文档库 最新最全的文档下载
当前位置:文档库 › 燃料电池汽车动力系统集成及框架设计

燃料电池汽车动力系统集成及框架设计

燃料电池汽车动力系统集成及框架设计
燃料电池汽车动力系统集成及框架设计

燃料电池汽车

FCEV的发展前景与展望 班级:汽电112 姓名:周浩宇 学号:111606213 指导老师:王强 日期:2013年5月21日

FCEV的发展前景与展望 一、燃料电池概述 FCEV是燃料电池汽车的缩写,它是电动汽车的一种,它与一般电动汽车的区别,在于燃料电池汽车装备了车载燃料发动机(发电机)。用燃料电池发动机与动力电池组和超级电容器共同组成的“电-电”电力驱动平台取代内燃机驱动平台。过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。只要保证燃料电池发动机氢燃料的供应,燃料电池汽车就可以像内燃机汽车一样自由驰骋,不受充电时间和动力电池的SOC的限制,具有高度的环保性、灵活性和机动性。 燃料电池汽车的氢燃料能通过几种途径得到。有些车辆直接携带纯氢燃料,另外一些车辆有可能装有燃料重整器,能将烃类燃料转化为富氢气体。 燃料电池汽车的工作原理是,使作为燃料的氢在汽车搭载的燃料电池中,与大气中的氧发生化学反应,从而产生出电能启动电动机,进而驱动汽车。甲醇、天然气和汽油也可以替代氢(从这些物质里间接地提取氢),不过将会产生极少的二氧化碳和氮氧化物。但总的来说,这类化学反应除了电能就只产生水。因此燃料电池车被称为“地道的环保车”。 单个的燃料电池必须结合成燃料电池组,以便获得必需的动力,满足车辆使用的要求。 二、我国燃料电池汽车简介 20世纪90年代清华大学与北京世纪富源燃料电池公司,成功的研发了我国第一辆5KW 的燃料电池汽车,北京二汽绿色电动汽车研究所用飞驰绿能电源技术有限公司研发的燃料电池“京绿一号”燃料电池汽车,北京理工大学与北京中华汽车制造厂研发的燃料电池“绿能一号”燃料电池汽车,开创了我国燃料电池工业的先河,以后我国燃料电池汽车的研究展现出蓬勃的生机。 在国家“十五”“863”计划电动汽车关键技术重大科技专项和“十一五”节能与新能源汽车重大项目支持下,我国燃料电池汽车技术研发取得重要进展,基本掌握了整车、动力系统与关键零部件的核心技术;建立了具有自主知识产权的燃料电池汽车动力系统技术平台;形成了燃料电池发动机、动力电池、DC/DC变换器、驱动电机、储氢与供氢系统等关键零部件配套研发体系,具有百量级燃料电池汽车动力系统平台与整车生产能力。研制的“超越”系列、“上海牌”、“帕萨特”、“奔腾”、“志翔”等燃料电池汽车经受住了大规模、高温、大强度示范考核,成功服务于2008北京奥运会和2010年上海世博会。在燃料电池关键基础技术研究方面,开发出高活性、抗聚集的电催化剂,以及高比表面积、抗氧化的担体,开发出了与国际商品化水平相当的增强型符合自增湿质子交换膜,研制出高导电性/高稳定性碳纸,初步解决了双极板的抗腐蚀和导电性问题,掌握了丝网印刷膜电极技术。在燃料电池汽车整车及动力系统平台前沿技术方面,建立了燃料电池汽车动力系统平台设计理论和方法,探索了基于模块化思想的整车柔性适配技术,研发了燃料电池汽车功率控制单元及其它关键零部件,开展了燃料电池汽车整车可靠性、电安全、氢安全、一体化热管理、智能容错控制、碰撞安全性等关键技术研究。在公共平台建设方面,形成了燃料电池汽车开发软、硬件测试环境,建立了国家级燃料电池、系统平台和车辆工程技术中心或测试基地,制定了8条燃料电池汽车及氢能专用国家标准。但是,受限于传统车辆开发技术水平、燃料电池发动机功率密度、动力系统可靠性、整车环境适应性等性能限制以及商业推广模式研究和基础设施建设滞后等因素,我国燃料电池汽车仍然处于技术验证与特定考核试验考核阶段。

GBT 24548-2009燃料电池电动汽车术语分析

GBT 24548-2009燃料电池电动汽车术语 1范围 本标准规定了与燃料电池电动汽车相关的术语及其定义。 本标准适用于使用气态氢的燃料电池电动汽车整车及部件。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 19596电动汽车术语 GB/T 20042.1质子交换膜燃料电池术语 3术语和定义 GB/T 19596和GB/T 20042.1中确立的以及下列术语和定义适用于本标准。 3.1通用术语 3.1.1 燃料电池fuel cell 将外部供应的燃料和氧化剂中的化学能通过电化学反应直接转化为电能、热能和其他反应产物的发电装置。 3.1.2 燃料电池电动汽车fuel cell electdc vehicle;FCEV 以燃料电池系统作为动力源或主动力源的汽车。 3.1.3 冷启动cold start 在充分的浸车之后,在标准环境温度进行启动。 注:对于一个测试程序,一般推荐浸车时间应该是在12h到36 h之间,浸车期间车辆不应该启动,且应保持在规定的温度范围内。 3.1.4 热启动hot start 关机后启动,此时燃料电池系统的温度还在其正常工作温度范围内。 3.1.5 启动时间start-up time 在启动程序初始化后,燃料电池系统达到规定输出功率的时间。 注:包括热启动时间和冷启动时间。 3.1.6 运行压力operating pressure 系统在工作时的压力。 3.1.7 减压depressurize 将高压压力容器或管路中的压力降低至工作所需压力的过程。 3.1.8 燃料放空defuel

