文档库 最新最全的文档下载
当前位置:文档库 › 2.3 解一元二次不等式的因式分解法

2.3 解一元二次不等式的因式分解法

2.3 解一元二次不等式的因式分解法
2.3 解一元二次不等式的因式分解法

理论课教案首页

教案纸第页

综合 解一元二次方程—换元法电子教案

2.2.5《解一元二次方程—换元法》典例解析与同步训练 【知识要点】 1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理. 2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母 来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的. 【典例解析】 例1.用适当方法解下列方程: (1)2x2﹣5x﹣3=0 (2)16(x+5)2﹣9=0 (3)(x2+x)2+(x2+x)=6. 例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可; (2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可; (3)设t=x2+x,将原方程转化为一元二次方程,求解即可. 解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49, ∴x===, ∴x1=3,x2=﹣; (2)整理得,(x+5)2=, 开方得,x+5=±, 即x1=﹣4,x2=﹣5, (3)设t=x2+x,将原方程转化为t2+t=6, 因式分解得,(t﹣2)(t+3)=0, 解得t1=2,t2=﹣3. ∴x2+x=2或x2+x=﹣3(△<0,无解), ∴原方程的解为x1=1,x2=﹣2.

初中数学 一元二次不等式解法

2.3.2 一元二次不等式解法 二次函数y=x2-x-6的对应值表与图象如下: x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6 由对应值表及函数图象(如图2.3-1)可知 当x=-2,或x=3时,y=0,即x2-x=6=0; 当x<-2,或x>3时,y>0,即x2-x-6>0; 当-2<x<3时,y<0,即x2-x-6<0. 这就是说,如果抛物线y= x2-x-6与x轴的交点是(-2,0)与(3,0),那么一元二次方程 x2-x-6=0 的解就是 x1=-2,x2=3; 同样,结合抛物线与x轴的相关位置,可以得到 一元二次不等式 x2-x-6>0 的解是 x<-2,或x>3; 一元二次不等式 x2-x-6<0 的解是

-2<x<3. 上例表明:由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集. 那么,怎样解一元二次不等式ax2+bx+c>0(a≠0)呢? 我们可以用类似于上面例子的方法,借助于二次函数y=ax2+bx+c(a≠0)的图象来解一元二次不等式ax2+bx+c>0(a≠0). 为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解. 我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解. (1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知 不等式ax2+bx+c>0的解为 x<x1,或x>x2; 不等式ax2+bx+c<0的解为 x1<x<x2. (2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c =0有两个相等的实数根x1=x2=-b 2a,由图2.3-2②可知不等式ax2+bx+c>0的解为 x≠-b 2a; 不等式ax2+bx+c<0无解.

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

【考点训练】换元法解一元二次方程-1

【考点训练】换元法解一元二次方程-1 一、选择题(共5小题) 1.(2016?罗平县校级模拟)方程x2+8x+9=0配方后,下列正确的是() A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=7 2.(2014?始兴县校级模拟)已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为() A.2 B.3 C.﹣2 D.3或﹣2 3.(2015秋?卢龙县期中)已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为() A.﹣2 B.4 C.4或﹣2 D.﹣4或2 4.(2014秋?沈丘县校级期末)若(x+y)(1﹣x﹣y)+6=0,则x+y的值是() A.2 B.3 C.﹣2或3 D.2或﹣3 5.(2014秋?邓州市校级期末)如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或3 二、填空题(共5小题)(除非特别说明,请填准确值) 6.(2016春?萧山区期中)若(x2+y2)(x2+y2﹣1)=12,则x2+y2=.7.(2016?磴口县校级二模)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.8.(2013秋?苏州期末)已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为.9.(2014春?鹤岗校级期末)若(x2+y2)2﹣4(x2+y2)﹣5=0,则x2+y2=.10.(2015?呼和浩特)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=. 三、解答题(共16小题)(选答题,不自动判卷) 11.(2011秋?西吉县校级期中)阅读材料:为了解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,(x2﹣1)2=y2, 则原方程可化为y2﹣5y+4=0① 解得y1=1,y2=4. 当y=1时,x2﹣1=1,x2=2,∴x=± 当y=4时,x2﹣1=4,x2=5,∴x=± ∴原方程的解为:x 1= 解答问题:仿造上题解方程:x4﹣6x2+8=0. 12.(2013秋?诏安县期中)解下列方程 ①x2﹣8x+9=0 ②(5x﹣1)2﹣3(5x﹣1)=0. 13.(2012秋?新都区期末)阅读材料:x4﹣6x2+5=0是一个一元四次方程,根据该方程的特点,它的通常解法是:设x2=y,那么x4=y2,于是方程变为y2﹣6y+5=0①,解这个方程,得y1=1,y2=5,当y1=1时,x2=1,x=±1,当y=5时,x2=5,x=±,所以原方程有四个根x1=1,x2=﹣1,x3=,x4= (1)在由原方程得到方程①的过程中,利用法达到降次的目的,体现了的教学思想. (2)解方程(x2﹣x)2﹣4(x2﹣x)﹣12=0.

