文档库 最新最全的文档下载
当前位置:文档库 › 三角形四心的相关结论

三角形四心的相关结论

三角形四心的相关结论
三角形四心的相关结论

【一些结论】:以下皆是向量

1 若P是△ABC的重心PA+PB+PC=0

2 若P是△ABC的垂心PA?PB=PB?PC=PA?PC(内积)

3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)

4 若P是△ABC的外心|PA|2=|PB|2=|PC|2

(AP就表示AP向量|AP|就是它的模)

5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心

6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心

7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)

或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心

8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点

【以下是一些结论的有关证明】

1.

O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量

充分性:

已知aOA向量+bOB向量+cOC向量=0向量,

延长CO交AB于D,根据向量加法得:

OA=OD+DA,OB=OD+DB,代入已知得:

a(OD+DA)+b(OD+DB) +cOC=0,

因为OD与OC共线,所以可设OD=kOC,

上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,

向量DA与DB共线,向量OC与向量DA、DB不共线,

所以只能有:ka+kb+c=0,aDA+bDB=0向量,

由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,

所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。

必要性:

已知O是三角形内心,

设BO与AC相交于E,CO与AB相交于F,

∵O是内心

∴b/a=AF/BF,c/a=AE/CE

过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形

根据平行四边形法则,得

向量OA

=向量OM+向量ON

=(OM/CO)*向量CO+(ON/BO)*向量BO

=(AE/CE)*向量CO+(AF/BF)*向量BO

=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO

∴a*向量OA+b*向量OB+c*向量OC=向量0

2.

已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},

求P点轨迹过三角形的垂心

OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},

OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},

AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},

AP?BC=入{(AB?BC /|AB|^2*sin2B)+AC?BC /(|AC|^2*sin2C)},

AP?BC=入{|AB|?|BC|cos(180° -B) / (|AB|^2*sin2B) +|AC|?|BC| cosC/(|AC|^2*sin2C)}, AP?BC=入{-|AB|?|BC| cos B/ (|AB|^2*2sinB cos B) +|AC|?|BC| cosC/(|AC|^2*2sinC cosC)}, AP?BC=入{-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )},

根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC

∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,

即AP?BC=0,

P点轨迹过三角形的垂心

3.

OP=OA+λ(AB/(|AB|sinB)+AC/(|AC|sinC))

OP-OA=λ(AB/(|AB|sinB)+AC/(|AC|sinC))

AP=λ(AB/(|AB|sinB)+AC/(|AC|sinC))

AP与AB/|AB|sinB+AC/|AC|sinC共线

根据正弦定理:|AB|/sinC=|AC|/sinB,

所以|AB|sinB=|AC|sinC,

所以AP与AB+AC共线

AB+AC过BC中点D,所以P点的轨迹也过中点D,

∴点P过三角形重心。

4.

OP=OA+λ(ABcosC/|AB|+ACcosB/|AC|)

OP=OA+λ(ABcosC/|AB|+ACcosB/|AC|)

AP=λ(ABcosC/|AB|+ACcosB/|AC|)

AP?BC=λ(AB?BC cosC/|AB|+AC?BC cosB/|AC|)

=λ([|AB|?|BC|cos(180° -B)cosC/|AB|+|AC|?|BC| cosC cos B/|AC|]

=λ[-|BC|cosBcosC+|BC| cosC cosB]

=0,

所以向量AP与向量BC垂直,

P点的轨迹过垂心。

5.

OP=OA+λ(AB/|AB|+AC/|AC|)

OP=OA+λ(AB/|AB|+AC/|AC|)

OP-OA =λ(AB/|AB|+AC/|AC|)

AP=λ(AB/|AB|+AC/|AC|)

AB/|AB|、AC/|AC|各为AB、AC方向上的单位长度向量,

向量AB与AC的单位向量的和向量,

因为是单位向量,模长都相等,构成菱形,

向量AB与AC的单位向量的和向量为菱形对角线,

易知是角平分线,所以P点的轨迹经过内心。

(专题精选)初中数学三角形全集汇编及答案

(专题精选)初中数学三角形全集汇编及答案 一、选择题 1.如图,正方体的棱长为6cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( ) A .9 B .310 C .326+ D .12 【答案】B 【解析】 【分析】 将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可. 【详解】 解:如图,AB=22(36)3310++= . 故选:B . 【点睛】 此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了. 2.如图,在?ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )

