文档库 最新最全的文档下载
当前位置:文档库 › 不同限制性核酸内切酶对质粒DNA的切割1

不同限制性核酸内切酶对质粒DNA的切割1

不同限制性核酸内切酶对质粒DNA的切割1
不同限制性核酸内切酶对质粒DNA的切割1

不同限制性核酸内切酶对质粒DNA的切割

——PvuⅡ和HindⅢ对pUC19-P35S:ARF8双酶切

费欢 1014100060

广州大学生命科学学院生物科学2010级

摘要为加深对限制性内切核酸酶切割质粒DNA的位点特异性和其专一性的认识,采用Pvu

Ⅱ和HindⅢ两种酶双酶切质粒DNA,从而验证不同限制性核酸内切酶对质粒DNA具有不同的切割结果。采用限制性内切酶PvuⅡ和HindⅢ共同对pUC19-P35S:ARF8进行切割,再用琼脂糖凝胶电泳加以分离,得到电泳图谱,对照分子量标样加以鉴定。结果获得6条带,大小分别为2366bp,2264bp,499bp,436bp,370bp,179bp。

关键词限制性核酸内切酶PvuⅡ和HindⅢ、质粒DNA、双酶切、琼脂糖凝胶电泳

引言:

限制性核酸内切酶主要存在于原核生物,它能将外来的DNA 切断,即能够限制异源DNA 的侵入并使之失去活力,但对自己的DNA 却无损害作用,这样可以保护细胞原有的遗传信息。它不同于一般的脱氧核糖核酸酶(DNase),限制性核酸内切酶的切点大多很严格,要求专一的核苷酸序列。限制性核酸内切酶按其性质可分为三大类,即所谓Ⅰ型、Ⅱ型和Ⅲ型酶。[1]其中Ⅰ型和Ⅲ型水解核酸要消耗ATP,它既特异性切割核酸又能给特殊碱基加上甲基基团进行修饰,但特异性弱,切割位点不固定; Ⅱ型水解核酸不需要消耗ATP,它只特异性切割核酸并不修饰碱基,其特异性强,切割位点固定。[2]限制性核酸内切酶是一类能识别双链DNA 分子特异性核酸序列的DNA水解酶。它是基因工程中用于体外剪切基因片段的重要工具酶。本实验可加深对限制性内切核酸酶切割质粒DNA的位点特异性的认识,通过实践充分了解PvuⅡ和HindⅢ两种酶双酶切质粒DNA产生的片段。

研究人员通过使用15种限制性内切酶酶切重组质粒pBKrsv-MLCK,探讨了限制性内切酶的应用和限制性内切酶酶切图谱分析的方法。[3]近几年,各种动物体内线粒体DNA的酶切分析的研究十分广泛,并取得了一定的成果(宋平,李小迎,熊全沫,1994[4];戴建华,殷文莉,2004 [5];关海红,石连玉,刘明华等,2000 [6]),采用Tru 9Ⅰ/EcoRⅠ和TaqⅠ/Pst Ⅰ两种限制性内切酶酶切组合对细鳞鱼的遗传多样性进行研究同样有所帮助(王荻,徐革锋,刘洋等,2009)[7]。没有限制性核酸内切酶的发现和应用,就没有分子生物学的兴旺发展,在基因工程和分子生物学中,限制性核酸内切酶起着其足轻重的作用。因此研究限制性核酸内切酶对质粒DNA的切割具有重要的意义。

1.材料和方法

1.1材料

1.1.1实验材料

重组质粒pUC19-P35S:ARF8由广州大学生命科学学院生化楼分子生物学实验室构建;

限制性内切酶:EcoRI购自TaKaRa等生物工程公司;

琼脂糖:进口分装。

1.1.2实验设备

水平式电泳装置,电泳仪,台式高速离心机,微量移液枪,PCR热稳定仪,微波炉,凝胶成像系统等。

1.1.3试剂

5 x TBE电泳缓冲液;

无菌水;

M缓冲液;

10×loading buffer;

溴化乙锭溶液母液:将EB配置成10mg/ml,用铝箔或黑纸包裹容器,储于室温;

DNA分子量标准:从小到大为100bp、250bp、500bp、750bp、1000bp、2000bp。

1.2方法

1.2.1 DNA酶切反应

1.2.1.1将清洁干燥并经灭菌的eppendorf管编号,用微量移液枪分别加入DNA 10μl和M

缓冲液2μl,再加入无菌水使总体积为19μl,将管内溶液混匀后加入酶液PvuⅡ和Hind Ⅲ各1μl,用微量离心机离心数秒使溶液混匀并集中在管底。

1.2.1.2混匀反应体系后,将eppendorf管置于适当的支持物上,37℃水浴保温3小时,使

酶切反应完全。

1.2.1.3每管加入5μl10×loading buffer,混匀,以停止反应。

1.2.2 琼脂糖凝胶的制备

1.2.2.1取5xTBE缓冲液20ml加水至200ml,配置成0.5xTBE稀释缓冲液,待用。

1.2.2.2胶液的制备:

称取0.4g琼脂糖,置于200ml锥形瓶中,加入50ml 0.5xTBE稀释缓冲液,放入微波炉里加热至琼脂糖全部融化,取出摇匀,此为0.8%琼脂糖凝胶液。加热过程中要不时摇动,使附于瓶壁上的琼脂糖颗粒进入溶液。加热时应盖上封口膜,以减少水分蒸发。

1.2.2.3胶板的制备:

将封好的胶槽置于水平支持物上,插上样品梳子,注意观察梳子齿下缘应于胶槽底面保持1mm左右的间隙。向冷却至0-60℃的琼脂糖液中加入溴化乙锭(EB)溶液使其终浓度为0.5μg/ml。

用移液枪吸取少量融化的琼脂糖凝胶封橡皮膏内侧,待琼脂糖溶液凝固后将剩余的琼脂糖小心地倒入胶槽内,使胶液形成均匀的胶层。倒胶时的温度不可太低,否则凝固部均匀,速度也不可太快,否则容易出现气泡。待胶完全凝固后拔出梳子,注意不要损伤梳底部的凝胶,然后想槽内加入0.5×TBE稀释缓冲液至液面恰好没过胶板上表面。因边缘效应样品槽附近会有一些隆起,阻碍缓冲液进入样品槽总,所以要注意包装样品槽中应注满缓冲液。1.2.3 电泳分离DNA片段

1.2.3.1加样:

用微量移液枪取13μl酶解液小心加入样品槽一上样孔,再取9.5μl酶解液加入另一上样孔。上样时要小心操作,避免损坏凝胶或将样品槽底部凝胶刺穿。

1.2.3.2电泳:

加完样后,合上电泳槽盖,立即接通电源。控制电压保持在60-80V,电流在40mA以上,电泳28分钟。

1.2.3.3观察和拍照:

在长波长紫外灯下观察已加有EB的电泳胶板,DNA存在处显示出肉眼可辨的荧光条带。2.结果和分析

双酶切质粒DNA 电泳图谱观察

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17

图1 限制性核酸内切酶Pvu Ⅱ和Hind Ⅲ对质粒pUC19-P35S:ARF8的双酶切电泳图谱 (栏0:

DNA Maker ; 栏2:本实验的酶切图谱)

2.1 结果

如图1所示,用限制性核酸内切酶Pvu Ⅱ和Hind Ⅲ对质粒pUC19-P35S:ARF8进行双酶切,经琼脂糖凝胶电泳后,可以看出6条带图谱,通过与DNAMarker 进行比对,判断其片段大小由上至下分别为:2366bp,2264bp,499bp,436bp,370bp,179bp ,而理论上Pvu Ⅱ在质粒DNA 上存在4个切割位点,Hind Ⅲ在质粒DNA 上存在3个切割位点,且两者的位点无重复,因此 Pvu Ⅱ和Hind Ⅲ双酶切应该产生7个完整清晰的条带图谱,其中129bp 片段由于分子量太小,电泳中跑得太快,与拖尾的杂质部分有部分重叠,模糊或没切到无法辨认。其中176bp 片段也由于分子量过小,电泳过程中跑太快而有点模糊。499bp,436bp,370bp 三个片段,由于分子量较小且较相近,以致三个条带不够清晰。

2.2 分析

根据限制性内切核酸酶特性可知,Pvu Ⅱ为第Ⅱ类酶,可以切割某一特异的核苷酸序列,是重组DNA 的基础。本实验中Pvu Ⅱ在质粒pUC19-P35S:ARF8上有4个识别位点,完全酶切可把质粒DNA 切割成4个分子量大小不同的片段,大小分别为

2057bp,4500bp,4676bp,5981bp 。Hind Ⅲ也属于第Ⅱ类酶,可以切割某一特异的核苷酸序列,是重组DNA 的基础。本实验中Hind Ⅲ在质粒pUC19-P35S:ARF8上有4个识别位点,完全酶切可把质粒DNA 切割成3个分子量大小不同的片段,大小分别为2236bp,5112bp,5611bp 。Pvu Ⅱ和Hind Ⅲ两种酶所识别质粒DNA 位点都不一致,因此两种酶对质粒pUC19-P35S:ARF8进行双酶切可产生7个大小不同片段,大小分别为:

2366bp,2264bp,499bp,436bp,370bp,179bp ,129bp 。

但是,从图1电泳图谱可知,本次实验不成功,最下面出现一个较亮而大的团带,可能是质粒DNA 中含有杂质且分子量比DNA 小导致其在电泳条带图谱的尾部出现。只可看出6个条带而非7个条带且不够清晰或酶切不完全,经讨论,出现此现象的原因可能有以下:

1. 加样时,由于操作不佳,实验者把样品槽底部凝胶刺穿或损坏,影响了DNA 片段的移动。

2. 选择双酶切的两种酶的组合搭配得不好,Pvu Ⅱ和Hind Ⅲ识别的位点多数相近,以致双100bp

2000bp 500bp 250bp 750bp 1000bp

酶切得到的片段大小较接近且部分较小,电泳中分子量小的跑太快与尾部重叠,片段大小相近的电泳条带不够分离。

3.电泳时间过短,导致酶切的DNA片段跑得不够开。

4.制备反应混合液时没有加入BSA溶液,导致限制性内切核酸酶不稳定,酶活性下降或其

酶切机理受到了破坏。

5.加入反应的酶的量过多,导致酶的活性受到了抑制,酶切不完全。

6.反应液混匀后,在室温条件下放置时间过长,影响了酶的活性。

另外,与其他同学和一班的电泳图谱比较,使用单酶切的电泳图谱条带要比双酶切的清晰完整,且选用EcoRⅠ进行单酶切得到的电泳图谱条带较多而清晰。

3.讨论

本次实验采用PvuⅡ和HindⅢ对质粒pUC19-P35S:ARF8进行双酶切得到的DNA的电泳图谱不太好,我认为主要是酶的选择不太好,且应该选一种酶进行单酶切,得到的实验结果会更好。其次,添加试剂的量要把握好,由于添加的试剂的量都是微量,稍微稍加或多加一点,都会对实验结果有较显著的影响。除此之外,我们对加样操作不够熟练,还是容易出错,导致电泳结果不理想,所以加样时一定要特别地小心谨慎,使用的移液枪枪头要确保没被污染。

4.参考文献

[1].陶志坚.限制性核酸内切酶相关知识总结.学知报.2011,01(8):1-3.

[2].王智新,王昌留.限制性核酸内切酶及其显带研究进展.鲁东大学学报[J].2011,27( 2) : 154—157.

[3].熊江霞,朱华庆,王雪等.限制性内切酶酶切及限制性内切酶酶切图谱分析[J].安徽医科大学学报. 2003, 38 (2):147-148 .

[4].宋平,李小迎,熊全沫.鲢鳙线粒体DNA的九种限制性内切酶酶切图谱的比较[J].水产学报.1994,18(3):221-230.

[5].戴建华,殷文莉. 丰鲤及其双亲线粒体DNA限制性酶切图谱的研究[J]. 南京师大学报(自然科学版), 2004, 27 (3):332-336 .

[6] 关海红,石连玉,刘明华等. 黑龙江野鲤线粒体DNA限制性内切酶酶切分析[J]. 水产学杂志, 2000, 13 (1):256-260.

[7].王荻,徐革锋,刘洋等. 两种双酶切组合在细鳞鱼AFLP体系中的比较分析[J]. 大连水产学院学报, 2009, 24 (5):178-183.