国内燃料电池汽车发展现状分析

国内燃料电池汽车发展现状分析正文目录 在政策支持方面,我国政府也非常重视燃料电池汽车等清洁汽车技术的发展。《国民经济和社会发展第十一个五年规划纲要》提出:“增强汽车工业自主创新能力,加快发展拥有自主知识产权的汽车发动机、汽车电子、关键总成及零部件。鼓励开发使用节能环保和新型燃料汽车”。2006年2月,国务院发布的《国家中长期科学和技术发展规划纲要(2006—2020年)》将“低能耗与新能源汽车”和“氢能及燃料电池技术”分别列入优先主题和前沿技术。在国家《节能中长期专项规划》及相应的十大重点节能工程中,强调要“发展混合动力汽车、燃气汽车、醇类燃料汽车、燃料电池汽车、太阳能汽车等清洁汽车”。国家发展和改革委员会与科学技术部共同向社会公布的《中国节能技术政策大纲》中同样也强调要“研究电动汽车等新型动力”。“九五”和“十五”期间,国家都把燃料电池汽车及相关技术研究列入科技计划,国家863计划和973计划都设立了许多与此相关的科研课题。“十五”国家重大科技专项之一的“电动汽车专项”将燃料电池汽车列为重要内容,国家投人近9亿元。“十一五”国家继续支持“节能与新能源汽车”,包括燃料电池汽车的研究。 在技术现状方面,1998年,清华大学研制出中国第一辆燃料电池汽车,其燃料电池由北京富源燃料电池公司提供;1999年北京富源燃料电池公司与清华大学合作开发出燃料电池乘用车;2001年,北京绿能公司与清华大学和北京工业学院合作,研制出以燃料电池为动力的出租车、客车和12个座位的公共汽车;2004年,国家甲醇燃料汽车示范工程在长治正式启动并通过了国家验收;2005年,上海神力科技有限公司研制的绿色燃料电池游览车投入试运,总行驶里程达1.2万公里,无故障运行时间达2000小时;2006年,由同济大学等单位共同研发“超越三号”燃料电池轿车在第八届“比比登清洁能源汽车挑战赛”中表现抢眼,四项比赛评分均为“A”,并在两个单项比赛中获得第一。 我国燃料电池汽车研发采用了与国际同领域权威单位不同的技术路线,开发出了独具特色的能量混合型和功率混合型两种燃料电池混合动力系统,具有电——电混合、平台结构、模块集成的技术特征,燃料经济性高于国外同类样车特别是纯燃料电池驱动模式样车,轿车和客车两种车型节氢效果均十分显著,现已经成为国际上主流构型。新一代的燃料电池汽车动力平台也已经基本建立。 在产业化目标方面,我国燃料电池电动汽车产业化目标是,2006~2010年期间,通过示范运行,找出薄弱环节,攻克技术难关,实现燃料电池电动汽车的小批量试制;2010~2020年,争取燃料电池电动汽车的批量生产;2020~2030年,我国电动汽车整体技术水平要基本与国际电动汽车水平相当,并且实现燃料电池电动汽车的大批量生产。 在燃料电池汽车的实际应用方面,我国于2003年与2007年分别启动了两期燃料电池公共汽车商业化示范项目。该项目是中国政府、全球环境基金(GEF)和联合国开发计划署(UN—DP)共同支持的项目,由科技部、北京市、上海市共同组织实施,目的是为了降低燃料电池公共汽车的成本,借助在北京和上海两市进行的燃料电池公共汽车和供氢设施的示范,加快其技术转化。北京市、上海市各采购6辆燃料电池公共汽车,进行示范运行。2008年北京奥运会,基于上海大众领驭平台的燃料电池轿车作为我国首款燃料电池轿车进入国家汽车产品公告,20辆领驭燃料电轿车为奥运会提供交通服务,运行总里程超7.6万km。

燃料电池汽车的动力传动系统设计

燃料电池汽车的动力传动系统设计 1引言 燃料电池汽车是电动汽车的一种。 燃料电池发出的电,经逆变器、控制器等装置,给电动 机供电,再经传动系统、驱动桥等带动车轮转动 ,就可使车辆在路上行驶,燃料电池的能量转 换效率比内燃机要高 2-3倍。燃料电池的化学反应过程不会产生有害产物 ,因此燃料电池车 辆是无污染汽车。随着对汽车燃油经济性和环保的要求 ,汽车动力系统将从现在以汽油等化 石燃料为主慢慢过渡到混合动力 ,最终将完全由清洁的燃料电池车替代。 近几年来,燃料电池系统和燃料电池汽车技术已经取得了重大的进展。世界著名汽车制 造厂,如丰田、本田、通用、戴姆勒-克莱斯勒、日产和福特汽车公司已经开发了几代燃料电 池汽车,并宣布了各种将燃料电池汽车投向市场的战略目标。 目前,燃料电池轿车的样车正在 进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。其中本 田的FCX Clarity 最高时速达到了 160 km/h[8];丰田燃料电池汽车 FCHV-adv 已经累计运行 了 360,000 km 的路试,能够在零下37度启动,一次加氢能够从大阪行驶到东京 (560公 里)。 在我国科技部的支持下,燃料电池汽车技术得到了迅速发展。 2007年,我国第四代燃料电池 轿车研制成功,该车最高时速达150 km/h,最大续驶里程319 km 。2008年,20燃料电池示范 汽车又 在北京奥运进行了示范运行。 2010年,包括上汽、奇瑞等国内汽车企业共有 196辆燃 料电池汽车在上海世博园区进行示范运行。 燃油绘济性 排放环保 l ;uel economic exhaust eih ironmen(al protection Internal combustion engine Shori peicxl Mid peitxl Long pei