A.33°B.34°C.35°D.36° 【答案】B 【解析】 【分析】 由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数. 【详解】 解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°, 由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°, ∴∠AEC=180°﹣∠DEC=180°﹣107°=73°, ∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°. 故选:B. 【点睛】 本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键. 3.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为() A.16cm B.21cm 或 27cm C.21cm D.27cm 【答案】D 【解析】 【分析】 分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】 解:当5是腰时,则5+5<11,不能组成三角形,应舍去; 当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm. 故选D. 【点睛】 本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键. 4.下列长度的三根小木棒能构成三角形的是() A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D 【解析】 【详解】 A.因为2+3=5,所以不能构成三角形,故A错误; B.因为2+4<6,所以不能构成三角形,故B错误; C.因为3+4<8,所以不能构成三角形,故C错误; D.因为3+3>4,所以能构成三角形,故D正确.

三角形四心的向量性质

三角形“四心”的向量性质及其应用 一、三角形的重心的向量表示及应用 命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若 GA GB GC ++=0.则G 是ABC △的重心. 证明:如图1所示,因为GA GB GC ++=0, 所以 ()GA GB GC =-+. 以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+, 所以GD GA =-. 又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =. 所以AE 是ABC △的边BC 的中线. 故G 是ABC △的重心. 点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b , =OC c ,试用a b c ,,表示OG . 解:设AG 交BC 于点M ,则M 是BC 的中点, ?? ? ??=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴ 而03=-++∴OG c b a 图2

3 c b a OG ++= ∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键. 变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则 AD BE CF ++=0. 证明:如图的所示, ??? ? ? ???? -=-=-=GC CF GB BE GA AD 232323 )(23 GC GB GA CF BE AD ++-=++∴ 0=++GC GB GA AD BE CF ∴++=0.. 变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1 ()4 PO PA PB PC PD =+++. 证明:1()2PO PA PC =+,1()2 PO PB PD =+, 1()4 PO PA PB PC PD ∴=+++. 点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P 与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用 命题二:已知G 是ABC △内一点,满足MC MB MA ==,则点M 为△ABC 的外心。 例2 已知G 、M 分别为不等边△ABC 的重心与外心,点A ,B 的坐标分别为A (-1,0),B (1,0),且GM ∥AB ,(1)求点C 的轨迹方程;(2)若直线l 过 图3

三角形四心的向量特征及应用

本文发表于中国数学会主办的《数学通报》2010年第12期 三角形“四心”的向量特征及应用 浙江省上虞市春晖中学 林国夫(邮编:312353) 翻阅近几年各省的竞赛、模拟和高考试题,笔者发现有关三角形的“四心”(即重心,垂心,内心和外心)的向量特征的试题频频出现.考虑到比较熟悉的三角形的重心的向量形式0=++GC GB GA 具有很好的完美性,出于兴趣,笔者对三角形的其余“三心”的向量特征进行了探究,得到了类似于重心的优美的向量表达式,并撰此拙文供读者参考. 1 三角形重心的向量特征 定理1 已知为G ABC Δ的重心,记CGA BGC AGB ΔΔΔ,,的面积为 ,,,CGA BGC AGB S S S ΔΔΔ则=++,且.CGA BGC AGB S S S ΔΔΔ== 证明 如图1,为的重心,为边上的中线,则G ABC ΔAD BC 32= )(31)(2132+=+×=.即)(3 1?+?=?. 故0=++GC GB GA . 由于3:1)32(:22:2::=×===ΔΔΔΔAD AG S S S S ABD AGB ABC AGB . 即ABC AGB S S ΔΔ=31,同理ABC BGC S S ΔΔ=31,ABC CGA S S ΔΔ=3 1, 故 .CGA BGC AGB S S S ΔΔΔ==说明 我们还可以得到更进一步的结果: (1)为G ABC Δ的重心的充要条件为 =++.(2)与+共线.并可以得到下面一个有用的推论. 推论1 已知是不共线三点,点是平面内一点,且C B A ,,P ABC PB PA 21λλ+3λ+=, 其中0321≠??λλλ.记CPA BPC APB ΔΔΔ,,:||:|2的面积为则,,,CPA BPC APB S S S ΔΔΔCPA BPC S S ΔΔ:|APB S Δ|:|13λλλ=. 证明 如图2,记PC PC PB PB PA PA 3'2'1',,λλλ===,根据定理1可知, 点P 是的重心,且'''C B A Δ1:1:1::''''''=ΔΔΔPA C PC B PB A S S S . 由于)''sin ''2 1(:)sin 21 (:''PB A PB PA APB PB PA S S PB A APB ∠??∠??=ΔΔ | |||1'21'λλ?=?=PB PB PA PA ,即||||21''λλ?=ΔΔPB A APB S S ,