致谢

在此论文完成之际,我要对论文完成过程中所有的人们表示衷心的感谢。首先,感谢郭培国老师及实验室老师对我的实验过程中的悉心指导和帮助。其次,我要感谢我的组员:田爱玲和宿通与我团结协作共同完成本实验。最后,感谢广州大学生命科学学院生化楼207实验为本实验提供了实验样品。感激之情,述之不尽,只好言止于此。

限制性内切酶

限制性核酸内切酶是一类能够识别双链DNA分子中的某种特定核苷酸序列(一般4-8bp),并在此处切割DNA双链的核酸内切酶。主要存在于原核生物,是原核生物自我保护的一种机制。它的作用包含两类,一种是对外的,限制作用,指一定类型的细菌可以通过限制性核酸内切酶的作用,破坏入侵的外源DNA,使得外源DNA对生物细胞的入侵受到限制。另一种是对内的,修饰作用,指在特定位置发生甲基化,可免遭自身限制性酶的破坏。 限制性核酸内切酶的发现是在本世纪中期,Arber等人对λ噬菌体在大肠杆菌不同菌株上的平板培养效应的研究为基础,发现了原核生物体内存在着寄主控制的限制和修饰系统。实验是:在K株或B株大肠杆菌上生长繁殖的噬菌体λ(K)或λ(B),再次感染原寄主菌体的成斑率为1,而感染新的寄主菌株的成斑率则分别为10-4和4*10-4所以说受到了限制。在 20 世纪 60 年代,噬菌体学家阐明了宿主限制和修饰现象的生化机制。该研究工作在 Me-selson 和 Yuan(1968)纯化得到了大肠杆菌 K12 的限制性内切酶时达到高峰。因为这个内切酶可以把未修饰的 DNA 切割成大的分离片段,人们认为它一定识别一个靶序列。从而提供了对 DNA 进行可控操作的前景。但不幸的是,K12 内切酶不具备人们希望的性质。虽然它确实是结合到一定的区域序列上,切割却在几千个碱基对以外“随机”发生的(Yuan 等,1980)。经过大量努力后,终于在1970 年取得了突破,人们发现了在流感嗜血杆菌(Haemophilusinfluenzae)中存在一种酶,其作用更加简单(Kelly & Smith,1970;Smith & W ilcox,1970),即这个酶可以识别双链 DNA 分子中的一个特定靶序列,并在该序列之内切断多聚核苷酸链,从而产生长度和序列一定的分离片段。突破性的进展始于 Hamilton Smith 的发现,他从嗜血流感细菌(Haemophilus influenzae)菌株 Rd中找到了一种限制性内切酶(Smith & Wilcox,1970),并阐明了它在噬菌体 T7 DNA 中切割的核苷酸序列(Kelly & Smith,1970)。这个酶现在命名为 Hind Ⅱ。嗜血流感细菌还具有另一个Ⅱ型的限制酶 Hind Ⅲ,而且含量很大。幸运的是,Hind Ⅲ不切割T7 DNA,因此 Hind Ⅱ制剂中可能混有的 Hind Ⅲ将不产生任何问题(Old 等,1975)。在发现 HindⅡ后不久,又分离到其他几个Ⅱ型的限制性内切酶,并分析了它们的性质,EcoRⅠ是其中最重要的一个(Hedgepeth 等,1972)。它们随即迅速用于最初的重组 DNA 实验中。

常用限制性内切酶酶切位点汇总

Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点 AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AleI识别位点AluI识别位点AlwI识别位点AlwNI识别位点ApaI识别位点ApaLI识别位点ApeKI识别位点ApoI识别位点AscI识别位点AseI识别位点AsiSI识别位点AvaI识别位点AvaII识别位点AvrII识别位点BaeI识别位点BamHI识别位点BanI识别位点BanII识别位点

BbvCI识别位点BbvI识别位点 BccI识别位点BceAI识别位点BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点BmgBI识别位点BmrI识别位点BmtI识别位点BpmI识别位点Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BsaXI识别位点BseRI识别位点BseYI识别位点

BsiEI 识别位点BsiHKAI 识别位点BsiWI识别位点BslI 识别位点BsmAI识别位点 BsmBI识别位点BsmFI识别位点BsmI识别位点BsoBI识别位点Bsp1286I识别位点BspCNI识别位点BspDI识别位点BspEI识别位点BspHI识别位点BspMI识别位点BspQI识别位点BsrBI识别位点BsrDI识别位点BsrFI识别位点BsrGI识别位点BsrI识别位点BssHII识别位点BssKI识别位点BssSI识别位点BstAPI识别位点BstBI识别位点BstEII识别位点BstNI识别位点

限制性核酸内切酶

限制性核酸内切酶 限制性核酸内切酶( restriction endonucleases ),简称限制酶,是一类能识别和切割双链 DNA 分子中的某些特定核苷酸序列的核酸水解酶,主要从细菌中分离得到。根据结构和功能特性,把限制酶分为Ⅰ、Ⅱ和Ⅲ型。Ⅰ型限制酶的切点不固定,很难形成稳定的、特异性切割末端;Ⅲ型限制酶对 DNA 链的识别序列是非对称的,不产生特异性的 DNA 片段,故基因工程实验中基本不用Ⅰ型和Ⅲ型限制酶。 Ⅱ型限制酶的主要作用是切割 DNA 分子,在 DNA 重组、构建新质粒、建立 DNA 的限制性酶切图谱、 DNA 的分子杂交、制备 DNA 的放射性探针、构建基因文库等方面起到重要作用,是基因工程重要的工具酶。 Ⅱ型限制性核酸内切酶的特点是:一般能识别和切割 4~8 个碱基对的核苷酸序列;大多数识别序列具有回文结构。 Ⅱ型限制性核酸内切酶的切割方式有三种:切割产生 5 ' 突出的粘性末端( sticky ends );切割产生 3 ' 突出的粘性末端;切割产生平头末端( blunt ends )。 Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。III型限制性内切酶同时具有修饰及认知切割的作用根据酶的功能特性、大小及反应时所需的辅助因子,限制性内切酶可分为两大类,即I类酶和Ⅱ酶。最早从大肠杆菌中发现的EcoK、EcoB就属于I类酶。反应过程中除需Mg2+外,还需要S-腺苷-L甲硫氨酸、ATP;在DNA分子上没有特异性的酶解片断,这是I、Ⅱ类酶之间最明显的差异。因此,I类酶作为DNA的分析工具价值不大。Ⅱ类酶有EcoR I、BamH I、Hind Ⅱ、Hind Ⅲ等。反应只需Mg2+;最重要的是在所识别的特定碱基顺序上有特异性的切点,因而DNA分子经过Ⅱ类酶作用后,可产生特异性的酶解片断,这些片断可用凝胶电泳法进行分离、鉴别。 限制酶一般不切割自身的DNA分子,只切割外源DNA。 每种限制酶特异识别专一DNA序列,并在切割位点将其准确切割。 限制酶是基因工程用来切割目的基因的酶,DNA复制不需要。 DNA复制需要的是解旋酶和DNA聚合酶。 根据限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型 第一型限制酶:同时具有修饰(modification)及认知切割(restriction)的作用;另有认知(recognize)DNA上特定碱基序列的能力,通常其切割位(cleavage site)距离认知位(recognition site)可达数千个碱基之远。例如:EcoB、EcoK。 第二型限制酶:只具有认知切割的作用,修饰作用由其他酵素进行。所认知的位置多为短的回文序列(palindrome sequence);所剪切的碱基序列通常即为所认知的序列。是遗传工程上,实用性较高的限制酶种类。例如:EcoRI、HindⅢ。 第三型限制酶:与第一型限制酶类似,同时具有修饰及认知切割的作用。可认知短的不对称序列,切割位与认知序列约距24-26个碱基对。例如:EcoPI、HinfⅢ。 甲基化(DNA methylation) DNA甲基化是最早发现的修饰途径之一,大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。