燃料电池电动汽车发展现状与前景

燃料电池电动汽车发展现状与前景 随着社会的进步和人员移动性增强,全球汽车需求 量快速增长,迄今世界上的汽车保有量达到创纪录的10 亿 辆以上且还在不断大幅增长,使得基于传统的内燃机 Internal Combustion Engine ,ICE )汽车的轻量化与节能减排等技术进步难以降低汽车燃料的消耗和减少污染物的排放。2020 年之前温室气体(Greenhouse Gas ,GHG) 排放在1990 年水平基础上下降20% 的任务日益艰巨。如果再不采取有效措施,公路交通运输车辆的GHG 温室气体排放将会持续不断增长。通过研讨纯电动汽车( Battery Electric Vehicle ,BEV )、混合动力汽车(Hybrid Electric Vehicle HEV )、或燃料电池电动汽车( Fuel Cell Vehicles ,FCVs ; Fuel Cell Electric Vehicles ,FCEVs )等多种类型的电动汽车( Electric Vehicle ,EV )技术[3-5]有望明确实现节能减排 的理想途径。自1966 年通用汽车推出了世界上第1 款燃料电池电动汽车GMC Electrovan ,尤其是本田在1999 年推出了世界上第1 台商用的燃料电池电动汽车FCX-V4 以来,世界上EV 电动汽车型号不断丰富和租赁销售量明显增长,太、北美和欧洲成长为全球EV 电动汽车重要的新车研发制造和租赁销售市场,2014 年全世界的EV 电动汽车销售量达到34.6 万辆以上,年增长率达到86% 。

燃料电池是一种高效、清洁的电化学发电装置,近年来 得到国内外高度重视,成为最被看好的可用于替代汽油和柴 油等传统的 ICE 内燃机发动机技术的先进新能源汽车技术。 日本政府希望其到 2020 年的 FCVs 燃料电池汽车销量达到 500 万辆,再通过 10 年的研发推广实现全面普及 FCVs 燃 料电池汽车。 美国政府在 2003 年投入 12 亿美元大力推进氢 技术和燃料电池技术,其中重要项目之一就是美国能源部 Department of Energy , DOE )在北加州、南加州、密歇 展的氢技术和基础实施验证与示范综合工程,吸引了 Hyundai-Kia/Chevron 、 DaimlerChrysler/BP 、 Ford/BP 和 GM/Shell 等多家汽车制造 /能源供应商参与。 美国能源部大力推进氢经济和燃料电池技术,尤其是商 业化推广应用方面取得显著进展,比如目前高容量和低容量 燃料电池制造成本分别为 55 美元 /kW 和 280 美元 /kW[6] , 汽车燃料电池 2014 年的制造成本自 2006 年下降 50% 并自 2008 年以来进一步下降 30% 以上(基于高容量电池制造) 这必将带动创造工作岗位、投资机会和可持续、安全的能源 供应。为了在 2020 年前争取把欧盟建立成一个具有全球领 先水平的燃料电池 (Fuel Cell ,FC )系统和氢能源 (Hydrogen Energy ,HE ) 经济的巨大市场,欧盟高度重视燃料电池技术 和氢能源技术并把之视作能源领域的战略高新技术大力推 根州东南部、大西洋区中部和佛罗里达州中部等 5 个区域开 f It 步

燃料电池汽车

燃料电池汽车 摘要:随着人类社会的发展,特别是英国完成工业革命后,人类对能源的需求也在不断地增加,然而不可再生能源在渐渐的减少,但是同时新能源的也随之诞生了,利于替代旧的能源的消耗,部分新能源必须具有环保性去大力发展,才能更好的为社会做奉献。其中氢能作为一种新的能源被人类所发现且已经被运用在汽车上,并在不断的推广。 关键词:燃料电池汽车;发展现状;关键技术;优点;存在问题 一、燃料电池汽车的概念 燃料电池汽车是指以氢气、甲醇等为燃料,通过化学反应产生电流,依靠电机驱动的汽车。其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆其最大特点是能量转换效率高,可达到60 %以上;另外,它还具有燃料多样性、排气清洁、噪声低、对环境污染小、可靠性及维修性好等优点。因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。 二、燃料电池汽车的发展现状 (1)国外燃料电池汽车的发展现状 长期以来,世界各国政府和主要汽车集团都高度重视燃料电池汽车的研究,投入大量的资金用于燃料电池汽车及氢能研发、试验考核和市场培训。继在第六框架计划中拿出大量资金用于燃料电池汽车和氢能研究,2009年,欧盟批准燃料电池和氢能技术项目行动计划,计划从欧盟第七框架计划中拿出4.7亿欧元,持续资助燃料电池汽车及基础设施技术研发。此外,日本、美国、加拿大、韩国、澳大利亚、巴西、法国和英国等国家政府积极支持燃料电池汽车和氢能研发。 经过长时间、持续稳步的支持,国外燃料电池汽车产品的可靠性、环境适应性(如低温启动性能)取得了重大突破,示范运行不断深入,并陆续推出用于租赁商业化示范的先进燃料电池汽车,燃料电池汽车进入技术与市场示范阶段。产品成本控制与配套基础设施建设成为制约燃料电池汽车商业化推广主要因素。 (2)国内燃料电池汽车的发展现状 在国家“十五”“863”计划电动汽车关键技术重大科技专项和“十一五”节能与新能源汽车重大项目支持下,我国燃料电池汽车技术研发取得重要进展,基本掌握了整车、动力

燃料电池汽车动力总成结构配置及参数优化匹配.