(易错题精选)初中数学三角形经典测试题及答案

(易错题精选)初中数学三角形经典测试题及答案 一、选择题 1.如图,在ABC ?中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交 AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12 MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ??= A .1 B .2 C .3 D .4 【答案】D 【解析】 【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论. 【详解】 题干中作图方法是构造角平分线,①正确; ∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30° ∴∠ADC=60°,②正确 ∵∠DAB=∠B=30° ∴△ADB 是等腰三角形 ∴点D 在AB 的垂直平分线上,③正确 在Rt △CDA 中,设CD=a ,则AD=2a 在△ADB 中,DB=AD=2a ∵1122DAC S CD AC a CD ?=??=?,13(CD+DB)22 BAC S AC a CD ?=??=? ∴:1:3DAC ABC S S ??=,④正确 故选:D 【点睛】 本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.

2.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( ) A .4 B .3 C .6 D .2 【答案】B 【解析】 【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果. 【详解】 解:AD 是△ABC 中∠BAC 的平分线, ∠EAD=∠FAD DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F , ∴DF=DE , 又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222 AC ∴=??+?? ∴AC=3. 故答案为:B 【点睛】 本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键. 3.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm A .6 B .8 C 5 D .5 【答案】B 【解析】 【分析】 根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可. 【详解】 设∠A =x , 则∠B =2x ,∠C =3x , 由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°, 解得x =30°,

高中数学三角形四心性质及例题

三角形“四心”向量形式的充要条件应用 1) O 是 ABC 的重心 OA OB OC 0; 2) O 是 ABC 的垂心 OA OB OB OC OC OA 若O 是 ABC (非直角三角形 )的垂心, 故 tan AOA tan BOB tan COC 0 2 2 2 3) O 是 ABC 的外心 |OA | |OB| |OC | (或OA OB OC ) 若O 是 ABC 的外心 则 S BOC :S AOC :S AOB sin BOC :sin AOC :sin AOB sin2A : sin 2B : sin2C 故 sin 2A OA sin 2BOB sin 2COC 4) O 是内 心 ABC 的充要条件是 OA (|A AB B | AC ) OB ( BA AC |BA | |B B C C|) OC (|C CA A | |C C B B |) 0 AB,BC,CA 的单位向量为 e 1 ,e 2 , e 3 ,则刚才 O 是 ABC 内心的 充 要 条件 可 OA (e 1 e 3) OB (e 1 e 2 ) OC (e 2 e 3) 0 O 是 ABC 内心的充要条件也可以是 aOA bOB cOC 0 若O 是 ABC 的内心,则 S BOC : S AOC : S AOB a :b :c 引进单位向量, 使条件变得更简洁。如果 记 sin B OB sin COC ; 以写成 故 aOA bOB cOC 0或 sin AOA ABC 的内心; 若O 是 ABC 的重心,则 S BOC S AOC S AOB 3S ABC 故 OA PG 31(PA PB PC) OB OC 0; G 为 ABC 的重心 . 则 S BOC : S AOC : S AOB tan A :tan B : tan C

最新初中数学三角形经典测试题含答案

最新初中数学三角形经典测试题含答案 一、选择题 1.如图,90ACB ∠=?,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( ) A .45° B .30° C .22.5° D .15° 【答案】C 【解析】 【分析】 连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可. 【详解】 解:连接AD ,延长AC 、DE 交于M , ∵∠ACB=90°,AC=CD , ∴∠DAC=∠ADC=45°, ∵∠ACB=90°,DE ⊥AB , ∴∠DEB=90°=∠ACB=∠DCM , ∵∠ABC=∠DBE , ∴∠CAB=∠CDM , 在△ACB 和△DCM 中 CAB CDM AC CD ACB DCM ∠=∠??=??∠=∠? ∴△ACB ≌△DCM (ASA ), ∴AB=DM , ∵AB=2DE , ∴DM=2DE , ∴DE=EM ,