限制性内切酶酶切位点汇总

Acc65I识别位点 AccI识别位点 AciI识别位点 AclI识别位点 AcuI识别位点 AfeI识别位点 AflII识别位点 AflIII识别位点 AgeI识别位点 AhdI识别位点 AleI识别位点 AluI识别位点 AlwI识别位点 AlwNI识别位点 ApaI识别位点 ApaLI识别位点 ApeKI识别位点 ApoI识别位点 AscI识别位点 AseI识别位点 AsiSI识别位点 AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI识别位点 BanI识别位点 BanII识别位点

BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点 BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点 BmgBI识别位点 BmrI识别位点 BmtI识别位点 BpmI识别位点 Bpu10I识别位点 BpuEI识别位点 BsaAI识别位点 BsaBI识别位点 BsaHI识别位点 BsaI识别位点 BsaJI识别位点 BsaWI识别位点 BsaXI识别位点 BseRI识别位点 BseYI识别位点

BsiEI识别位点 BsiHKAI识别位点 BsiWI识别位点 BslI识别位点 BsmAI识别位点 BsmBI识别位点 BsmFI识别位点 BsmI识别位点 BsoBI识别位点 Bsp1286I识别位点 BspCNI识别位点BspDI识别位点 BspEI识别位点 BspHI识别位点 BspMI识别位点 BspQI识别位点 BsrBI识别位点 BsrDI识别位点 BsrFI识别位点 BsrGI识别位点 BsrI识别位点 BssHII识别位点 BssKI识别位点 BssSI识别位点 BstAPI识别位点 BstBI识别位点 BstEII识别位点 BstNI识别位点

限制性内切酶酶切位点_方便搜索

GACGTC CTGCAG Acc65I 识别位点 GTMKAC CAKMTG AccI 识别位点 GTMKAC CAKMTG AciI 识别位点 CCGC GGCG AclI 识别位点 AACGTT TTGCAA AcuI 识别位点 CTGAAG GACTTC AfeI 识别位点 AGCGCT TCGCGA CTTAAG GAATTC AflIII 识别位点 ACRYGT TGYRCA AgeI 识别位点 ACCGGT TGGCCA AhdI 识别位点 GACNNNNNGTC CTGNNNNNCAG AleI 识别位点 CACNNNNGTG GTGNNNNCAC AluI 识别位点 AGCT TCGA AlwI 识别位点 GGATC CCTAG

CAGNNNCTG GTCNNNGAC ApaI 识别位点 GGGCCC CCCGGG ApaLI 识别位点 GTGCAC CACGTG ApeKI 识别位点 GCWGC CGWCG ApoI 识别位点 RAATTY YTTAAR AscI 识别位点 GGCGCGCC CCGCGCGG AseI 识别位点 ATTAAT TAATTA GCGATCGC CGCTAGCG AvaI 识别位点 CYCGRG GRGCYC AvaII 识别位点 GGWCC CCWGG AvrII 识别位点 CCTAGG GGATCC BaeI 识别位点 NACNGTAYCN BamHI 识别位点 GGATCC CCTAGG BanI 识别位点 GGYRCC CCRYGG

常用限制性内切酶酶切位点

AatII 识别位点 Acc65I 识别位点 AccI 识别位点 AciI 识别位点 AclI 识别位点 AcuI 识别位点 AfeI 识别位点 AflII 识别位点 AflIII 识别位点 AgeI 识别位点 AhdI 识别位点 AleI 识别位点 AluI 识别位点 AlwI 识别位点 AlwNI 识别位点 ApaI 识别位点 ApaLI 识别位点 ApeKI 识别位点 ApoI 识别位点 AscI 识别位点 AseI 识别位点 AsiSI 识别位点

AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI 识别位点 BanI识别位点 BanII识别位点 BbsI识别位点 BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点BcgI识别位点BciVI识别位点BclI识别位点 BfaI识别位点BfuAI识别位点BglI识别位点BglII识别位点BlpI识别位点Bme1580I识别位点BmgBI识别位点BmrI识别位点

BmtI 识别位点 BpmI 识别位点 Bpu10I 识别位点 BpuEI 识别位点 BsaAI 识别位点 BsaBI 识别位点 BsaHI 识别位点 BsaI 识别位点 BsaJI 识别位点 BsaWI 识别位点 BsaXI 识别位点 BseRI 识别位点 BseYI 识别位点 BsgI 识别位点 BsiEI 识别位点 BsiHKAI 识别位点 BsiWI 识别位点 BslI 识别位点 BsmAI 识别位点 BsmBI 识别位点 BsmFI 识别位点 BsmI 识别位点

限制性内切酶考点小结

限制性内切酶考点盘查 限制性内切酶是基因工程中最难把握的知识点,高考中对这种酶的考察特别重视,我们有必要对相关的知识先进行归纳,才有利于解答试题。 1 限制性核酸内切酶的基本知识 ①来源及化学本质:主要是从原核生物中分离纯化出来的。化学本质为蛋白质。 ②作用:催化作用,可用于DNA的切割获取目的基因和载体的切割,切割的化学键为磷酸二酯键。 ③作用特点:特异性,即限制酶可识别特定的脱氧核苷酸序列,切割特定位点。 ④切割方式:错位切--产生两个相同的黏性末端,平切--形成平末端。如果是错位切则将一个基因从DNA分子上切割下来,需要破坏4个磷酸二酯键,同时产生4个黏性末端,增加4个游离的磷酸基团。 2 限制性核酸内切酶的难点解析 2.1 目的基因切割要点归纳 ①要把目的基因切割下来需要在目的基因的两边都进行切割,但绝对不可以破坏目的基因的结构。 ②切割目的基因的酶可以用同一种限制酶,也可以用两种不同的限制酶。 ③切割产生的末端有三种情况:都是平末端、都是粘性末端、一