用因式分解法解一元二次方程练习题

用因式分解法解一元二次方程 一.公因式: (一)1.解方程 x2-5x=0 x(x-1)=0 3x2=6x x2-5x=7x t(t+3)=28 x2=7x x2+12x=0(1+2)x2-(1-2)x=0 (3-y)2+y2=9 (二)1.解方程 4x(x+3)+3(x+3)=0 3x(x+1)+4(x+1)=0 (2x+1)2+3(2x+1)=0 x(x-5)=5-x (2t+3)2=3(2t+3) 二、平方差,解方程: (x+5)(x-5)=0 x2-25=0 4x2-1=0 (x-2)2=256 0 1 92= - x 三、十字交叉,解方程: 4x2-4x+1=0 (x+3)(x+2)=0 x2-5x+6=0 x2-2x-3=0 x2-4x-21=0 (x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0 5x2-(52+1)x+10=0 四、完全平方,解方程: x2-6x+9=04X2-4X+1=0 (Y-1)2+2(Y-1)+1=0 五、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长? 六、解关于x的方程(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0 七、6.已知x2+3xy-4y2=0(y≠0),试求 y x y x + - 的值 八、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值. 九、已知x2+3x+5的值为9,试求3x2+9x-2的值 十、一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.

综合解一元二次方程—换元法

综合解一元二次方程— 换元法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

2.2.5《解一元二次方程—换元法》典例解析与同步训练 【知识要点】 1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理. 2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的. 【典例解析】 例1.用适当方法解下列方程: (1)2x2﹣5x﹣3=0 (2)16(x+5)2﹣9=0 (3)(x2+x)2+(x2+x)=6. 例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法 (1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可; (2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可; (3)设t=x2+x,将原方程转化为一元二次方程,求解即可. 解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49, ∴x===, ∴x1=3,x2=﹣; (2)整理得,(x+5)2=, 开方得,x+5=±, 即x1=﹣4,x2=﹣5, (3)设t=x2+x,将原方程转化为t2+t=6, 因式分解得,(t﹣2)(t+3)=0, 解得t1=2,t2=﹣3. ∴x2+x=2或x2+x=﹣3(△<0,无解), ∴原方程的解为x1=1,x2=﹣2. 例2.解方程:(1)(x+3)(x﹣1)=5

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

解一元二次方程(因式分解法) 习题精选(二)

解一元二次方程(因式分解法)习题精选(二)直接开平方法 1.如果(x-2)2=9,则x=. 2.方程(2y-1)2-4=0的根是. 3.方程(x+m)2=72有解的条件是. 4.方程3(4x-1)2=48的解是. 配方法 5.化下列各式为(x+m)2+n的形式. (1)x2-2x-3=0 . (2)210 x=. 6.下列各式是完全平方式的是() A.x2+7n=7 B.n2-4n-4 C. 2 11 216 x x ++ D.y2-2y+2 7.用配方法解方程时,下面配方错误的是()A.x2+2x-99=0化为(x+1)2=0 B.t2-7t-4=0化为 2 765 () 24 t-= C.x2+8x+9=0化为(x+4)2=25 D.3x2-4x-2=0化为 2 210 () 39 x-= 8.配方法解方程. (1)x2+4x=-3 (2)2x2+x=0 因式分解法 9.方程(x+1)2=x+1的正确解法是() A.化为x+1=0 B.x+1=1 C.化为(x+1)(x+l-1)=0 D.化为x2+3x+2=0 10.方程9(x+1)2-4(x-1)2=0正确解法是()