2006年(第28卷)第8期 汽车工程AutomotiveEngineering 2006(Vo.l28)No.8 2006163 燃料电池汽车动力总成结构配置及参数优化匹配 贠海涛,万钢,孙泽昌 (同济大学汽车学院,上海 201804) [摘要] 结合燃料电池大客车动力系统的实际开发过程,分3个步骤阐述燃料电池汽车动力总成结构配置和参数匹配的一般方法。第1步,通过分析燃料电池的特性论证了动力总成结构配置的优化解决方案。第2步,通过分析不同类型功率部件特性阐述了主要功率部件选型的依据,并且根据设计性能要求进行动力总成主要部件基本参数设计。第3步,进行燃料电池混合动力总成参数优化匹配的研究。仿真和实验台测试的结果证明所设计的燃料电池大客车动力总成满足要求。 关键词:燃料电池汽车,动力总成,结构配置,参数匹配AStudyonConfigurationandParametersOptimizationof Drive-trainforFuelCellVehicle YunHaitao,WanGang&SunZechang AutomobileSchool,TongjiUniversity,Shanghai 201804 [Abstract] Aimingatthedevelopmentofafuelcellbusdrive- train,ageneralmethodoftheconfigurationandparametersoptimizationofadrive-trainforfuelcellvehicleispresentedwiththreesteps.Firs,taconfiguration schemeofhybriddrive-trainsystemisadoptedbasedontheanalysisonthecharacteristicsoffuelcel;lSecond,ac-cordingtotheperformancerequirementsoffuelcellvehicle,theappropriatetypesofmajorpow ercomponentsareselectedandtheirbasicparametersaredefined;Third,anoptimizingsimulati oniscarriedoutontheparametersofhybridpowersystemoffuelcellbus.Theresultsofsimulatio nandtestsshowthattherequirementsoffuelcellbusareme.t Keywords:Fuelcellvehicle,Drive-train,Configuration,Parametersoptimization 系统结构简单等优点,但同时也存在一些问题。 1 前言 从能量转换角度看,燃料电池汽车与传统汽车有着本质的区别,这就要求燃料电池汽车动力系统采用全新的结构形式。文中在深入分析燃料电池动力系统特性的基础上,结合燃料电池大客车动力系统的实际开发过程,系统研究并提出了燃料电池汽车动力总成结构设计及参数匹配的一般方法。

2020年中国燃料电池汽车行业发展现状分析 大规模量产可显著实现降本提效

2020年中国燃料电池汽车行业发展现状分析大规模量产可 显著实现降本提效 大规模量产可显著降低燃料电池成本 2019年中国燃料电池汽车产销量分别达2833辆和2737辆,其中N2车型产量占比过半,12月份国内FCV(燃料电池汽车)产量规模占全年一半左右。 2019年我国氢燃料电池装机量为128.1MW,同比增长140.5%2上半年,企业装机功率集中在30-45kW之间,而下半年企业装机功率多为45-60kW之间。美国能源局研究显示,大规模量产可显著降低燃料电池成本。 1、2019年中国燃料电池汽车产销量分别达2833辆和2737辆 中国汽车工业协会发布的数据显示,2019年,我国燃料电池汽车产销分别完成2833辆和2737辆,同比分别增长85.5%和79.2%。从2016年到2019年,国内燃料电池汽车销量逐年增加。或受到疫情影响,截止至2020年1-5月中国燃料电池汽车产销分别完成309辆和322辆,同比分别下降44.1%和40.9%。 目前,国内氢燃料电池汽车保有量超6000辆,已达成《节能与新能源汽车技术路线图》中到2020年实现5000辆燃料电池汽车规模的阶段性目标。预计2020年能达1万辆,超先前预期。

2、2020年12月中国燃料电池汽车集中放量 其中2019年12月国内FCV(燃料电池汽车)产量规模占全年一半左右,12月放量主要是因为: 1)氢燃料电池汽车在11月份及之前完成生产,12月份获得生产合格证; 2)氢燃料电池汽车国补迟迟未出,企业为避免补贴政策在2020年出现大变化,集中于2019年年底完成当年燃料电池汽车生产计划; 3)各地政府在2019年年底和2020年年初集中释放订单需求,各车企为保障订单供应而提前生产,集中于2019年年底完成订单交付。如佛山386辆燃料电池汽车采购项目,常熟20辆氢燃料电池汽车交付。 3、N2车型产量占比过半 2019年N2车型产量占比为55.37%,其次为M3车型,占比34.06%。M1类车型(没有产出。由于中国明确了商用车先行先试的路线,FCV乘用车停滞了。2017年以来,中国没有一辆FCV乘用车产出。