边是粘性末端,一边是平末端。 2.2 质粒切割要点归纳 ①质粒的切割可以切一个切口,也可以切两个切口。如果是一个切口,则连接时可能会产生一些我们不需要的连接物(如自身环化等);如果是两个切口则质粒会丢失一段DNA片段,但可以控制连接物就是我们需要的目的基因和质粒的连接。切割时注意不要破坏了载体上的标记基因(至少保留有一个标记基因)、终止子、启动子、复制原点等。 ②切割质粒的酶可以用同一种限制酶,也可以用两种不同的限制酶。 ③切割产生的末端有三种情况:都是平末端,都是粘性末端,一边是粘性末端,一边是平末端。 2.3 限制性核酸内切酶的说明 不同的酶识别序列一般不同,但也有识别序列相同的。如果识别序列相同,切割点也相同则切割产生的粘性末端一样。一种酶的识别序列中可能包含另外一种酶的识别序列,切割时可以产生相同的粘性末端。不同的酶识别的序列一般不同,但有时也可能相同,这时切割产生的粘性末端也相同。 2.4 酶切割后的DNA片段的连接 如果是用一种限制性内切酶切割质粒表达载体和目的基因,不可以防止载体和目的基因的自身环化,两个DNA片段连接产物有:目的基因—目的基因;目的基因—载体;载体—载体。这些

常用限制性内切酶酶切位点保护残基

酶切位点保护碱基-PCR引物设计用于限制性内切酶 发布: 2010-05-24 20:19| 来源:生物吧| 编辑:刘浩| 查看: 161 次 本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,AflIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,EcoRI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,NsiI,PacI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,SpeI,SphI,StuI,XbaI,XhoI,XmaI, 为什么要添加保护碱基? 在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。 其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。 该如何添加保护碱基? 添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。 添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。取1μg已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。反应缓冲液含70mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mMDTT及适量的NaCl或KCl(视酶的具体要求而定)。20%的PAGE(7M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

【推荐】限制性内切酶的特点有哪些-范文word版 (2页)

【推荐】限制性内切酶的特点有哪些-范文word版 本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 限制性内切酶的特点有哪些 限制性核酸内切酶是可以识别特定的核苷酸序列,并在每条链中特定部位 的两个核苷酸之间的磷酸二酯键进行切割的一类酶,简称限制酶。下面是小编 给大家整理的限制性内切酶的特点,希望能帮到大家! 限制性内切酶的特点 1、识别位点的DNA序列呈二重旋转对称(即具有迥文结构); 2、切割DNA均产生含5’-磷酸和3’-羟基的末端; 3、错位切割产生具有5’-或3’-突出的粘性末端;而沿对称轴切割双链DNA产生平头末端,也称钝性末端。 4、少数不同的限制酶可识别和切割相同的位点,这些酶称为同切酶,如MboI Ⅰ和 Sau3A。 限制性内切酶的分类性质 根据酶的功能特性、大小及反应时所需的辅助因子,限制性内切酶可分为 两大类,即I类酶和Ⅱ酶。最早从大肠杆菌中发现的EcoK、EcoB就属于I类酶。其分子量较大;反应过程中除需Mg2+外,还需要S-腺苷-L甲硫氨酸、ATP;在DNA分子上没有特异性的酶解片断,这是I、Ⅱ类酶之间最明显的差异。因此, I类酶作为DNA的分析工具价值不大。Ⅱ类酶有EcoR I、BamH I、Hind Ⅱ、Hind Ⅲ等。其分子量小于105道尔顿;反应只需Mg2+;最重要的是在所识别的 特定碱基顺序上有特异性的切点,因而DNA分子经过Ⅱ类酶作用后,可产生特 异性的酶解片断,这些片断可用凝胶电泳法进行分离、鉴别。 限制性内切酶识别DNA序列中的回文序列。有些酶的切割位点在回文的一 侧(如EcoR I、BamH I、Hind等),因而可形成粘性末端,另一些Ⅱ类酶如Alu I、BsuR I、Bal I、Hal Ⅲ、HPa I、Sma I等,切割位点在回文序列中间,形 成平整末端。Alu I的切割位点如下: 5'-A G^C T-3' 3'-T C^G A-5'

限制性内切酶保护碱基表

PCR设计引物时酶切位点的保护碱基表

ApaI (类型:Type II restriction enzyme )识别序列:5'GGGCC^C 3' BamHI(类型:Type II restriction enzyme )识别序列:5' G^GATCC 3' BglII (类型:Type II restriction enzyme )识别序列:5' A^GATCT 3' EcoRI (类型:Type II restriction enzyme )识别序列:5' G^AATTC 3' HindIII (类型:Type II restriction enzyme )识别序列:5' A^AGCTT 3' KpnI (类型:Type II restriction enzyme )识别序列:5' GGTAC^C 3' NcoI (类型:Type II restriction enzyme )识别序列:5' C^CATGG 3' NdeI (类型:Type II restriction enzyme )识别序列:5' CA^TATG 3' NheI (类型:Type II restriction enzyme )识别序列:5' G^CTAGC 3' NotI (类型:Type II restriction enzyme )识别序列:5' GC^GGCCGC 3' SacI (类型:Type II restriction enzyme )识别序列:5' GAGCT^C 3' SalI (类型:Type II restriction enzyme )识别序列:5' G^TCGAC 3' SphI (类型:Type II restriction enzyme )识别序列:5' GCATG^C 3'

史上最全限制性内切酶酶切位点汇总

A系列 AatII识别位点 Acc65I识别位点 AccI识别位点 AciI识别位点 AclI识别位点 AcuI识别位点 AfeI识别位点 AflII识别位点 AflIII识别位点 AgeI识别位点 AhdI识别位点 AleI识别位点 AluI识别位点 AlwI识别位点 AlwNI识别位点 ApaI识别位点 ApaLI识别位点 ApeKI识别位点 ApoI识别位点 AscI识别位点 AseI识别位点 AsiSI识别位点 AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI识别位点 BanI识别位点 BanII识别位点

BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点 BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点 BmgBI识别位点 BmrI识别位点 BmtI识别位点 BpmI识别位点 Bpu10I识别位点 BpuEI识别位点 BsaAI识别位点 BsaBI识别位点 BsaHI识别位点 BsaI识别位点 BsaJI识别位点 BsaWI识别位点 BsaXI识别位点 BseRI识别位点 BseYI识别位点

BsiEI识别位点 BsiHKAI识别位点 BsiWI识别位点 BslI识别位点 BsmAI识别位点 BsmBI识别位点 BsmFI识别位点 BsmI识别位点 BsoBI识别位点 Bsp1286I识别位点 BspCNI识别位点BspDI识别位点 BspEI识别位点 BspHI识别位点 BspMI识别位点 BspQI识别位点 BsrBI识别位点 BsrDI识别位点 BsrFI识别位点 BsrGI识别位点 BsrI识别位点 BssHII识别位点 BssKI识别位点 BssSI识别位点 BstAPI识别位点 BstBI识别位点 BstEII识别位点 BstNI识别位点

