文档库 最新最全的文档下载
当前位置:文档库 › 空调冷冻水和冷却水循环系统水力计算简便方法[1]

空调冷冻水和冷却水循环系统水力计算简便方法[1]

空调冷冻水和冷却水循环系统水力计算简便方法[1]
空调冷冻水和冷却水循环系统水力计算简便方法[1]

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

空调循环水加药装置特点及加药量计算

精心整理空调循环水加药装置特点、加药量计算 潍坊山水环保机械制造有限公司 空调循环水存在的问题及特点: 空调循环水一般分为三类:自来水、软化水和去离子水。最常用的为自来水。 存在的问题: 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 4 SO 等离子,溶解性固体,悬浮物相应增加,空气中污染物如尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥, 运营成本 杀菌

2、腐蚀指标 设备原材料、设备设计、制造、包装、运输等过程中执行以下标准: GB7190.2-1997 《大型玻璃纤维增强塑料冷却塔》 GB191-90 《包装储运图标记》 GB3538-83 《运输包装件各部件的标识方法》 GB6388-86 《运输包装收发货标志》 GB12348-90 《工业企业厂界噪声标准》 Q/LB08-95 《钢筋混凝土结构冷却塔安装》 药剂选用原则 循环水系统处理分成二大部分,第一部分:补充水处理,第二部分:循环水处理。循环水处理可以概括为去除悬浮物、控制泥垢及结垢、控制腐蚀及微生物杀菌等四个系统。泥垢及结垢、控制腐蚀及微生物等一般采用加药控制。 向循环水中投加阻垢、分散剂的方法来防止盐类垢。 加药剂为聚磷酸盐(三聚磷酸钠) 敞开式循环冷却水的加氯量处理宜采用定期投加,每天投加1~3次,余氯量控制在0.5~1.0mg/l之内。每

次加氯时间采用3~4h。加氯量按下式计算: G t =Q·g t /1000=4000立方米每小时*3mg/l=1.2Kg/h 式中G t——加氯量(Kg/h) Q——循环冷却水量(m3/h) g t——单位循环冷却水的加氯量,采用2~4mg/l 药剂的选用及投加量 缓蚀阻垢剂的复合配方为:铬酸盐+聚磷酸盐 投加量:投加量须根据循环水水质情况而确定,一般其投加量为40~60mg/l。 A、 G= 注: 2~5mg/l (1) (2) 1 次。每小 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:66/H 2、杀菌剂加药装置 根据前面计算可知,本系统杀菌剂加药量为192kg/天,(100%纯度按每天溶药一次,药剂配制浓芳按20%设计,则每天的溶药量为192÷0.2=960kg/d,每次的溶药量为960kg/次。每小时投加量为960÷24=4L/h。 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:40L/H

冷冻水水泵的扬程计算(闭式系统).

--水泵选型索引-----所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。 本计算方式针对闭式系统,若是开式系统还需要考虑管路的高低落差产生的静压。 特别补充一句:当设计流量在设备的额定流量附近时,上面所提到的阻力可以套用,更多的是往往都大过设备的额定流量很多。 同样,水管的水流速建议计算后,查表取阻力值。 关于水泵扬程过大问题。设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。 另外“水泵出口压力只有0.22兆帕”能说明什么呢?水泵进出口压差才是问题的关键。例如将开式系统的水泵放在100米高的顶上,出口压力如果是0.22MPa,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是0.32MPa了! [摘自dehumidify水泵相关索引] -----水泵扬程简易估算法-----

暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取 1.2。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O): Hmax=△P1+△P2+0.05L (1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时 K值取0.4~0.6 这是我在某篇文章中摘抄下来的。在实际应用中也经常使用这个公式,我个人认为这是一个很好的公式,所以值得推广。 不知道大家对这个公式有何高见,愿闻其详。

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

有压引水系统水力计算

一、设计课题 水电站有压引水系统水力计算。 二、设计资料及要求 1、设计资料见《课程设计指导书、任务书》; 2、设计要求: (1)、对整个引水系统进行水头损失计算; (2)、进行调压井水力计算球稳定断面; (3)、确定调压井波动振幅,包括最高涌波水位和最低涌波水位; (4)、进行机组调节保证计算,检验正常工作状况下税基压力、转速相对值。 三、调压井水力计算求稳定断面 <一>引水道的等效断面积:∑= i i f L L f , 引水道有效断面积f 的求解表 栏号 引水道部位 过水断面f i (m 2 ) L i (m) L i/f i