燃料电池汽车

燃料电池汽车 燃料电池汽车--未来“氢经济”的动力 燃料电池汽车--未来“氢经济”的动力 2007-01-27 石油能源论文 燃料电池汽车--未来“氢经济”的动力 一、引言早在19世纪法国科幻小说鼻祖凡尔纳的小说中,预想家们就预言,有朝一日社会将通过以氢为基础的能源而被彻底改造。这种重量很轻的气体是宇宙中最丰富的元素,它能够从水中制成;它出奇地洁净;燃烧时排放出基本上是新鲜的蒸汽。当被输人到产生电力的燃料电池中时,它提供空前的效率一这些电化学反应堆从燃料中所摄取的有用能量高达内燃机的两倍。当人类步人21世纪,开始面临着巨大的能源压力。传统的能源(主要是不可再生的化石燃料)正日趋枯竭,过度依赖石油进口引起地缘政治不稳定而且化石燃料燃烧后排放的废气造成严重的空气污染,甚至加速气候变化,因此要实现经济、社会的可持续发展,寻找新的替代能源迫在眉睫。氢能作为最洁净、高效的新能源,已经引起全世界的广泛关注。燃料电池(FC)技术的突飞猛进使得氢能的梦想在21世纪开始变成现实。近年来,以氢为动力的燃料电池汽车(FCV)得到了世界各国政府和企业的高度重视,并且取得了重大进展,预计在未来的5--10年内FCV将正式进人市场,以加氢站、输氢管道建设为标志的“氢经济”初露端倪。二、燃料电池技概群汽车上的应用 FC是一种将储存在燃料(氢)和氧化剂(氧)中的化学能通过电化学反应直接转化为电能的装置,其过程不涉及燃烧,无机械损耗,能量转化率可高达80%,产物仅为电、热和水蒸气;而且FC运行平稳,无振动和噪音,所以被认为是21世纪的绿色能源。 FC技术在汽车上的应用给汽车产业发展带来了革命性的突破,同时也推动了自身的发展。FC可以用作汽车的(辅

国内外推动燃料电池汽车发展规划详解及市场现状分析

国内外政策不断释放,燃料电池汽车处于爆发前夕 1、主要发达国家和我国都对燃料电池汽车提出了积极的发展规划 世界主要发达国家积极推进氢能和燃料电池产业发展。日本、美国、韩国、欧洲等国家 氢燃料电池汽车的研发与商业化应用发展迅速,各国均制定了燃料电池行业中长期发展规划并 投入巨额补贴,日本由于其自身的资源匮乏,甚至将发展氢能和燃料电池技术提升到了国家战 略层面。 表7:海外主要发达国家燃料电池汽车发展规划(辆) 国家2017 2020 2022 2025 2028 2030 美国4,500 13,000 40,000 1,000,000 日本2,400 40,000 200,000 800,000 法国250 5,000 20,000-50,00 荷兰41 2,000 韩国81,000 1,800,000 国内政策对燃料电池汽车持续加强战略支持。我国自2002年起即确立了以混合动力汽车、 纯电动汽车、燃料电池汽车为“三纵”,以多能源动力总成控制系统、驱动电机和动力电池为 “三横”的电动汽车“三纵三横”研发布局。从2012年的节能与新能源汽车产业发展规划起, 持续加强对于燃料电池汽车的战略支持与产业引导。各项科技发展规划或纲要明确提出加强燃 料电池电堆、发动机及其关键材料核心技术研究,提出重点围绕燃料电池动力系统等 6 大创 新链进行任务部署,支持燃料电池全产业链技术攻关。在财政补贴方面,2016-2020年持续实 施燃料电池汽车推广应用补助政策,根据 2020 年发布的后续通知,将对燃料电池汽车的购置 补贴调整为选择有基础、有积极性、有特色的城市或区域,重点围绕关键零部件的技术攻关和 产业化应用开展示范,中央财政将采取“以奖代补”方式对示范城市给予奖励。 表8:2016-2020燃料电池新能源汽车推广应用财政支持政策

研究燃料电池电动汽车动力传动系统关键技术

研究燃料电池电动汽车动力传动系统关键技术 ,蓄电池为辅助能量来源。汽车需要的功率主要由燃料电池提供。可以说, 车用燃料电池的选取,对于燃料电池汽车的性能至关重要。 本文介绍了燃料电池汽车动力传统技术发展概况,围绕燃料电池电动汽车动力传动拓扑架构、多源系统管理和动力系统配置与仿真优化技术等关键技术开展 了详细论述。 2动力传动系统拓扑构架设计 燃料电池汽车的运行并不是一个稳态情况,频繁的启动、加速和爬坡使得汽车动态工况非常复杂。燃料电池系统的动态响应比较慢,在启动、急加速或爬陡坡时燃料电池的输出特性无法满足车辆的行驶要求。在实际燃料电池汽车上,常常需要使用燃料电池混合电动汽车设计方法,即引入辅助能源装置(蓄电池、超级 电容器或蓄电池十超级电容器)通过电力电子装置与燃料电池并网,用来提供峰 值功率以补充车辆在加速或爬坡时燃料电池输出功率能力的不足。另一方面,在汽车怠速、低速或减速等工况下,燃料电池的功率大于驱动功率时,存储富余的 能量,或在回馈制动时,吸收存储制动能量,从而提高整个动力系统的能量效率。2.1直接燃料电池混合动力系统结构 直接燃料电池混合动力系统式结构中采用的电力电子装置只有电机控制器,燃料电池和辅助动力装置都直接并接在电机控制器的入口。如丰田的FCHV-4[16], FIAT-Elettra[17]和日产X-TrailFCV[12]等都采用这种类似的结构设计。 辅助动力装置扩充了动力系统总的能量容量,增加了车辆一次加氢后的续驶里程;扩大了系统的功率范围,减轻了燃料电池承担的功率负荷。许多插电混合的 燃料电池汽车也经常采用这样的构架,美国Ford 公司Edge Plug-in 燃料电池轿车和GM 公司Volt Plug-in 燃料电池车[18]。这种插电式混合动力汽车将有效的减