限制性核酸内切酶与核酸内切酶、外切酶

限制性核酸内切酶百科名片

其3′→5′外切酶活性使双链DNA分子产生出单链区,经过这种修饰的DNA 再配合使用Klenow酶,同时加进带放射性同位素的核苷酸,便可以制备特异性的放射性探针。 核酸内切酶 核酸内切酶(endonuclease)在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶,与核酸外切酶相对应。从对底物的特异性来看,可分为DNaseⅠ、DNaseⅡ等仅分解DNA的酶;脾脏RNase、RNaseT1等仅分解RNA的酶。如链孢霉(Neurospora)的核酸酶就是既分解DNA又分解RNA的酶。一般来说,大都不具碱基特异性,但也有诸如脾脏RNase、RNaseT1等或限制性内切酶那种能够识别并切断特定的碱基或碱基序列的酶。[1] 寡核苷酸,是一类只有20个以下碱基对的短链核苷酸的总称(包括脱氧核糖核 酸DNA或核糖核酸RNA内的核苷酸),寡核苷酸可以很容易地和它们的互补对链接,所以常用来作为探针确定DNA或RNA的结构,经常用于基因芯片、电泳、荧光原位杂交等过程中。 RNA聚合酶 科技名词定义 中文名称:RNA聚合酶 英文名称:RNA polymerase 定义1:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。 所属学科:生物化学与分子生物学(一级学科);酶(二级学科) 定义2:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。 所属学科:细胞生物学(一级学科);细胞遗传(二级学科)

定义3:以DNA或RNA为模板合成RNA的酶。 所属学科:遗传学(一级学科);分子遗传学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。因为在细胞内与基因DNA的遗传信息转录为RNA有关,所以也称转录酶。 逆转录酶 科技名词定义 中文名称:逆转录酶 英文名称:reverse transcriptase 其他名称:依赖于RNA的DNA聚合酶(RNA-dependent DNA polymerase,RNA指导的DNA聚合酶 (RNA-directed DNA polymerase) 定义:编号:EC 2.7.7.49。以RNA为模板催化脱氧核苷-5′-三磷酸合成DNA的酶。在逆转录病毒及其他某些病毒中发现有此类酶。 所属学科:生物化学与分子生物学(一级学科);酶(二级学科) 本内容由全国科学技术名词审定委员会审定公布

常用限制性内切酶酶切位点总结

常用限制性内切酶酶切位点总结

————————————————————————————————作者:————————————————————————————————日期:

Acc65I识别位点 AccI识别位点 AciI识别位点 AclI识别位点 AcuI识别位点 AfeI识别位点 AflII识别位点 AflIII识别位点 AgeI识别位点 AhdI识别位点 AleI识别位点 AluI识别位点 AlwI识别位点 AlwNI识别位点 ApaI识别位点 ApaLI识别位点 ApeKI识别位点 ApoI识别位点 AscI识别位点 AseI识别位点 AsiSI识别位点 AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI识别位点 BanI识别位点 BanII识别位点

BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点 BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点 BmgBI识别位点 BmrI识别位点 BmtI识别位点 BpmI识别位点 Bpu10I识别位点 BpuEI识别位点 BsaAI识别位点 BsaBI识别位点 BsaHI识别位点 BsaI识别位点 BsaJI识别位点 BsaWI识别位点 BsaXI识别位点 BseRI识别位点 BseYI识别位点

BsiEI识别位点 BsiHKAI识别位点 BsiWI识别位点 BslI识别位点 BsmAI识别位点 BsmBI识别位点 BsmFI识别位点 BsmI识别位点 BsoBI识别位点 Bsp1286I识别位点 BspCNI识别位点BspDI识别位点 BspEI识别位点 BspHI识别位点 BspMI识别位点 BspQI识别位点 BsrBI识别位点 BsrDI识别位点 BsrFI识别位点 BsrGI识别位点 BsrI识别位点 BssHII识别位点 BssKI识别位点 BssSI识别位点 BstAPI识别位点 BstBI识别位点 BstEII识别位点 BstNI识别位点

(整理)限制性内切核酸酶

第三章限制性内切核酸酶 一、填空题 1. 严格地说限制性内切核酸酶(restriction endonuclease)是指已被证明是的酶。基因工程中把 那些具有识别的内切核酸酶统称为限制性内切核酸酶。 2.年Luria和Human在T偶数噬菌体对大肠杆菌感染实验中首次发现了细菌的现象。 3.1970年,Smith和Wilcox从流感嗜血杆菌中分离到一种限制酶,能够特异性的切割DNA, 这个酶后来被命名为,这是第一个分离到的Ⅱ类限制性内切核酸酶。 4.通过比较用不同组合的限制性内切核酸酶处理某一特定基因区域所得到的不同大小的片段,可 以构建显示该区域各限制性内切核酸酶切点相互位置的。 5.Ⅱ类限制性内切核酸酶分子量较小.一般在20~40kDa,通常由——亚基所组成。它们的作用底物 为双链DNA,极少数Ⅱ类酶也可作用于单链DNA,或DNA/RNA杂合双链;这类酶的专一性强,它不仅对酶切点邻近的两个碱基有严格要求,而且对更远的碱基也有要求,因此,Ⅱ类酶既具有专一性,也具有专一性,一般在识别序列内切割。切割的方式有,产生末端的DNA片段或的DNA片段。作用时需要——作辅助因子,但不需要和 6.完全的回文序列具有两个基本的特点,就是:和 7.Ⅱ类限制性内切核酸酶一般识别个碱基,也有识别多序列的限制性内切核酸酶;根据对限制性内切核酸酶识别序列的分析,限制性内切核酸酶识别序列具有倾向,即它们在识别序列中含量较高。 8.EcoK是I类限制性内切核酸酶,分子组成是_______ 分子量是300kDa.在这些亚基中,α亚基具有 作用;β亚基具有的活性;γ亚基的作用则是, 9.个体之间DNA限制性片段长度的差异叫 10.限制性内切核酸酶是按属名和种名相结合的原则命名的,第一个大写字母取自,第二、三两个字母取自,第四个字母则用表示。 11.限制性内切核酸酶AcyI识别的序列是5’-GRCGYG-3’,,其中R,Y 12.在酶切反应管加完各种反应物后,需要离心2秒钟,其目的是和 13.部分酶切可采取的措施有:(1)(2)(3)等。 14.第一个分离的限制性内切核酸酶是;而第一个用于构建重组体的限制性内切核酸酶是 15.限制性内切核酸酶BsuRI和HaeⅢ的来源不同,但识别的序列都是,它们属于。 16.由于DNA是由4种碱基组成的,所以任何限制性内切核酸酶的切割频率的理沦值应该是· 17.SalI和NotI都是哺乳动物中识别序列稀有的酶,在哺乳动物基因组的5kb片段中,找到NotI切点 的概率是。 18.部分酶切是指控制反应条件,使得酶在DNA序列上的识别位点只有部分得到切割,它的理论依据 是。 19.Ⅰ类限制酶识别DNA的位点和切割的DNA位点是不同的.切割位点的识别结合有两种模型,一种是,另一种是。 20.限制性内切核酸酶通常保存在浓度的甘油溶液中。 二、判断题 1.限制与修饰现象是宿主的一种保护体系,它足通过对外源DNA的修饰和对自身DNA的限制实现的。 2.限制性内切核酸酶在DNA中的识别/切割位点的二级/三级结构也影响酶切效率, 一般来说, 完全切割质粒或病毒DNA,要比切割线状DNA需要更多的酶,最高的需要20倍, 3.如果限制性内切核酸酶的识别位点位于DNA分子的末端,那么接近末端的程度也影响切割,如 HpaII和MboI要求识别序列之前至少有一个碱基对存在才能切割。 4.能够产生防御病毒侵染的限制性内切核酸酶的细菌,其本身的基因组中没有被该核酸酶识别的序列。 5.限制性图谱与限制性片段长度多态性(RFLP)图谱的最显著的区别在于前者是一个物理图谱而后者