∵DE ⊥AB , ∴AD=AM , 114522.522 BAC DAE DAC ??∴∠=∠= ∠=?= 故选:C . 【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键. 2.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( ) A .1 B .2 C .32 D .85 【答案】C 【解析】 【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度. 【详解】 解:在矩形ABCD 中,3,4AB BC ==, ∴∠B=90°, ∴22345AC =+=, 由折叠的性质,得AF=AB=3,BE=EF , ∴CF=5-3=2, 在Rt △CEF 中,设BE=EF=x ,则CE=4x -, 由勾股定理,得:2222(4)x x +=-, 解得:32x = ; ∴32 BE =. 故选:C . 【点睛】

平面向量四心问题(最全)

平面向量四心问题 近年来,对于三角形的“四心”问题的考察时有发生,尤其是和平面向量相结合来考察很普遍,难度上偏向中等,只要对于这方面的知识准备充分,就能应付自如.下面就平面向量和三角形的“四心”问题的类型题做一阐述: 一、重心问题 三角形“重心”是三角形三条中线的交点,所以“重 心”就在中线上. 例1 已知O是平面上一定点,A,B,C是平面上不 共线的三个点,动点P 满足:, 则P的轨迹一定通过△ABC 的() A外心B内心 C 重心 D 垂心 解析:如图1,以AB,AC为邻边构造平行四边形ABCD,E为对角线的交点,根据向量平行四边形法则,因为, 所以,上式可化为,E在直线AP上,因为AE为的中线,所以选C. 点评:本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合. 二、垂心问题 三角形“垂心”是三角形三条高的交点,所以“垂心”就在高线上.

例2 P是△ABC所在平面上一点,若,则P是△ABC的( ). A.外心 B.内心 C.重心 D.垂心 解析:由. 即. 则, 所以P为的垂心. 故选D. 点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合. 三、内心问题 三角形“内心”是三角形三条内角平分线的交点,所以“内心”就在内角平分线线上. 例3 已知P是△ABC所在平面内的一动点,且点P满足 ,则动点P一定过△ABC的〔〕. A、重心 B、垂心 C、外心 D、内心

三角形四心及性质

三角形四心 三角形四心要点诠释: (1)三角形的内心、重心都在三角形的内部. (2)钝角三角形的垂心、外心都在三角形的外部. (3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点. (4)锐角三角形的垂心、外心都在三角形的内部. 1、三角形外心: 三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。 三角形的三条垂直平分线必交于一点 已知:△ABC中,AB,AC的垂直平分线DO,EO相交于点O 求证:O点在BC的垂直平分线上 证明:连结AO,BO,CO,∵DO垂直平分AB,∴AO=BO ∵EO垂直平分AC,∴AO=CO ∴BO=CO 即O点在BC的垂直平分线上 三角形的外心的性质: 1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。 3. 锐角三角形的外心在三角形内;钝角三角形的外心在三角形外; 直角三角形的外心与斜边的中点重合 4.OA=OB=OC=R 5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA(圆心角=2同弧圆周角) 6.S△ABC=abc/4R 2、三角形的内心:

三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心)。 三角形三条角平分线必交于一点 证明 己知:在△ABC中,∠A与∠B的角平分线交于点O,连接OC 求证:OC平分∠ACB 证明:过O点作OD,OE,OF分别垂直于AC,BC,AB,垂足分别为D,E,F ∵AO平分∠BAC,∴OD=OF;∵BO平分∠ABC,∴OE=OF ;∴OD=OF ∴O在∠ACB角平分线上∴CO平分∠ACB 三角形内心的性质: 1.三角形的三条角平分线交于一点,该点即为三角形的内心 2.三角形的内心到三边的距离相等,都等于内切圆半径r 3.r=2S/(a+b+c) 4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2. 5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2 6.S△ABC=[(a+b+c)r]/2 (r是内切圆半径) 3、三角形的垂心: 三角形的垂心是三角形三边上的高的交点(通常用H表示)。 三角形的三条高必交于一点 已知:△ABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F