A .直接开方得3(x +1)=2(x -1) B .化为一般形式13x 2+5=0 C .分解因式得[3(x +1)+2(x -1)][3(x +1)-2(x —1)]=0 D .直接得x +1=0或x -l =0 11.(1)方程x (x +2)=2(z +2)的根是 . (2)方程x 2-2x -3=0的根是 . 12.如果a 2-5ab -14b 2=0,则235a b b += . 公式法 13.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是 ,其中b 2—4ac . 14.方程(2x +1)(x +2)=6化为一般形式是 ,b 2—4ac ,用求根公式求得x 1= ,x 2= ,x 1+x 2= ,12x x = , 15.用公式法解下列方程. (1)(x +1)(x +3)=6x +4. (2)21)0x x ++=. (3) x 2-(2m +1)x +m =0. 16.已知x 2-7xy +12y 2=0(y≠0)求x :y 的值. 综合题 17.三角形两边的长是3,8,第三边是方程x 2—17x +66=0的根,求此三角形的周长. 18.关于x 的二次三项式:x 2+2rnx +4-m 2是一个完全平方式,求m 的值. 19.利用配方求2x 2-x +2的最小值. 20.x 2+ax +6分解因式的结果是(x -1)(x +2),则方程x 2+ax +b =0的二根分别是什么? 21.a 是方程x 2-3x +1=0的根,试求的值. 22.m 是非负整数,方程m 2x 2-(3m 2—8m )x+2m 2-13m+15=0至少有一个整数根,求m 的值. 23.利用配方法证明代数式-10x 2+7x -4的值恒小于0.由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l 、2、3. 24.解方程 (1)(x 2+x )·(x 2+x -2)=24; (2) 260x x --= 25.方程x 2-6x -k =1与x 2-kx -7=0有相同的根,求k 值及相同的根.

一元二次方程中的整体思想(换元法)

一元二次方程中的整体思想(换元法) 一、内容概述 所谓整体思想就是从问题整体性质出发,发现问题及整体结构的特性,从而导出局部结构和元素的特性,这是中学数学竞赛常用解题思想之一。最具体的代表就是换元法的运用。 二、例题解析 初中阶段,在各年级的数学代数学习中,时常会碰到换元法。何为换元法呢?解数学题时,把某个式子看成一个整体,用一个变量去替换从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,它可以变高次为低次,化无理为有理。 (一)换元法在解方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而我们会碰到这样的困难:利用这些常规的变形方法解题,往往会产生高次方程,解起来相当繁琐,甚至有时难于解得结果,这可怎么办呢?对于某些方程,我们可以用新的未知数来替换原有未知数的某些代数式,把原方程化成一个易解的方程。 1.利用倒数关系换元 例1 解分式方程:224343x x x x +=-- 分析:此分式方程若两边同时去分母的话,会产生高次方程,比较复杂难解。但是若稍加整理成2243403x x x x -+ +=-,则可利用式子之间的倒数关系换元,这样问题就简单了。 解:移项整理得 2243403x x x x -+ +=- 设23x x y -=,则原方程可化为440y y ++= 去分母得2440y y ++= 解得122y y ==- 当2y =-时,232x x -=- 解得11x = 22x = 经检验:11x = 22x =是原方程的根 所以,原方程的根为11x = 22x = 练习1 103 =