所以引水道的等效断面积∑= i i f L L f =511.28/21.475=23.81 m 2 <二>引水道和压力管道的水头损失计算: 引水道的水头损失包括局部水头损失 h 局和沿程水头损失h 沿两部分 压力管道的水头损失包括局部水头损失h 局和沿程水头损失h 沿两部分 1, 2 2g 2h Q ?ξ局局= g :重力加速度9.81m/s 2 Q :通过水轮机的流量取102m 3/s ω :断面面积 m 2 ξ:局部水头损失系数 局部水头损失h 局计算表 栏号 引水建筑物部位及运行 工况 断面面积 ω(m 2 ) 局部水头损失系数 局部水头损失 10-6Q 2(m ) 合计(m) (1) 进 水 口 拦污栅 61.28 0.12 0.017 0.307 (2) 进口喇叭段 29.76 0.10 0.060 (3) 闸门井 24.00 0.20 0.184 (4) 渐变段 23.88 0.05 0.046 (5) 隧 洞 进口平面转弯 23.76 0.07 0.066 0.204 (6) 末端锥管段 19.63 0.10 0.138 (7) 调 压 正常运行 19.63 0.10 0.138 2.202 (1) 拦污栅 61.28 4.1 0.067 (2) 喇叭口进水段 29.76 6.0 0.202 (3) 闸门井段 24.00 5.6 0.233 (4) 渐变段 2 3.88 10.0 0.419 (5) D=5.5m 23.76 469.6 19.764 (6) 锥形洞段 21.65 5.0 0.231 (7) 调压井前管段 19.63 10.98 0.559

冷冻水流量计算

标准冷冻水流量=制冷量(KW)*0.86/5(度温差) 冷却水流量=(制冷量+机组输入功率)(KW)*0.86/5(度温差) 水流量计算 1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量 L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2) 2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。 L(m3/h)= Q(kW)/(4.5~5)℃x1.163 3、冷却水补水量一般1为冷却水循环水量的1~1.6%. 1 水侧变流量对冷水机组性能的影响 在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。随着控制技术的发展,冷水机组的控制系统越来越先进。目前,不同类型的冷水机组均能实现冷量的自动调节。冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。 当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。 由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。冷水机组蒸发器变流量对其制冷性能的影响程度与压缩机类型和制冷剂变流量的方式有关。文献3从热力学角度对此进行了分析,认为即使冷冻水流量减至60%,冷水机组的COP的下降幅度也不超过10%。 冷却水进出口温差变大时,虽然可以减小冷却水泵的运行费用,然而,为了保证冷凝器内的热交换,冷凝温度必然要高于冷却水的出口温度,并且冷凝温度与冷却水出口温度也要求有一低限。所以,要想加大冷却水的进出口温差,就必须提高冷却水出口温度(通常冷却水进口温度基本上是定值),这又将引起冷凝温度的增加,降低了冷水机组的COP值。与蒸发器变流量相比,冷凝器变流量运行对冷凝温度的影响较大,故导致冷水机组COP的变化较大,在给冷却水泵安装变频器时,应详细分析冷却水变流量对冷水机组性能的影响,确定方案的可行性。

PDP空调循环水系统冲洗

四川虹欧显示器件有限公司 PDP项目一期工程普通机电安装工程 暖通空调工程循环水系统 通水方案 编写单位:四川华西集团有限公司PDP项目部 编写日期:2008年7月6日

目录 一、101#,102#、103#工程概况 (1) 二、冷冻水系统冲洗 (4) 三、温水、高温热水系统冲洗 (8) 四、冲洗系统的人员安排和组织机构 (12) 五、冲洗时间安排 (13)

一、101#,102#、103#工程概况 1.101#厂房概况 101#厂房所有空调机组和风机盘管均设置在两侧支持区,干冷盘管设置在一层及三层下夹层,空调水管系统分为低温冷冻水系统(LCH),中温冷冻水系统(CH),温水系统(WW),高温热水系统(HW),蒸汽系统(S),具体情况如下: 以上空调处理设备冷热水供应管路均采用无缝钢管,管路总量在30416米,由冷冻站和制热站引入生产车间支持区,冷热水沿管路供末端设备进行冷热交换,管路在进出末端设备的分支管上设置控制阀组,调节末端空调设备的换热量,经过换热后的冷热水再沿回水管路至冷热站,进行再次循环。