燃料电池汽车的介绍

燃料电池汽车的介绍 ?燃料电池汽车是电动汽车的一种,其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能或的。它的最大特点也在于此,能量转换效率不受“卡诺循 环”的限制,其能量转换效率可高达60%~70%,实际使用效率则是普通内燃机的2倍左右。 燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是 一种理想的车辆。 燃料电池汽车的氢燃料能通过几种途径得到。有些车辆直接携带着纯氢燃料,另外一些车辆有可能装有燃料重整器,能将烃类燃料转化为富氢气体。 单个的燃料电池必须结合成燃料电池组,以便获得必需的动力,满足车辆使用的要求。燃料电池汽车的优点 ?与传统汽车相比,燃料电池汽车具有以下优点: 1、提高了燃烧效率。 2、减少了机油泄露带来的水污染。 3、降低了温室气体的排放。 4、提高了燃油经济性。 5、零排放或近似零排放。 6、运行平稳、无噪声。 燃料电池汽车的关键技术 ?电动汽车的关键技术包括电动技术、自动化技术、电子技术、信息技术及化学技术,虽然能源是最首要的问题,但是车身结构、电力驱动以及能源管理系统的优化同样至关重要。 与内燃机车相比,电动汽车的行驶里程较短,因此为了尽可能地利用车载的储存能量,必须选用合适的能量管理系统。可以在汽车的各个子系统安装传感器,包括车内外温度传感器、

充放电时间的电流电压传感器、电动机的电流电压传感器、车速传感器、加速度传感器及外部气候和环境传感器。能量管理系统可实现9 个功能: 1)优化系统能量流; 2)预计所生的能量来估计还能行驶的路程; 3)提供参考以便进行有效操作; 4)直接从制动中获取能量存入储能元件,例如:蓄电池; 5)根据外界的气候调节温度控制; 6)根据外界环境调节灯光亮度; 7)估计合适的充电算法; 8)分析能源,尤其是蓄电池的工作记录; 9)诊断能源的任何不恰当或者无效的操作。 把能源管理系统和导航系统结合起来,就可以规划能源效率的路径,锁定充电站的位置并可以根据交通状态预测可行驶里程。总之,能源管理系统综合了多功能、灵活和可变的显着优点,从而可以合理利用有限的车载能源 1 燃料电池 同电化学电池相比,燃料电池的显着优点在于燃料电池电动汽车可达到与燃油车一样的续驶里程,这是因为燃料电池电动汽车的行驶里程仅与燃料箱中的燃料多少有关,而与燃料电池的尺寸无关。实际上,燃料电池的尺寸仅与电动汽车的功率需求水平有关。 燃料电池的优点: 1)反应物加料时间远远短于电化学电池的充电时间(机械充电式电池除外); 2)使用寿命长于电化学电池并且电池维护工作量更小。同普通电池相比,燃料电池是一个能量生成装置,并且一直产生能量直至燃料用尽。

T燃料电池电动汽车术语

T燃料电池电动汽车术 语 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

G B T24548-2009燃料电池电动汽车术语1范围 本标准规定了与燃料电池电动汽车相关的术语及其定义。 本标准适用于使用气态氢的燃料电池电动汽车整车及部件。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T19596电动汽车术语 GB/T20042.1质子交换膜燃料电池术语 3术语和定义 GB/T19596和GB/T20042.1中确立的以及下列术语和定义适用于本标准。 3.1通用术语 3.1.1 燃料电池fuelcell 将外部供应的燃料和氧化剂中的化学能通过电化学反应直接转化为电能、热能和其他反应产物的发电装置。 3.1.2 燃料电池电动汽车fuelcellelectdcvehicle;FCEV 以燃料电池系统作为动力源或主动力源的汽车。 3.1.3

冷启动coldstart 在充分的浸车之后,在标准环境温度进行启动。 注:对于一个测试程序,一般推荐浸车时间应该是在12h到36h之间,浸车期间车辆不应该启动,且应保持在规定的温度范围内。 3.1.4 热启动hotstart 关机后启动,此时燃料电池系统的温度还在其正常工作温度范围内。 3.1.5 启动时间start-uptime 在启动程序初始化后,燃料电池系统达到规定输出功率的时间。 注:包括热启动时间和冷启动时间。 3.1.6 运行压力operatingpressure 系统在工作时的压力。 3.1.7 减压depressurize 将高压压力容器或管路中的压力降低至工作所需压力的过程。 3.1.8 燃料放空defuel 将压力容器或其他管路内的燃料排空的过程。 3.1.9 吹扫purge 借助外部条件把燃料电池电堆及管路进行排空的过程。