一元二次不等式的解法

一元二次不等式的解法(一) 学习目标: 1.会从实际情境中抽象出一元二次不等式模型; 2.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。 3.培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力 知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2 的不等式,称为一元二次不等式。比如: . 任意的一元二次不等式,总可以化为一般形式:)0(02>>++a c bx ax 或 )0(02><++a c bx ax . 知识点二:一般的一元二次不等式的解法 ( (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程)0(02 >=++a c bx ax ,计算判别式?; ①0>?时,求出两根21x x 、,且21x x <(注意灵活运用因式分解和配方法); ②0=?时,求根a b x x 221-==; ③0--x x ; (3)0652 >--x x (4)0442 >+-x x ; (5)0542 >-+-x x ; (6)23262x x x -++<- 举一反三: 【变式1】解下列不等式 (1)02322 >--x x ; (2)02232 >+--x x (3)01442 ≤+-x x ; (4)0322 >-+-x x . (5)()()() 221332x x x +->+ 【变式2】解不等式:(1)6662<--≤-x x (2)18342 <-≤x x 类型二:已知一元二次不等式的解集求待定系数 例2 不等式02 <-+n mx x 的解集为)5,4(∈x ,求关于x 的不等式012 >-+mx nx 的解集 举一反三: 【变式1】不等式0122 >++bx ax 的解集为{} 23<<-x x ,则a =_______, b =________ 【变式2】已知关于x 的不等式02<++b ax x 的解集为)2,1(,求关于x 的不等式0 12 >++ax bx 的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题 例3 已知关于x 的不等式03)1(4)54(2 2 >+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围。 举一反三: 【变式1】 若关于x 的不等式01)12(2≥-++-m x m mx 的解集为空集,求m 的取值范围. 【变式2】若关于x 的不等式01)12(2≥-++-m x m mx 的解为一切实数,求m 的取值范围. 【变式3】若关于x 的不等式01)12(2≥-++-m x m mx 的解集为非空集,求m 的取值范围.

解一元二次方程及一元二次不等式练习题--

一元二次方程练习题 1. 解下列方程:(1)2(1) 9x -=; (2)2(21)3x +=; (3)2(61)250x --=. (4)281(2)16x -=. 2. 用直接开平方法解下列方程: (1)25(21) 180y -=; (2)21(31)644x +=; (3)26(2) 1x +=; (4)2()(00)ax c b b a -=≠,≥ 3. 填空 (1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 4. 用适当的数(式)填空: 23x x -+ (x =- 2);2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 5. 用配方法解方程. 23610x x --= 22540x x --= 6. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 7. 用适当的方法解方程(1)23(1) 12x +=; (2)2410y y ++=; (3)2884x x -=; (4)2310y y ++=. (5) ()9322=-x ; (6)162=-x x ; 一元二次不等式 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程2 0(0)ax bx c a ++=>之间判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 一、解下列一元二次不等式: 1、0652>++x x 2、0652≤--x x 3、01272<++x x

一元二次不等式解法

一元二次不等式解法一、知识梳理 1.“三个二次”的关系 2.常用结论 (x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法

口诀:大于取两边,小于取中间. 二、例题讲解 题型一 一元二次不等式的求解 命题点1 不含参的不等式 例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=3 2 , ∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(3 2,+∞), 即原不等式的解集为(-∞,-1)∪(3 2,+∞). 命题点2 含参不等式 例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1, ①当a >1时,x 2-(a +1)x +a <0的解集为{x |11. 若a <0,原不等式等价于(x -1 a )(x -1)>0,

解得x <1 a 或x >1. 若a >0,原不等式等价于(x -1 a )(x -1)<0. ①当a =1时,1a =1,(x -1 a )(x -1)<0无解; ②当a >1时,1a <1,解(x -1a )(x -1)<0得1 a 1,解(x -1a )(x -1)<0得11}; 当a =0时,解集为{x |x >1};当01 时,解集为{x |1 a

因式分解法解一元二次方程典型例题

例 用因式分解法解下列方程: (1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0 y +1=0或y +6=0 ∴y 1=-1,y 2=-6 (2)方程可变形为t (2t -1)-3(2t -1)=0 (2t -1)(t -3)=0,2t -1=0或t -3=0 ∴t 1=2 1,t 2=3. (3)方程可变形为2x 2-3x =0 x (2x -3)=0,x =0或2x -3=0 ∴x 1=0,x 2=2 3 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了. (2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解: 原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2. (3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考 典型例题二 例 用因式分解法解下列方程 6223362+=+x x x 解:把方程左边因式分解为: 0)23)(32(=-+x x ∴032=+x 或023=-x ∴ 3 2,2321=- =x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式, 均可用因式分解法求出方程的解。