2.102#厂房概况 102#冷冻站分为三个独立的供回水系统,基本内容如下: (1)低温冷冻水系统:设计选用离心制冷机组6台,每台制冷量1150USRT(4043KW),设备供回水温度为5/12℃,冷冻水系统分为2级,即一次冷冻水和二次冷冻水,其中一次冷冻水系统为定流量,二次冷冻水系统为变流量系统,设计还选用一次冷冻水泵6台,二次冷冻水泵4台(变频泵),三用一备,补水箱一个,膨胀水箱一套,冷却水泵6台。 (2)中温冷冻水系统,设计选用离心制冷机组10台,九用一备(其中3台带热回收系统)。每台制冷量为1400USRT(4922KW),设备供回水温度为13/18℃,冷冻水系统分为2级,即一次冷冻水和二次冷冻水,其中一次冷冻水系统为定流量,二次冷冻水系统为变流量系统,设计还选用一次冷冻水泵10台(九用一备),二次冷冻水泵6台(变频泵,五用一备),补水箱一个,膨胀水箱一套,冷却水泵`10台。 (3)温水系统,热回收制冷机组3台,每台产生热量5450KW,设备供回水温度为37/29℃,热回收系统分为2级,即一次热回收系统和二次热回收系统,其中一次冷水系统为定流量,二次冷水系统为变流量系统,设计还选用一次热回收水泵3台,二次冷冻水泵4台(变频泵,三用一备),板式换热器3台,补水箱一个,膨胀水箱一套。同时热回收系统由锅炉房作为补充热源。 3.103#厂房概况 长虹PDP锅炉房位于长虹工业园虹欧显示器件有限公司103厂

水带系统水力计算资料

第二节水带系统水力计算 一、了解水带压力损失计算方法 每条水带的压力损失,计算公式如下:hd= SQ2 式中:hd――每条20米长水带的压力损失,104 Pa S ――每条水带的阻抗系数, Q――水带内的流量,L/ s 注:1mH2O=104 Pa(1米水柱=104帕);1Kg/cm2=105 Pa(1千克/厘米2) 二、了解水带串、并联系统压力损失计算方法 同型、同径水带串联系统压力损失计算: 压力损失叠加法:公式Hd=nhd 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; hd――每条水带的压力损失,104 Pa 。 阻力系数法:公式Hd=nSQ2 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; S――每条水带的阻抗系数; Q――干线水带内的流量,L/ s 。 不同类型、不同直径水带串联系统压力损失计算: 压力损失叠加法:公式Hd =hd1+ hd2+ hd3+…+ hdn 式中:Hd――水带串联系统的压力损失,104 Pa;

hd1、hd2、hd3、hdn――干线内各条水带的压力损失,104 Pa 。 阻力系数法:公式:Hd=S总Q2 Hd――水带串联系统的压力损失,104 Pa; S总――干线内各条水带阻抗系数之和; Q――干线水带内的流量,L/ s 。 同型、同径水带并联系统压力损失计算: 流量平分法公式:Hd =hd1+ hd2+ hd3+…+ hdn或Hd=S总(Q∕n)2 式中:Hd――并联系统水带的压力损失,104 Pa; hd1、hd2、hd3、hdn――任一干线中各条水带的压力损失,104 Pa; S总――并联系统中任一干线中各条水带阻抗系数之和;Q――并联系统的总流量,L/ s n――并联系统中干线水带的数量,条。 阻力系数法公式:Hd=S总Q2或S总=S∕n2 式中:Hd――并联系统水带的压力损失,104 Pa; S总――并联系统总阻抗系数之和; Q――并联系统的总流量,L/ s S――每条干线的阻抗; n――并联系统中干线水带的数量,条 灭火剂喷射器具应用计算