限制性内切酶酶切位点汇总

限制性内切酶酶切位点汇AatII识别位点 Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AleI识别位点AluI识别位点AlwI识别位点AlwNI识别位点 ApaI识别位点 ApaLI识别位点 ApeKI识别位点 ApoI识别位点 AscI识别位点 AseI识别位点 AsiSI识别位点 AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI识别位点 BanI识别位点 BanII识别位点 BbsI识别位点 BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点 BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点

BlpI识别位点 Bme1580I识别位点BmgBI识别位点BmrI识别位点 BmtI识别位点BpmI识别位点 Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BsaXI识别位点BseRI识别位点BseYI识别位点 BsgI识别位点 BsiEI识别位点 BsiHKAI识别位点 BsiWI识别位点 BslI识别位点 BsmAI识别位点 BsmBI识别位点 BsmFI识别位点 BsmI识别位点 BsoBI识别位点 Bsp1286I识别位点 BspCNI识别位点 BspDI识别位点 BspEI识别位点 BspHI识别位点 BspMI识别位点 BspQI识别位点 BsrBI识别位点 BsrDI识别位点 BsrFI识别位点 BsrGI识别位点 BsrI识别位点 BssHII识别位点 BssKI识别位点 BssSI识别位点 BstAPI识别位点 BstBI识别位点 BstEII识别位点 BstNI识别位点 BstUI识别位点 BstXI识别位点

高中生物论文解读限制性核酸内切酶应用的考点例析人教版

解读《限制性核酸内切酶应用的考点例析》 我们知道限制性核酸内切酶(限制酶)是指能识别DNA中特定碱基顺序,并在特定位点切割双链DNA的核酸内切酶。它在生物学中应用相当广泛,是基因工程中的工具酶,用来构建重组DNA分子,对于遗传性疾病的基因定位和基因诊断的研究也具有重要的应用价值。下面我们以问题的形式简要地了解它在这些方面的应用。 1。限制酶的特点 例1.下面哪项不具有限制酶识别序列的特征() A.GAATTC B.GGGGCCCC C.CTGCAG D.CTAAATC CTTAAG CCCCGGGG GACGTC GATTTAG 解析:限制酶识别的各种序具有回文对称的特点。所谓回文对称序列就是当以不同的方向分别阅读DNA的两条互补链时,DNA的两条链上的碱基序列相同。如A中的DNA分子,其中一条链从左向右阅读碱基序列是GAA TTC,另一条互补链从右向左阅读碱基序列也是GAATTC。 答案:D 例2.限制酶HindⅢ酶切DNA的识别序列是AAGCTT,限制酶HpaⅡ酶切DNA的识别序列是CCGG。假定DNA分子中A、T、G、C所含的比例相等,那么,限制酶HindⅢ酶切割双链DNA的概率是,酶切位点间的平均距离约kb(千碱基);限制酶HpaⅡ酶切割双链DNA的概率是,酶切位点间的平均距离约kb。 解析:因为限制酶识别序列具有回文对称序列的特点,这两个序列在相应的互补链上又会呈现,因此我们只需考虑DNA的一条链即可。六碱基长HindⅢ识别序列AAGCTT出现的概率是(1/4)6或1/4096,因此HindⅢ酶切位点之间的平均距离大约为4 kb。同样的道理,4碱基长的HpaⅡ酶识别序列CCGG出现的概率是(1/4)4或1/256,因此HpaⅡ酶切位点的平均距离大约为0.25 kb。 2.黏性末端与限制酶类型的关系 例3.用同一种限制酶处理会产生相同的黏性末端,但用不同的限制酶处理也可能产生相同的黏性末端。下列所示的四个黏性末端是由()种限制酶作用产生的。 解析:不同的限制酶的识别序列和切割位点不同。要判断题中的4个黏性末端是由几种限制酶作用下产生的,不光要看共有几种黏性末端,更重要的是要看作用产生这些黏性末端的限制酶的识别序列和切割位点是否相同。经过分析,题中4幅图所示的黏性末端应该分别是由4种限制酶作用产生的,这4种酶的识别序列及切割位点依次是:G↓AATTC,C↓AA TTG,G↓TTAAC,C↓TTAAG。 答案:4 3.限制酶图谱分析 例4.一线性DNA分子分别用限制酶HindⅢ和SmaⅠ消化,然后用这两种酶混合消化,得到如下片段: HindⅢ 2.5 kb,5.0 kb SmaⅠ 2.0 kb,5.5 kb HindⅢ和SmaⅠ 2.5 kb,3.0 kb,2.0 kb (1)画出此丝性DNA分子的限制酶图谱。 (2)两酶混合消化的片段再用限制酶EcoRⅠ消化,结果导致凝胶上3.0 kb的片段消失,产

常用限制性内切酶酶切位点汇总

ApaI识别位点Acc65I识别位点 ApaLI识别位点AccI识别位点 ApeKI识别位点AciI识别位点 ApoI识别位点AclI识别位点 AscI识别位点AcuI识别位点 AseI识别位点AfeI识别位点 AsiSI识别位点AflII识别位点 AvaI识别位点AflIII识别位点 AvaII识别位点AgeI识别位点 AvrII识别位点AhdI识别位点 BaeI识别位点AleI识别位点 BamHI识别位点AluI识别位点 BanI识别位点AlwI识别位点 BanII识别位点AlwNI识别位点

