ值的大小来反映理论频数与实际频数的吻合程度。在零假设0H (比如0H :21ππ=)成立的条件下,实际频数与理论频数相差不应该很大,即2 χ值不应该很大,若实际计算出的2 χ值较大,超过了设定的检验水准所对应的界值,则有理由怀疑0H 的真实性,从而拒绝0H ,接受H 1(比如1H :21ππ≠)。 2. 基本公式:()∑ -= T T A 2 2 χ,A 为实际频数(Actual Frequency ),T 为理论频数 (Theoretical Frequency )。四格表2 χ检验的专用公式正是由此公式推导出来的,用专用公 式与用基本公式计算出的2χ值是一致的。 (三)率的抽样误差与可信区间 1.率的抽样误差与标准误 样本率与总体率之间存在抽样误差,其度量方法: n p ) 1(ππσ-= ,π为总体率,或 (8-1) n p p S p ) 1(-= , p 为样本率; (8-2) 2.总体率的可信区间 当n 足够大,且p 和1-p 均不太小,p 的抽样分布逼近正态分布。 总体率的可信区间:(p p S u p S u p ?+?-2/2/,αα)。 (8-3) (四)2 χ检验的基本计算

初一下变量之间的关系练习题

第四章 《变量之间的关系》复习题(B 卷) 1、某产品生产流水线每小时生产100件产品,生产前无产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y 与时间t 关系图为( ) B C D . 2、小明一出校门先加速行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,最后停止,下面的图( )可以近似地刻画出他在这一过程中的时间与速度的变化情况. (A ) (B ) (C ) (D ) 3、“健康重庆”就是要让孩子长得壮,老人寿命更长,全民生活得更健康.为了响应“健康重庆”的号召,小明的爷爷经常坚持饭后走一走.某天晚饭后他慢步到附近的融侨公园,在湖边亭子里休息了一会后,因家中有事,快步赶回家.下面能反映当天小明的爷爷所走的路程y 与时间x 的关系的大致图象是( ) 4、柿子熟了从树上自然掉落下来,下面哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况( ) . 时间 时间 时间 时间 (C ) (D ) 时间 (B ) 时间 时间 (A )

5、如图,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( ) 5、百舸竞渡,激情飞扬. 为纪念爱国诗人屈原,长寿区在长寿湖举行了龙舟赛. 如图是甲、乙两支龙舟队在比赛时的路程s (米)与时间t (分钟)之间关系的图象,请你根据图象回答下列问题: (1)1.8分钟时,哪支龙舟队处于领先地位? (2)在这次龙舟比赛中,哪支龙舟队先到达终点? (3)比赛开始多少时间后,先到达终点的龙舟队就开始领先? 6.为了鼓励小强勤做家务,培养劳动意识,小强每月的总费用等于基本生活费加上奖 励(奖励由上个月他的家务劳动时间确定).已知小强4月份的家务劳动时间为20小时, 他5月份获得了400元的总费用.小强每月可获得的总费用与他上月的家务劳动时间之 间的关系如图所示,请根据图象回答下列问题. (1)上述变化过程中,自变量是_______, 因变量是_______; (2)小强每月的基本生活费为________元. (3)若小强6月份获得了450元的总费用, 则他5月份做了_______小时的家务. (4)若小强希望下个月能得到120元奖励, 则他这个月需做家务________小时. 3.4 1A 2A 3A 4A 5A A . B . C . D .

高考数学统计与统计案例.doc

高考数学统计与统计案例1.小吴一星期的总开支分布如图 1 所示,一星期的食品开支如图 2 所示,则小吴一星期的鸡蛋开支占总开支的百分比为() A.1%B.2%C.3%D.5% C[ 由图 1 所示,食品开支占总开支的 30%,由图 2 所示,鸡蛋开支占食 品开支的30 = 1 , 30+40+100+80+ 50 10 1 ∴鸡蛋开支占总开支的百分比为30%×10=3%.故选 C.] 2.(2019 德·州模拟 )某人到甲、乙两市各7 个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为() A.4B. 3C.2D.1 B[ 由茎叶图可以看出甲、乙两市的空置房的套数的中位数分别是79,76,因此其差是 79- 76=3,故选 B.] 3.某工厂对一批新产品的长度(单位: mm)进行检测,如图是检测结果的频

率分布直方,据此估批品的中位数() A.20B. 25C.22.5D.22.75 C[ 品的中位数出在概率是 0.5 的地方 . 自左至右各小矩形面依次 0.1,0.2,0.4,??,中位数是 x,由 0.1+0.2+0.08 ·(x-20)=0.5,得 x= 22.5, 故 C.] 4.(2019 ·三明模 )在某次高中数学中,随机抽取 90 名考生,其分数如所示,若所得分数的平均数,众数,中位数分 a, b, c, a,b,c 的大 小关系 () A.b