冷却水和冷冻水的区别

中央空调主机由压缩机蒸发器冷凝器节流阀四大部分组成,压缩机提供能量的,冷凝器是降低从压缩机出来的制冷剂温度的,介质是水,这个水就是冷却水,它是连到冷却塔的。蒸发器是制冷剂蒸发吸热的,流经蒸发器的水就是冷冻水,冷冻水被吸收热量后温度就降低了,经过空调机组就把冷风吹到室内起到降温作用。对比家用空调来说,室内机就是蒸发器,室外机就是冷凝器,只不过家用的都是风吹出来制冷的,中央空调的是水流过蒸发器后再到室内换热,不知道这样解释的能理解了不 冷冻水是指用来冷却需要冷却的空间的水。 冷却水是指用来使高温高压的制冷剂气体冷却成中温中压的制冷剂液体的水 冷冻水是在冷水机组蒸发器放出热量,然后在末端装置吸收空气中的热量。 冷却水是在冷水机制冷凝器吸收热量,在冷却塔放出热量。 冷冻水用于用户端,提供冷量;冷却水用于主机端,释放热量。 冷冻水是把空调制的冷量通过管道.水泵送入房间,再由房间的风机盘管交换给空间,简单讲,冷冻水就是把冷量从空调机房传送到使用房间的运输工具, 冷却水是空调在制冷过程中产生大量热量通过管道.水泵送入室外冷却塔进行冷却,也就是讲,冷却水就是把主机产生的热量送出室外的运输工具, 冷冻水冷却水冷凝水区别? 冷冻水/冷却水/冷凝水可以放在一起理解,水系统中主机与末端是通过冷冻水换热,主机与冷却塔经过冷却水换热,末端空气处理设备在得到冷冻水的冷热量后与室内空气换热 会产生凝结水,水量比较 冷冻水=冷媒水(制冷季) =热媒水(供暖季) 是从中央空调蒸发器里流出进入风机盘管的水。 冷却水是从中央空调冷凝器里流出进入冷却塔需要冷却的水,中央空调水处理一般指冷却水的处理。 冷剂水在吸收式制冷机组里(如溴化锂机组),用水来做制冷剂,故也称作冷剂水 冷却水何冷冻水的区别 冷冻水的作用:直接冷却的工作介质。 冷却水的作用:冷却输送能量的工作介质,如给工作设备或工作介质降温的。 冷冻水:进水是冷水,出水是热水。 冷却水:进水是热水,出水是冷水。 铜管外面包着的黑色的是保温棉,铜管里走的是冷媒,就是我们通常说的氟利昂,那个类似三通的叫“分流器”,主要是用于一台外机托多台内机的时候分氟利昂用的!

中央空调循环水处理

中央空调循环水处理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

中央空调循环水处理 随着我国国民经济的快速增长,中央空调被广泛使用,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。热水和冷冻水共用一套管道系统。 1.中央空调系统特点 中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。 2.冷冻水系统特点 冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色

水质。冷冻水的化学处理采用一次性投加药剂的方法,重点控制设备的腐蚀及粘泥的产生。 3.冷却水系统特点 冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。含盐量上升后极易在热交换器的水侧形成水垢,垢的形成不仅使传热效率下降、制冷负荷增大,还会形成垢下腐蚀,造成水电浪费和缩短机组使用寿命。冷却水系统的另一特点是保有水量小,极易浓缩,如掌握不好排污量和补水量,浓缩倍数波动较大,难以保证水处理效果。因此,对于冷却水系统水处理的重点是控制结垢兼顾缓蚀并定时加药、排污、补水。 针对中央空调系统的特点和实际情况,选择适宜的水处理药剂和摸索出一条简便且适合现场情况的粗放式的管理模式,具有十分重要的现实意义。它可以有效的控制设备的腐蚀和结垢,延长设备的寿命,减少维修工作量,提高制冷效率,满足客户和工艺生产的需要。 ————国家工业水处理工程技术研究中心张凤仙高级工程师

冷冻水流量计算

标准冷冻水流量=制冷量(KW)*5(度温差) 冷却水流量=(制冷量+机组输入功率)(KW)*5(度温差) 水流量计算 1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量 L(m3/h)= [Q(kW)/(~5)℃]X~ 2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。 L(m3/h)= Q(kW)/(~5)℃ 3、冷却水补水量一般1为冷却水循环水量的1~%. 1 水侧变流量对冷水机组性能的影响 在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。随着控制技术的发展,冷水机组的控制系统越来越先进。目前,不同类型的冷水机组均能实现冷量的自动调节。冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。 当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。 由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。冷水机组蒸发器变流量对其制冷性能的影响程度与压缩机类型和制冷剂变流量的方式有关。文献3从热力学角度对此进行了分析,认为即使冷冻水流量减至60%,冷水机组的COP的下降幅度也不超过10%。 冷却水进出口温差变大时,虽然可以减小冷却水泵的运行费用,然而,为了保证冷凝器内的热交换,冷凝温度必然要高于冷却水的出口温度,并且冷凝温度与冷却水出口温度也要求有一低限。所以,要想加大冷却水的进出口温差,就必须提高冷却水出口温度(通常冷却水进口温度基本上是定值),这又将引起冷凝温度的增加,降低了冷水机组的COP值。与蒸发器变流量相比,冷凝器变流量运行对冷凝温度的影响较大,故导致冷水机组COP的变化较大,在给冷却水泵安装变频器时,应详细分析冷却水变流量对冷水机组性能的影响,确定方案的可行性。