一元二次不等式的解法

知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。比如:. 任意的一元二次不等式,总可以化为一般形式:或 . 知识点二:一般的一元二次不等式的解法 设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表: 注意: (1)一元二次方程的两根是相应的不等式的解集的端点的取值,是抛物线与轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分三种情况,得到一元二次不等式 与的解集。 知识点三:解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程,计算判别式: ①时,求出两根,且(注意灵活运用因式分解和配方法); ②时,求根; ③时,方程无解 (3)根据不等式,写出解集. 知识点四:用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过程规律方法指导 1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法; 3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系; 5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数 二次函数()的图象

经典例题透析 类型一:解一元二次不等式 1.解下列一元二次不等式 (1);(2);(3) 思路点拨:转化为相应的函数,数形结合解决,或利用符号法则解答. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当 且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) ;(2) (3) ;(4) . 【变式2】解不等式: 类型二:已知一元二次不等式的解集求待定系数 2.不等式的解集为,求关于的不等式的解集。

因式分解法解一元二次方程练习题

因式分解法解一元二次方程练习题 姓名: 1.选择题 (1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 (2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x = 2 1 B .x = 2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=5 3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5 B .5或11 C .6 D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0 B .1 C .2 D .3 2.填空题 (1)方程t (t +3)=28的解为_______. (2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. 4.用适当方法解下列方程: (1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0; (5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9; (7)(1+2)x 2-(1-2)x =0; (8)5x 2-(52+1)x +10=0; (9)2x 2-8x =7; (10)(x +5)2-2(x +5)-8=0.

用换元法解各种复杂方程

用换元法解各种复杂方程 用换元思想探索双二次方程、无理方程、分式方程这三类方程的解法。 [内容综述] “换元法”是一种重要的数学方法,它可以把较复杂的问题转化为较简单的问题去解决。在解高次方程、分式方程、无理方程的过程中都可以应用换元方法,其要点是把方程中的一些表达形式相同的部分看成一个整体并设新的字母表示,从而达到化简方程并把原方程化归为已经会解的一元一次或一元二次方程的目的。 [问题精讲] 1.在中学课程中,只要求学生会解一些特殊的高次方程,最常见的就是“双二次方程”,即只含有未知数的四次项、二次项和常数项的方程。对于这类方程,可以经过对二次项的换元转化为一元二次方程。例1,解方程(x 2+1)2=x 2+3 分析:思路1:以x 2+1为一个整体进行换元,因此要对方程右边进行变形使其含有x 2+1。 思路2:把方程展开成标准的双二次方程,再对x 2 进行换元。 解法一:原方程可化为(x 2+1)2-(x 2+1)-2=0,设x 2+1=y 得y 2-y-2=0, 解得 y 1=2,y 2=-1,x 2+1=-1无实根, 由x 2+1=2解得x 1=1,x 2=-1。 解法二:由原方程得x 4+x 2-2=0,设x 2=y (解题熟练时,这一换元过程也可以不写出) 得y 2+y-2=0,解得y 1=1,y 2=-2,x 2=-2无实根, 由x 2=1解得x 1=1,x 2=-1。 注意:换元的关键是善于发现或构造方程中表达形式相同的部分作为换元的对象。在解方程的过程中换元的方法常常不是唯一的,解高次方程时,只要能达到降次目的的换元方法都可以应用。例如在牛刀小试题1中,可以设4x 2+2=y ,则原方程化为y 2+y-12=0;也可以设4x 2+1=y ,则原方程化为y 2+3y-10=0(选C ),(还可以设4x 2=y 等等,学生可以自己练习)。但是无论采用哪一种换元方法,所得方程的解都是相同的。 2.解无理方程时,常把原方程中的一个含有未知数的根式作为整体进行换元,达到化去根号转化为可解方程的目的。这时经过变形,原方程的某个整式部分常可表示为新元的平方。 例2,解方程051356222=-----x x x x 分析:为使原方程中出现形式相同的部分,可以将其变形为 03135)13(222=------x x x x 。 解:设y x x =--132,则原方程可以化为2y 2-5y-3=0 解得(不符合算术根的定义,舍去。) 由3132=--x x 得x 1=5,x 2=-2,经检验是原方程的根。