经典初中数学三角形专题训练及例题解析

知 识点梳理 考点一、三角形 1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2、三角形的分类. ?????钝角三角形直角三角形锐角三角形 ??? ????) (等边三角形等腰三角形不等边三角形 3、三角形的三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5、三角形具有稳定性 6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7、多边形的外角和恒为360° 8、多边形及多边形的对角线 ①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形. ②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。 ③多边形的对角线的条数: A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 三角形 (按角分) 三角形 (按边分)

边形共有 2)3 ( n n 条对角线。 9、边形的内角和公式及外角和 ①多边形的内角和等于(n-2)×180°(n≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。 ①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。。 2、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。 2、三角形中的中位线

三角形“四心”的向量表示及运用2

三角形“四心”的向量表示及运用示例 平面向量有一非常优美的结论:已知O 为△ABC 内一点,则 =0BOC AOC AOB S OA S OB S OC ????+?+?,称为平面向量的“奔驰定理”. 本文给出平面向量“奔驰定理”的一种证明,并给出O 在△ABC 外的结论,在此基础上探讨三角形“四心”的向量表示及其运用示例. 一、两个定理 定理1:设O 是△ABC 内一点,且S △BOC : S △AOC :S △AOB =k 1:k 2:k 3, 则k 1→OA +k 2→OB +k 3→OC =→0 证:如图,设→OA =-→ OA '. 过A '作OC 的平行线交OB 于B ',过A '作OB 的平行线交OC 于C ',则→OA '=→OB '+→ OC ' OB 'OB = S △B 'OC S △BOC = S △A 'OC S △BOC = S △AOC S △BOC = k 2k 1 所以→OB '=k 2k 1→OB , 同理→OC '=k 3k 1→OC 所以-→OA =k 2k 1→OB +k 3k 1 →OC 即k 1→OA +k 2→OB +k 3→OC =→ 0 □ 定理2:设O 是△ABC 外一点,不妨设点A 和点O 位于直线BC 的两侧, 若S △BOC : S △AOC :S △AOB =k 1:k 2:k 3,则-k 1→OA +k 2→OB +k 3→OC =→ 证: 过A 作OC 的平行线交OB 于B ',过A 作OB 的平行线交OC 于C ',则→OA =→OB '+→ OC ' OB ' OB = S △B 'OC S △BOC = S △AOC S △BOC = k 2k 1 所以→OB '=k 2k 1→OB , 同理→OC '=k 3k 1→OC 所以→OA =k 2k 1→OB +k 3k 1 →OC

初中数学三角形经典测试题及解析

初中数学三角形经典测试题及解析 一、选择题 1.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于() A.45°B.30 °C.15°D.60° 【答案】C 【解析】 【分析】 先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果. 【详解】 解:∵ABCD是长方形, ∴∠BAD=90°, ∵∠BAF=60°, ∴∠DAF=30°, ∵长方形ABCD沿AE折叠, ∴△ADE≌△AFE, ∴∠DAE=∠EAF=1 2 ∠DAF=15°. 故选C. 【点睛】 图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为() A.8cm B.10cm C.12cm D.14cm 【答案】B 【解析】 【分析】 根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求

【详解】 ∵ BD 是∠ABC 的平分线, ∴ ∠ABD =∠EBD . 又∵ ∠A =∠DEB =90°,BD 是公共边, ∴ △ABD ≌△EBD (AAS), ∴ AD =ED ,AB =BE , ∴ △DEC 的周长是DE +EC +DC =AD +DC +EC =AC +EC =AB +EC =BE +EC =BC =10 cm. 故选B. 【点睛】 本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键. 3.下列长度的三根小木棒能构成三角形的是( ) A .2cm ,3cm ,5cm B .7cm ,4cm ,2cm C .3cm ,4cm ,8cm D .3cm ,3cm ,4cm 【答案】D 【解析】 【详解】 A .因为2+3=5,所以不能构成三角形,故A 错误; B .因为2+4<6,所以不能构成三角形,故B 错误; C .因为3+4<8,所以不能构成三角形,故C 错误; D .因为3+3>4,所以能构成三角形,故D 正确. 故选D . 4.如图,在ABC V 中,AB AC =,30A ∠=?,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=?,则2∠的度数是( ) A .30° B .35° C .40° D .45° 【答案】C