中央空调循环水系统

中央空调循环水处理方案 2011-09-21 中央空调循环水系统一般分为三部分,即循环水系统、冷冻水系统、采暖水系统。循环冷却水多为开式,冷冻水与采暖水为封闭式;目前,高层建筑或封闭式厂方的冷冻水与采暖水多为同一系统,在夏季走冷冻水,在冬季走采暖水。 一、概述 中央空调循环水系统一般分为三部分,即循环水系统、冷冻水系统、采暖水系统。循环冷却水多为开式,冷冻水与采暖水为封闭式;目前,高层建筑或封闭式厂方的冷冻水与采暖水多为同一系统,在夏季走冷冻水,在冬季走采暖水。这三套循环水系统各有特点,但存在同一问题:结垢、腐蚀和生物粘泥,如不进行适当的处理,势必会引起管道堵塞,腐蚀泄漏、传热效率大为降低等一系列问题,影响整个空调系统的正常工作。 多年来,我们对中央空调用水情况作了广泛的调查,综合起来看现中央空调水系统的用水分为三类,即未经过任何处理的自来水、软化水和去离子水。水中对设备主要产生影响的因素分别为碱度、PH值、Cl-、氧含量等。自来水因地区不同而水质变化较大,在水的循环过程中,硬度和碱度是造成结垢的主要因素,而Cl-、低PH值、溶解氧是造成腐蚀的罪魁祸首。在自来水中这两种危害同时存在,只是由于水质差异,危害的主副性有所区别;相对腐蚀而言,结垢性离子Ca2+、Mg2+、碱度为保护性离子,软化水正是由于去除了这些离子,增加了Na+、Cl-等腐蚀性离子,从而加重了设备的腐蚀,所以说软化水虽然避免了结垢问题,却加重了腐蚀,这种现象会随着时间推移而显露出来。如大港开发区某空调系统一年就出现腐蚀穿孔现象,可见软化水腐蚀性的强弱。去离子水相对地说即去除了结垢因素,也去除了腐蚀因素,但实际上并非如此,同样,去离子水中虽然不存在结垢性离子和腐蚀性离子,但却并未除去水中的溶解氧,初始时,腐蚀速度较慢,有一个逐渐加速过程,最终会导致同前两种水一样的红水现象(封闭式系统)。 空调水处理的必要性主要有以下三点,其一是延长管线和设备的使用寿命。如果在主要管线和设备上发生的泄露时,或在敷设管道上发生了泄露时,更换维修,不但要花费较大的费用,而且,在实施时存在着许多困难。空调系统水处理的必要性就在于使管线和设备达到设计的使用寿命。下表中数据可说明水处理的重要性;其二是节能。当结垢和腐蚀产生锈垢堆积物,都会导致传热效率下降,为达到设定效果,必须加大能量消耗同时还会造成缩短设备的使用寿命。在敞开式循环水系统中,采用水处理技术还会节省大量的补充水;其三是创造稳定舒适的工作和生活环境,保证中央空调系统稳定正常运行。 注:1:预防处理是指为预防危害发生而进行水处理;事后处理是指危害发生后进行水处理;实际使用年限指设备破旧而更换的时间。2:本数据来自日本“建筑业协会”统计,而中国还未有有关统计数据。 二、中央空调循环冷却水处理 1.中央空调循环冷却水基本使用自来水。多年来,由于水系统结垢和腐蚀造成机组功能下降、使用寿命降低、能耗增加,业主长期处于设备、管线维修的局面。为改变这种状况,水磁化器被引入中央空调水系统。实践证明,使用这种设备处理能力有限,不成功的报导很多。上世纪80年代中期在工业的冷冻水系统引入工业循环冷却水处理技术后非常成功,这就是循环冷却水化学水处理技术。该技术是向水中投加水质稳定剂——包括分散剂、阻垢剂、缓蚀剂、杀菌剂等。是通过化学方法,使水中结垢型离子稳定在水中,其原理是通过螫合、络合和吸附分散作用,使Ca2+、Mg2+稳定地溶于水中,并对氧化铁、二氧化硅等胶体也有良好的分散作用,本法是目前空调水处理使用最为普遍的一种方法,也是在工业循环水处理中应用面最广、技术最成熟的一种方法,实践证明是有效而经济的方法。 1.1缓蚀阻垢处理 过去使用以聚磷酸盐为主体的缓蚀剂,但是,如果冷却水系统在水高浓缩倍数下进行,由于磷酸盐会