解一元二次不等式

解不等式(11.01) 知识点 1、 一元二次不等式的解 步骤:1、把二次项系数化为正数 2、用?判断方程的解 分式不等式转化成正式不等式 0)()(0) ()(>?>x g x f x g x f ,0)(0)()(0) ()(>>?≥x f x g x f x g x f 或

相关练习 1、 元二次方程的解,(1)十字相乘法;(2)求根公式;(3)配方求解 (1)0822=-+x x (2)0232=+-x x (3) 962+-=x x y (4)07422=++x x (5)03422=--x x (6)0432=-+x x (7)07422 =++x x 2、 一元二次函数图象性质 (1)822-+=x x y (2)962+-=x x y (3)7422++=x x y 开口: 对称轴: 顶点坐标 大致图象 最值: 单调区间: 增 减 在给定区间上的最值 (1) 822-+=x x y ;[]2,4--∈x (2) 822-+=x x y ;[]4,2∈x (3)822-+=x x y ;[]5,2-∈x

3、相应一元二次不等式的解(对于方程有两解的情况:大于取两边;小于取中间) (1)0822>-+x x ;0822≥-+x x ;0822<-+x x ;0822 ≤-+x x ; (2)0232>-+-x x ;0232≥-+-x x ;0232<-+-x x ;0232≤-+-x x ; (3)0962>+-x x ;0962≥+-x x ;0962<+-x x ;0962≤+-x x 沁园春·雪 <毛泽东> 北国风光,千里冰封,万里雪飘。 望长城内外,惟余莽莽; 大河上下,顿失滔滔。 山舞银蛇,原驰蜡象, 欲与天公试比高。 须晴日,看红装素裹,分外妖娆。 江山如此多娇,引无数英雄竞折腰。

一元二次不等式解法

哈对青一中高中(数学)学科新授课学案课题一元二次不等式的解法 三维目标知识与技能:知道一元二次不等式的概念 2会利用图像求一元二次不等式(a>0)的解集 3会求一元二次不等式(a>0)的解集 过程与方法:培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 情感态度与价值观:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。 重点1会求一元二次不等式的解集 2会利用图像表示一元二次不等式的解集难点会求一元二次不等式的解集 知识滚动1.若A={x|x+1>0},B={x|x-3<0},则A∩B=() A.(-1,+∞) B.(-∞,3) C.(-1,3) D.(1,3) 2.设a,b∈R集合{a,1}={0,a+b},则b-a=() A.1 B.-1 C.2 D.-2 新课导学一、复习导入 6 2- - =x x y学生思考括号内的形式: ①当x取何值时,0 = y即0 6 2= - -x x(此形式为一元二次方程) ②当x取何值时,0 > y即0 6 2> - -x x(此形式为一元二次不等式) ③当x取何值时,0 < y即0 6 2< - -x x(此形式为一元二次不等式) 二、新课探究 1、引导学生解0 = y即0 6 2= - -x x一元二次方程的解,并注意图形的位置关系 = ?(符号表示)= 一元二次方程有实数根,即与x轴有 两个交点的图形 解:①解方程: 3、一般形式:)0 ( 2> > + +a c bx ax或)0 ( 2> < + +a c bx ax (1)当= ?时,与x轴有一个交点() )0 ( 2> > + +a c bx ax解集: )0 ( 2> < + +a c bx ax解集: (2)当= ?时,与x轴有两个交点(),() )0 ( 2> > + +a c bx ax解集: )0 ( 2> < + +a c bx ax解集: (3)当= ?时,与x轴有个交点 )0 ( 2> > + +a c bx ax解集: )0 ( 2> < + +a c bx ax解集: 例1、解不等式0 2 3 22> - -x x 思考:①不等式的解0 2 3 22< - -x x呢?②不等式2 3 22< -x x的解呢? 升 级 训 练 1 .若集合{}0 |2≤ =x x A,则下列结论中正确的是() A、A=0 B、0A ?C、? = A D、A ?? 2.已知集合{}{} 26160,|()(2)0, M x x x N x x k x k =+->=---≤若M N=?, 则实数k的取值范围是() A 0 8> - - - +x x x的解集是 总 结 反 思 X1

相关文档
相关文档 最新文档