立体几何中三角形的四心问题

立体几何中三角形的四心问题 一、外心问题(若PA=PB=PC,则O 为三角形ABC 的 外心) 例1.设P 是ΔABC 所在平面α外一点,若PA ,PB ,PC 与平面α所成的角都相等,那么P 在平面α内的射影是ΔABC 的( ) A.内心 B.外心 C.垂心 D.重心 如图所示,作PO ⊥平面α于O ,连OA 、OB 、OC ,那么∠PAO 、∠PBO 、∠PCO 分别是PA 、PB 、PC 与平面α所成的角,且已知它们都相等. ∴Rt ΔPAO ≌Rt ΔPBO ≌Rt ΔPCO. ∴OA =OB =OC ∴应选B. 例2. Rt △ABC 中,∠C =90°,BC =36,若平面ABC 外一点P 与平面A ,B ,C 三点等距离,且P 到平面ABC 的距离为80,M 为AC 的中点.(1)求证:PM ⊥AC ;(2)求P 到直线AC 的距离;(3)求PM 与平面ABC 所成角的正切值. 解析:点P 到△ABC 的三个顶点等距离,则P 在平面ABC 内的射影为△ABC 的外心,而△ABC 为直角三角形,其外心为斜边的中点. 证明 (1)∵PA =PC ,M 是AC 中点,∴PM ⊥AC 解 (2)∵BC =36,∴MH =18,又PH =80, ∴PM =8218802222=+=+MH PH ,即P 到直线AC 的距离为82; (3)∵PM=PB=PC ,∴P 在平面ABC 内的射线为△ABC 的外心, ∵∠C=90° ∴P 在平面ABC 内的射线为AB 的中点H 。 ∵PH ⊥平面ABC ,∴HM 为PM 在平面ABC 上的射影, 则∠PMH 为PM 与平面ABC 所成的角,∴tan ∠PMH =9 401880==MH PH 例3.斜三棱柱ABC —A 1B 1C 1的底面△ABC 中,AB=AC=10,BC=12,A 1到A 、B 、C 三点的距离都相等,且AA1=13,求斜三棱柱的侧面积。 解析:∵A 1A=A 1B=A 1C ∴ 点A 1在平面ABC 上的射影为△ABC 的外心,在∠BAC 平分线AD 上 ∵ AB=AC ∴ AD ⊥BC ∵ AD 为A 1A 在平面ABC 上的射影 ∴ BC ⊥AA 1 ∴ BC ⊥BB 1 ∴ BB 1C 1C 为矩形,S=BB 1×BC=156 取AB 中点E ,连A 1E ∵ A 1A=A 1B ∴ A 1E ⊥AB ∴ 12)2 AB (AA E A 2211=-= ∴ 1111120AA C C AA B B S S ==

初高中衔接数学专题八三角形“四心”定义与性质(可编辑修改版)

三角形“四心”定义与性质 所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。当三角形是正三角形时,四心重合为一点,统称为三角形的中心。 一、三角形的外心 定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。的外心一般用字母表示。ABC ?O 性 质: 1.外心到三顶点等距,即。 OC OB OA ==2.外心与三角形边的中点的连线垂直于三角形的这一边,即 OE BC OD ⊥⊥,3.。AOB C AOC B BOC A ∠=∠∠=∠∠= ∠2 1,21,21二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。的内心一般用字母表示,它具有如下性质: ABC ?I 性 质: 1.内心到三角形三边等距,且顶点与内心的连线平分顶角。 2.三角形的面积=三角形的周长内切圆的半径.?2 1?3.; CE CD BD BF AF AE ===,,三角形的周长的一半。 =++CD BF AE 4.,。,2190A BIC ∠+=∠ B CIA ∠+=∠2190 C AIB ∠+=∠2 190 三、三角形的垂心 定 义:三角形三条高的交点叫垂心。的垂心一般用字母表示。 ABC ?H 性 质: 1、顶点与垂心连线必垂直对边, 即。 AB CH AC BH BC AH ⊥⊥⊥,,四、三角形的“重心”: 定 义:三角形三条中线的交点叫重心。的重心一般用字母表 ABC ?G 示。 性 质: 1.顶点与重心的连线必平分对边。 G 2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的倍。 2即GF GC GE GB GD GA 2,2,2===三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重