BmrI识别位点BbvCI识别位点 BmtI识别位点BbvI识别位点 BpmI识别位点BccI识别位点 Bpu10I识别位点BceAI识别位点 BpuEI识别位点BcgI识别位点 BsaAI识别位点BciVI识别位点 BsaBI识别位点BclI识别位点 BsaHI识别位点BfaI识别位点 BsaI识别位点BfuAI识别位点 BsaJI识别位点BglI识别位点 BsaWI识别位点BglII识别位点 BsaXI识别位点BlpI识别位点 BseRI识别位点Bme1580I识别位点 BseYI识别位点BmgBI识别位点

BspMI识别位点BsiEI识别位点 BspQI识别位点BsiHKAI识别位点 BsrBI识别位点BsiWI识别位点 BsrDI识别位点BslI识别位点 BsrFI识别位点BsmAI识别位点 BsrGI识别位点BsmBI识别位点 BsrI识别位点BsmFI识别位点 BssHII识别位点BsmI识别位点 BssKI识别位点BsoBI识别位点 BssSI识别位点Bsp1286I识别位点 BstAPI识别位点BspCNI识别位点 BstBI识别位点BspDI识别位点 BstEII识别位点BspEI识别位点 BstNI识别位点BspHI识别位点

限制性内切酶

第二章限制性内切核酸酶 一、填空题 1.严格地说限制性内切核酸酶(restriction endonuclease)是指已被证明是的酶。基因工程中把那些具有识别的内切核酸酶统称为限制性内切核酸酶。2.年Luria和Human在T偶数噬菌体对大肠杆菌感染实验中首次发现了细菌的现象。 3.1970年,Smith和Wilcox从流感嗜血杆菌中分离到一种限制酶,能够特异性的切割DNA,这个酶后来被命名为,这是第一个分离到的Ⅱ类限制性内切核酸酶。 4.通过比较用不同组合的限制性内切核酸酶处理某一特定基因区域所得到的不同大小的片段,可以构建显示该区域各限制性内切核酸酶切点相互位置的。5.Ⅱ类限制性内切核酸酶分子量较小.一般在20~40kDa,通常由亚基所组成。它们的作用底物为双链DNA,极少数Ⅱ类酶也可作用于单链DNA,或DNA/RNA杂合双链。这类酶的专一性强,它不仅对酶切点邻近的两个碱基有严格要求,而且对更远的碱基也有要求,因此,Ⅱ类酶既具有专一性,也具有专一性,一般在识别序列内切割。切割的方式有,产生末端的DNA片段或的DNA 片段。作用时需要作辅助因子,但不需要和。6.完全的回文序列具有两个基本的特点,就是:(1) (2) 。 7.Ⅱ类限制性内切核酸酶一般识别个碱基,也有识别多序列的限制性内切核酸酶。根据对限制性内切核酸酶识别序列的分析,限制性内切核酸酶识别序列具有倾向,即它们在识别序列中含量较高。 8.EcoK是I类限制性内切核酸酶,分子组成是α2β2 γ,分子量300kDa。在这些亚基中,o亚基具有作用;β亚基具有的活性;γ亚基的作用则是。 9.个体之间DNA限制性片段长度的差异叫。10.限制性内切核酸酶是按属名和种名相结合的原则命名的,第一个大写字母取自,第二、第三两个字母取自,第四个字母则用表示。11.限制性内切核酸酶Acy I识别的序列是5’—GRCGYG-3’,其中R ,Y 。12.在酶切反应管加完各种反应物后,需要离心2秒钟,其目的是和。13.部分酶切可采取的措施有:(1) (2) (3) 等。14.第一个分离的限制性内切核酸酶是;而第一个用于构建重组体的限制性内切核酸酶是。 15.限制性内切核酸酶BsuRI和HaeⅢ的来源不同,但识别的序列都是,它们属于。 16.由于DNA是由4种碱基组成的,所以任何限制性内切核酸酶的切割频率的理论值应该是。 17.Sal I和Not I都是哺乳动物中识别序列稀有的酶,在哺乳动物基因组的5kb片段中,找到NotI切点的概率是。 18.部分酶切是指控制反应条件,使得酶在DNA序列上的识别位点只有部分得到切割,它的理论依据是。 19.I类限制酶识别DNA的位点和切割的DNA位点是不同的,切割位点的识别结合有两种模型,一种是,另一种是。20.限制性内切核酸酶通常保存在浓度的甘油溶液中。

限制性核酸内切酶

限制性核酸内切酶 限制性核酸内切酶:是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一 类内切酶。 限制性核酸内切酶的分类: 根据限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,分别是第一 型(Type I)、第二型(Type II)及第三型(Type III)。 第一型限制酶 同时具有修饰(modification)及认知切割(restriction)的作用;另有认知(recognize)DNA上特定 碱基序列的能力,通常其切割位(cleavage site)距离认知位(recognition site)可达数千个碱基之远,并不能准确定位切割位点,所以并不常用。例如:EcoB、EcoK。 第二型限制酶 只具有认知切割的作用,修饰作用由其他酵素进行。所认知的位置多为短的回文序列(palindrome sequence);所剪切的碱基序列通常即为所认知的序列。是遗传工程上,实用性较 高的限制酶种类。例如:EcoRI、HindIII。 第三型限制酶 与第一型限制酶类似,同时具有修饰及认知切割的作用。可认知短的不对称序列,切割位与 认知序列约距24-26个碱基对,并不能准确定位切割位点,所以并不常用。例如: EcoPI、HinfIII。 限制酶在遗传学方面的应用: 1、在甚因工程方面 利用能产生“粘性末端”的限制酶, 进行DNA的体外重组, 是较为方便的, 只要用同一 限制酶处理不同来源的DNA, 由于所产生的水解片段具有相同的粘性末端, 可以彼此“粘合”,再经连接酶处理, 就成为重组DNA分子了. 目前, 基因工程上, 限制酶主要应用于以下两方面 ? (1)目的基因与载体的重组 细菌细胞中的限制酶能水解外源DNA , 因此必须通过适当的载体(质粒或噬菌体)的帮助 才能将外源DNA引人受体细胞并在其中增殖和表达。将供体DNA与载体用同样的限制酶处理, 使载体带上各种各样的外源DNA片断, 然后引人受体细菌细胞增殖, 菌细胞增殖, 再筛 选出所需的菌株, 便获得带有某一目的基因的繁殖系.用这种方法, 已成功地将酵母菌的咪哇

相关文档