统计案例之独立性检验

统计案例之独立性检验 班级姓名学号 参考公式:,其中. 1.在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生 互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响, 采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: 表一:男生表二:女生 (1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率; (2)由表中统计数据填写下面的列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

2.东亚运动会将于2013年10月6日在天津举行.为了搞好接待工作,组委会打算学习北 京奥运会招募大量志愿者的经验,在某学院招募了16名男志愿者和14名女志愿者,调查发现,男女志愿者中分别有10人和6人喜爱运动,其余人不喜欢运动. (1)根据以上数据完成以下2×2列联表: 喜爱运动不喜爱运动总计 男10 16 女 6 14 总计30 (2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关? (3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少? 3.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关, 现从高一学生中抽取人做调查,得到如下列联表: 已知在这人中随机抽取一人抽到喜欢游泳的学生的概率为, (Ⅰ)请将上述列联表补充完整,并判断是否有%的把握认为喜欢游泳与性别有关? 并说明你的理由;

(Ⅱ)针对问卷调查的名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取 人成立游泳科普知识宣传组,并在这人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率, 4.某学校高三年级有学生 1 000名,经调查,其中750名同学经常参加体育锻炼(称为A 类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A 类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表: 身高达标身高不达标总计 经常参加体育锻炼40 不经常参加体育锻炼15 总计100 (1)完成上表; 5.某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.

17统计与统计案例

二、考情分析 统计试题主要考察抽样方法、茎叶图、平均数、方差、频率分布表和频率分布直方图、正态分布,抽样方法主要考察系统抽样和分层抽样,较为简单,频率分布直方图和茎叶图是高考的另一个热点,应引起重视, 年高考试题已经设计变量的相关性、独立性检验,也应重视这一新动向三、经典例题: 题型一、抽样方法 (2010安徽)某地有居民100 000户,其中普通家庭99 000户,高收入 1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是. 题型二、频率分布直方图和茎叶图与样本的数字特征 (2011)有一个容量为66的样本,数据的分组及各组的频数如下: .5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) .5,27.5)18 [27.5,31.5)11 [31.5,35.5) .5.39.5)7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( 1 6B. 1 3 C. 1 2 D. 2 3 )某老师从星期一到星期五收到信件数分别是10,6,8,5,6,

四、专题训练: 1(2011)已知随机变量 ξ 服从正态分布 2(2,) N a ,且 (4)0.8p ξ<=,则(02)p ξ<<=( ) A.0.6 B .0.4 C .0.3 D .0.2 2(2011)变量X 、Y 对应的一组数据(10,1),(11.3,2),(11.8,3), (12.5,4),(13,5);变量U 与V 对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( ) A .2 10r r << B .210r r << C .210r r << D .21r r = 3( 根据上表可得回归方程y bx a =+中的b 为9.4,据此模型预测广告费用为6万元时销售额为 ( ) A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元 4(2010)样本中共有5个个体,其值分别为,0,1,2,3a ,若样本的平均 值为1,则样本方差为( ) A B 65 C D 2 5、某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93 去掉一个最高分和一个最低分以后,所剩数据的平均数和方差分别是( ) A 92 2 B 92 2.8 C 93 2 D 93 2.8 6、某校高一年级8个班参加合唱比赛的得分的茎叶图如图所示,则这组数据的中位数和平均数分别是( ) A 91.5 91 .5 B 91.5 92 C 91 91.5 D 92 92 7.(2012)样本(12,,,n x x x )的平均数为x ,样本( 12,,m y y y ) 的平均数为 ()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均 数(1)z ax a y =+-,其中1 02 a <<,则n,m 的大小关系为( ) A .n m < B .n m > C .n m = D .不能确定 8.(2011)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关 系, 并由调查数据得到y 对x 的回归直线方程: 0.2540.321y x =+.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. 9.(2010)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉 花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在 区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度小于20mm 。 10.(2010) 将容量为n 的样本中的数据分成6组,绘制频率分布直方图。若第一组至第六组数据的频率之比为2:3:4: 6:4:1,且前三组数据的频数之和等于27,则n 等于 。 11.(2011)一支田径队有男运动员48人,女运动员36人,若用分层抽样 的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________ 12.(选做)(2011)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (I )假设4n =,在第一大块地中,种植品种甲的小块地的数目记为X , 求X 的分布列和数学期望; (II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种 2 结果,你认为应该种植哪一品种?

相关文档
相关文档 最新文档