三角形的四心习题及解析

三角形的四心习题及解析 一、单选题 1. ( )△ABC 中,若∠A :∠B :∠C =1:2:3,G 为△ABC 的重心,则△GAB 面积:△GBC 面 积:△GAC 面积= (A) 1:2:3(B) 1:3:2 (C) 2:1:3(D) 1:1:1。 答案:(D) 解析:∵G 为△ABC 的重心 ∴△GAB 面积:△GBC 面积:△GAC 面积=1:1:1 2. ( )如图,△ABC 中,AB =AC ,两腰上的中线相交与G ,若∠BGC =90°,且BC = 22,则BE 的长为多少? (A) 2 (B) 22(C) 3 (D) 4。 答案:(C) 解析:∵AB =AC ,且 G 为△ABC 的 重心 ∴BE =CD ∴BG =CG 又∵∠BGC =90°,BC =2 2 ∴BG = 2 BC = 2 22=2 ∴BE = BG 23 =2 3×2=3 3. ( )如图,等腰△ABC 中,?A B =?A C =13,?B D =?C D =5,O 为△ABC 的外心,则 ?O D = ? (A) 24117(B)24119(C)24121(D)24 123 。 答案:(B) 解析:∵△ABC 为等腰三角形,∴?A D ⊥?B C , AD = 2 2513-=12,连接 ?O B ,令 ?O D =x , 则?O B =?O A =?A D -?O D =12 -x

(12-x )2=x 2+52 ? x = 24 119 故选(B) 4. ( )如图,D 、E 分別为?A B 、?A C 中点,?B E 、?C D 交于 F ,若斜线部分的面积为 7 ,则 △ACD 的面积为多少? (A) 21(B) 24(C) 28(D) 35。 答案:(A) 解析:连接 ?B C ,则△BDF = 61△ABC 而△ACD =2 1 △ABC △ACD =3×7=21 平方公分 故选(A) 5. ( )直角三角形 ABC 中,∠A =90°,O 为外心,G 为重心,若?A C =6,?A B =8,则 ?O G =? (A) 32(B)34(C)35(D)3 7。 答案:(C) 解析:?B C = 2286+=10 ?O C =?O A =5 ?O G =315?=3 5 故选(C) 6. ( )如图,△ABC 中,?A B =8,?A C =6,?B C =10,M 为 ?B C 中点,则 ?A M =? (A) 25(B)35(C)3 10 (D) 5。 答案:(D) 解析:△ABC 直角三角形 ∴M 为外心,?B M =?M C =?A M = 2 10 =5 故选(D) 7. ( )由尺规作图得知正三角形的外心、內心、重心均在同一点,请问正三角形外接圆 的面积是內接圆面积的几倍? (A) 2(B)3(C) 2 3 (D) 4。 答案:(D)

人教版初中数学三角形经典测试题含答案

人教版初中数学三角形经典测试题含答案 一、选择题 1.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有() A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 2 ∠ADC D.∠ADE= 1 3 ∠ADC 【答案】D 【解析】 【分析】 【详解】 设∠ADE=x,∠ADC=y,由题意可得, ∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②, 由①×3-②可得3x-y=0, 所以 1 3 x y ,即∠ADE= 1 3 ∠ADC. 故答案选D. 考点:三角形的内角和定理;四边形内角和定理. 2.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()

A.13B.5C.22D.4 【答案】A 【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°. 若旋转角度为15°,则∠ACO=30°+15°=45°. ∴∠AOC=180°-∠ACO-∠CAO=90°. 在等腰Rt△ABC中,AB=4,则AO=OC=2. 在Rt△AOD1中,OD1=CD1-OC=3, 由勾股定理得:AD1=13. 故选A. 考点: 1.旋转;2.勾股定理. 3.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为() A.30 B.36 C.45 D.72 【答案】B 【解析】 【分析】 由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题; 【详解】 解:∵CA=CB, ∴∠A=∠B,设∠A=∠B=x. ∵DF=DB, ∴∠B=∠F=x, ∵AD=AE, ∴∠ADE=∠AED=∠B+∠F=2x, ∴x+2x+2x=180°, ∴x=36°,