燃料电池汽车关键技术介绍及其应用

119 1 燃料电池乘用车的发展必要性及战略意义 新能源汽车主要包括纯电动汽车(BEV),插电式混合动力电动汽车(PHEV)和燃料电池乘用车(FCEV)。由于燃料电池乘用车的唯一排放物是水,没有污染物排放,加氢时间段、续航里程长,能量转化效率高,被认为最有前景的新能源汽车发展方向之一。作为新能源汽车的重要技术方向,发展燃料电池乘用车对稳定能源供给,发展低碳交通,保持汽车产业持续发展,具有非常重要的意义。 2 燃料电池乘用车关键零部件介绍 2.1 燃料电池电堆 燃料电池主要有四种类型,分别是碱性燃料电池(AFC)、磷酸燃料电池(PAFC),固体氧化物燃料电池(SOFC),质子交换膜燃料电池(PEMFC),从燃料的种类、工作的温度、质量功率密度和燃料电池特性等因素综合考虑,质子交换膜燃料电池具有功率密度高、体积小、启动速度快,低腐蚀性、反应温度适中等特点,因此最适合应用于燃料电池乘用车领域。 质子交换膜燃料电池的基本反应原理是氢气在阳极发生氧化反应分解成H +和e ?,电子不断地输出到外部回路进行供电,氧离子穿过电解质膜到达阴极,阳极发生的 化学反应为:222H H e +? →+。 阴极发生的是原反应,氧气和氢离子在阴极结合产生水,阴极发生的化学反应为22 222O e H H O ?+++→。质子交换膜燃料电池的总反应为: 22 2 12H O H O +→。燃料电池电堆由端板、绝缘板、集流板以及多个单电池组成。单电池主要由双极板和膜电极组成。膜电极包含了质子交换膜、催化剂和气体扩散层。单电池双极板主要作用是隔绝燃料和空气、收集电流、传递热量,同时为反应气体提供通道。质子交换膜主要作用是为电解质提供氢离子通道,隔离阴阳极反应气体,同时对催化剂层起支撑作用。质子交换膜用催化剂为Pt 基催化剂,最常用的是商业化Pt/C 催化剂。气体扩散层主要作用为支撑催化层,稳定电极结构,提供气、电、热量的通道。 图1 燃料电池乘用车结构 2.2 车载供氢系统 在燃料电池乘用车上,车载供氢系统的功能类似于传统内燃机汽车的燃油储存与供给系统,其作用就是为燃料电池发动机提供燃料供给。其组成主要包含三部分,第一部分是氢气的储存及供给系统,包括储氢瓶、减压阀、管路等。第二部分是氢气管理系统,主要用于和整车控制器的通信,包括储氢瓶电磁阀开关、储氢瓶内气体温度的采集与显示、储氢瓶内气体压力的采集与显示等。第三部分是氢安全部分,包括氢气

燃料电池汽车发展动力

燃料电池汽车发展动力 一、引言 早在19世纪法国科幻小说鼻祖凡尔纳的小说中,预想家们就预言,有朝一日社会将通过以氢为基础的能源而被彻底改造。这种重量很轻的气体是宇宙中最丰富的元素,它能够从水中制成;它出奇地洁净;燃烧时排放出基本上是新鲜的蒸汽。当被输人到产生电力的燃料电池中时,它提供空前的效率一这些电化学反应堆从燃料中所摄取的有用能量高达内燃机的两倍。 当人类步人21世纪,开始面临着巨大的能源压力。传统的能源(主要是不可再生的化石燃料)正 日趋枯竭,过度依赖石油进口引起地缘政治不稳定而且化石燃料燃烧后排放的废气造成严重的空气污染,甚至加速气候变化,因此要实现经济、社会的可持续发展,寻找新的替代能源迫在眉睫。氢能作 为最洁净、高效的新能源,已经引起全世界的广泛关注。 燃料电池(FC)技术的突飞猛进使得氢能的梦想在21世纪开始变成现实。近年来,以氢为动力的 燃料电池汽车(FCV)得到了世界各国政府和企业的高度重视,并且取得了重大进展,预计在未来的5--10年内FCV将正式进人市场,以加氢站、输氢管道建设为标志的“氢经济”初露端倪。 二、燃料电池技概群汽车上的应用 FC是一种将储存有燃料(氢)和氧化剂(氧)中的化学能通过电化学反应直接转化为电能的装置,其过程不涉及燃烧,无机械损耗,能量转化率可高达80%,产物仅为电、热和水蒸气;而且FC运行平稳,无振动和噪音,所以被认为是21世纪的绿色能源。

FC技术在汽车上的应用给汽车产业发展带来了革命性的突破,同时也推动了自身的发展。FC可以用作汽车的(辅助)动力电源,也可以用 作辅助电源(APU)。 事实上,人们考虑更多的是FC电动汽车(FCEV),它不同于传统汽车,其动力来自FC,而不是内 燃机,可以减少燃料消耗,产生更少的污染物排放,当以氢作燃料时,能真正实现汽车的“零排放”,因此更符合人们的经济环保观念。此外,在能量耗尽后,FCEV不像传统的蓄电池电动汽车(BEV)那样需要长时间充电,而只需补充燃料即可继续工作,这一点对汽车驾驶者来 说尤为方便。 目前开发的FCEV主要用两种类型:纯燃料电池动力车和燃料电池一 蓄电池混合动力车。纯燃料电池动力车采用大功率的FC堆栈,以确保 在没有后备蓄电池的情况下能提供启动、瞬时加速的动力;而燃料电 池--蓄电池混合动力车以蓄电池为主动力,小功率的燃料电池用作续 程器。 当FC用作APU时,汽车使用内燃机驱动,部分燃料通过FC更有效地 转化为电能,它可以为汽 车辅助设备提供充足的功率,使汽车变得更舒适、更环保、更安全。 汽车用FC研究最多、最成功的是质子交换膜燃料电池(PEMFC)。PEMFC作为第五代FC,因为具有能量转化率高、低温启动、无电解质 泄漏等特点,被公认为最有希望成为电动汽车的理想动力源。但是因 为PEMFC需采用贵金属Pt作为电极催化剂,不仅提升了成本;而且限 制了燃料只能采用纯氢,因为燃料中的微量CO也可导致Pt中毒。对 于甲醇、汽油等燃料,必须经过重整纯化,从而增加了系统的复杂性。近年来,PEMFC技术取得了重大突破,燃料已经实现内重整,使得系统体积大为减少,有望进一步“减负”;更重要的是催化剂中pt载量大 为降低,成本问题有望得到解决,相信PEMFC汽车在不久的将来能够 实现商业化。

2019年美日、欧洲、韩国、中国的燃料电池汽车商业化进程及产业链梳理

2019年美日、欧洲、韩国、中国的燃料电池汽车商业化 进程及产业链梳理

目录 1.燃料电池汽车商业化进程持续推进 (6) 1.1各国的燃料电池汽车商业化进程已有突破 (6) 1.1.1日本:前瞻性布局,燃料电池汽车技术领先 (6) 1.1.2美国:注重降本增效发展成熟产业,成为车企除本土外首选上市地 (9) 1.1.3欧洲:新能源汽车开启商业化,德国引领加氢站建设 (11) 1.1.4韩国:现代推出新车型,加氢站建设速度加快 (14) 1.1.5中国:尚处于发展初期,燃料电池商用车成为突破口 (16) 1.2龙头车企加大燃料电池汽车布局 (20) 1.3燃料电池汽车行业空间广阔 (23) 2.产业链梳理:国内外技术差距逐步缩小,长期发展仍需统筹兼顾 (24) 2.1统筹发展制氢加氢产业是燃料电池汽车推广的基础 (24) 2.2国内燃料电池产业链趋于完善,国内外技术差距逐步缩小 (29) 2.2.1燃料电池:降低成本、提高寿命是发展方向 (29) 2.2.2质子交换膜:燃料电池的核心元件 (33) 2.2.3催化剂:研发低铂或非铂催化剂是降低成本的有效途径 (34) 2.2.4扩散层:国内生产依旧受制于技术瓶颈 (36) 2.2.5膜电极:降低成本、增加使用寿命是技术方向 (37) 2.2.6双极板:石墨、金属各有所需 (38) 2.2.7电堆:国内尚处于技术验证阶段 (39) 2.3燃料电池汽车:续航里程长、充能时间短,但仍存劣势 (40) 3.标的公司 (42) 3.1国际知名公司燃料电池商业化应用已趋成熟 (42) 3.2国内技术引进与自主研发并重,积极布局产业链 (45)

燃料电池汽车

氢燃料电池汽车技术解析(The hydrogen fuel cell vehicle technology analysis) 最近大众集团首次对外发布了旗下最新的三款新能源车型,与常见的纯电动、混合动力车型不同,它们全部采用了氢燃料电池技术,除了大众以外,丰田也同时发布了首款燃料电池车型-Mirai,氢燃料电池技术的密集发布是否也意味着这种技术将会是未来新能源车的发展方向?今天我们以大众集团的氢燃料电池车型和燃料电池车型-Mirai入手,一起来分析以下这种新兴的汽车技术。 ●什么是燃料电池(Fuel Cell)? 燃料电池(Fuel Cell),顾名思义,是通过燃料的化学反应来产生电能的一种发电装置,简单地说就是燃料和空气分别送进被燃料电池,经过一系列的化 学反应,最终产生电能。它从外表上看有正负极和电解质 等,更像是一个蓄电池,但实质上它并没有储存电能的能 力,只能够产生电能,因此叫燃料电池。 ◆燃料电池汽车 燃料电池汽车,给人的第一种感觉很像是使用新型的 燃料替代汽油/柴油注入内燃机从而进行做功运动,其实则 不然,我们所谓的燃料电池汽车其实本质就是一台电动汽 车,不过这种汽车不同于普通的电动汽车需要背负沉重的 电池组来提供电能,而是像普通的汽车一样加注燃料,通 过燃料电池产生电能,然后再来驱动电动机,进而驱动车辆行驶。 燃料电池的类型有很多种,目前燃料电池汽车大部分都采用了质子交换膜燃料电池技术,而采用的燃料就是我们熟知的氢气,氢气被充进车辆上的高压气管,然后再需要的时候与空气一起送进燃料电池内部,通过质子交换膜,氢气与空气中的氧气在催化剂的作用下产生电化学反应,产生电流的同时只生成水,电流用来给电动机提供动力,而产生的水就直接排放出来,理论上讲,从排气管拍出来的水为纯净水,甚至可以直接拿来饮用。 ●氢燃料电池汽车与氢动力汽车有什么不同? ◆氢内燃机式汽车

(最新最全的)国内氢能生产、储运、加注、燃料电池电堆、燃料电池汽车相关标准

(最新最全的)国内氢能生产、储运、加注、燃料电池电堆、燃料电池汽车相关标准

(最新最全的)国内氢能生产、储运、加注、燃料电池电堆、燃料电池汽车相关标准一、氢能生产、储运、加注相关标准 序号标准号/计 划号 标准名称备注 1 GB/T 19 773-2005 变压吸附提纯氢系统技术要 求 已发布 2 GB/T 19 774-2005 水电解制氢系统技术要求 已发布

3 GB/T 24 499-2009 氢气、氢能与氢能系统术语已发布 4 GB/T 26 915-2011 太阳能光催化分解水制氢体 系的能量转化效率与量子产 率计算 已发布 5 GB/T 26 916-2011 小型氢能综合能源系统性能 评价方法 已发布 6 GB/T 29 411-2012 水电解氢氧发生器技术要求已发布 7 GB/T 29 412-2012 变压吸附提纯氢用吸附器 已发布

8 GB/T 29 729-2013 氢系统安全的基本要求 已发布 9 GB/T 30 718-2014 压缩氢气车辆加注连接装置 已发布 10 GB/T 30 719-2014 液氢车辆燃料加注系统接口 已发布 11 GB/T 31138-2014 汽车用压缩氢气加气机 已发布

12 GB/T 31139-2014 移动式加氢设施安全技术规 范 已发布 13 GB 32311-20水电解制氢系统能效限定值 及能效等级 已发布

15 14 GB/T 33291-2016 氢化物可逆吸放氢压力-组成等温线(P-C-T )测试方法 已发布 15 GB/T 33292-2016 燃料电池备用电源用金属氢 化物储氢系统 已发布 16 T/CECA-G 0015-201质子交换膜燃料电池汽车用燃料 氢气 团体标准

相关文档
相关文档 最新文档