(完整版)平面向量与三角形四心问题.docx

平面向量基本定理与三角形四心 已知 O 是ABC 内的一点,BOC ,AOC , AOB 的面积分别为S A, S B, S C,求证:S A? OA S B? OB S C? OC 0 A 如图 2延长 OA 与 BC 边相交于点 D 则 O B C 图 1 BD S A BD S BOD S ABD S BOD S C DC S ACD S COD S ACD S COD S B OD DC OB BD OC BC BC A O S B OB S C OC S B S C S B S C B D C OD S BOD S COD S BOD S COD S A OA S BOA S COA S BOA S COA S B S C 图2 OD S A OA S B S C S A OA S B OB S C OC S C S B S B S C S B S C S A? OA S B? OB S C? OC 0 推论 O 是 ABC 内的一点,且 x?OA y?OB z?OC0 ,则S BOC: S COA: S AOB x : y : z

有此定理可得三角形四心向量式O 是ABC 的重心 S BOC: S COA: S O 是ABC 的内心 S BOC: S COA: S O 是ABC 的外心 S BOC: S COA: S AOB AOB AOB 1:1:1OA OB OC0 a : b : c a ?OA b ?OB c ?OC0 sin 2A :sin 2B : sin 2C sin 2A ? OA sin 2B ? OB sin 2C ?OC0 O 是ABC 的垂心 S BOC: S COA: S AOB tan A: tan B : tan C tan A ?OA tan B ? OB tan C ?OC0 C O A D B 证明:如图 O 为三角形的垂心, tan A CD , tan B CD tan A: tan B DB : AD AD DB S BOC: S COA DB : AD S BOC: S COA tan A : tan B 同理得 S COA: S AOB tan B : tan C , S BOC: S AOB tan A : tan C S BOC: S COA: S AOB tan A: tan B : tan C 奔驰定理是三角形四心向量式的完美统一

三角形“四心”与向量的完美结合

三角形的“四心”与向量的完美结合 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则 C tan B tan A tan S S S AOB AOC BOC ::::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:::: 故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ?的充要条件是 ( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ?内 心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 C sin B sin A sin c b a =++=++或; ||||||0AB PC BC PA CA PB P ++=?ABC ?的内心;

初中数学相似三角形的经典综合题

初中数学相似三角形的性质与应用经典试题 一、知识体系: 1.相似三角形的性质 ①相似三角形的对应角相等; ②相似三角形的对应边成比例; ③相似三角形对应边上的高之比,对应边上的中线之比,对应角的角平分线之比都等于相似比; ④相似三角形的周长之比等于相似比。 ⑤相似三角形的面积之比等于相似比的平方(2 k )。 二、典型例题: 例1:若△ABC∽△A′B′C′,且,, 3 4AB A B ,△ABC 的周长为15cm ,则△A′B′C′的周长为( ) A .18 B .20 C .154 D .80 3 针对练习: 1.已知△ABC∽△DEF,且△ABC 的三边长为3、4、5,若△DEF 的周长为6,那么下列不可能是△DEF 一边长的是( ) A .1.5 B .2 C .2.5 D .3 2.一直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值为( ) A .7 B .5 C .7或5 D .无数个 例2:(2014江苏南京,3)若△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:1 针对练习: 1.两相似三角形的最短边分别是5cm 和3cm ,它们的面积之差为322 cm ,那么小三角形的面积为( ) A .102 cm B .142 cm C .162 cm D .182 cm 2.如图,DE ∥BC ,若AD =1,BD =2,则△ADE 与四边形DBCE 面积之比是 ▲ 。 3.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE ,若△DEF 的面积为a ,则平行四边形ABCD 的面积为 ▲ (用a 的代数式表示)。 4.如图,在四边形ABCD 中,E 是AD 上的一点,EC ∥AB ,EB ∥DC ,若△ABE 的面积为3,△ECD 的面积为1,则△BCE 的面积为 ▲ 。

相关文档
相关文档 最新文档