中央空调水循环系统简介

中央空调系统简介 随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。热媒水在热水锅炉中被加热至60℃左右后送往风机盘管,与空气进行热交换降至55℃左右后,再返回到锅炉中加热。热水和冷冻水共用一套管道系统。1.中央空调系统特点 中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。 2.冷冻水系统特点 冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。因此,对于冷冻水系统水处理 的重点是控制设备的腐蚀及粘泥的产生。 3.冷却水系统特点 冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。含盐量上升后极易在热交换器的水侧形成水垢,垢的形成不仅使传热效率下降、制冷负荷增大,还会形成垢下腐蚀,造成水电浪费和缩短机组使用寿命。冷却水系统的另一特点是保有水量小,极易浓缩,如掌握不好排污量和补水量,浓缩倍数波动较大,难以保证水处理效果。因此,对于冷却水系统水处理的重点是控制结垢兼顾缓蚀。 中央空调系统为什么会有上面所讲的问题呢,主要是由于其媒介——水所造成的。 自然界中的水是怎样的? 水在自然界中大量的存在,比较容易取得,价格便宜。水的物理化学性质稳定,水的潜热大,这是水成为工业首选作为冷却介质或热载体的重要原因。但自然界中的水并非纯净的物质,因为水是很好的溶剂,当它流过岩石、矿床和土壤时,就会有很多的盐类溶入其中。空气中带入尘埃、有机物及其它们的分解产物,水中生长的物质,都将成为各种各样的杂质,溶入水中。那么,溶入水中的盐类和杂质以离子形态存在的有阳离子:Ca2+、Mg2+、Na+、Fe2+、Zn2+、 Cu2+、Mn2+、H+、NH4+等;以阴离子形态存在的有:CO 32-、HCO 3 -、Cl-、SO 4 2-、NO 3 -、HSiO 3 -、F-、 H 2PO 4 -、OH-、H 2 BO 3 -、HPO 4 2-、HCO 3 -、NO 2 -、HS-等;以气态存在于水中的有:CO 2 、O 2 、N 2 、HN 3 、 SO 2、H 2 S、CH 4 、H 2 等;以悬浮物形式存在于水中的有粘土、无机的土壤污物、有机污物、有 机废水、各种微生物;还有以胶体形式存在于水中的SiO 2、Fe 2 O 3 、Al 2 O 3 、MnO 2 、植物色素、 生长在水中的各种细菌和藻类。 人类可利用的淡水资源主要来自地表水(江河水、湖水)和地下水(井水),不同水源、不同地区、周围的不同环境和不同季节,自然界水中的各类杂质的品种和量有很大的差别。

冷冻水水泵的扬程计算(闭式系统)

--水泵选型索引----- 所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。 本计算方式针对闭式系统,若是开式系统还需要考虑管路的高低落差产生的静压。 特别补充一句:当设计流量在设备的额定流量附近时,上面所提到的阻力可以套用,更多的是往往都大过设备的额定流量很多。 同样,水管的水流速建议计算后,查表取阻力值。 关于水泵扬程过大问题。设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。 另外“水泵出口压力只有兆帕”能说明什么呢水泵进出口压差才是问题的关键。例如将开式系统的水泵放在100米高的顶上,出口压力如果是,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是了! [摘自dehumidify水泵相关索引] -----水泵扬程简易估算法-----

暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的~倍(单台取,两台并联取。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O): Hmax=△P1+△P2+ (1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取~,最不利环路较短时K值取~ 这是我在某篇文章中摘抄下来的。在实际应用中也经常使用这个公式,我个人认为这是一个很好的公式,所以值得推广。 不知道大家对这个公式有何高见,愿闻其详。

冷却塔水量损失计算(技术部)

冷却塔水量损失计算 水的蒸发损失[()]* :水的定压比热,取.摄氏度,:水的蒸发潜热,:循环水流量,():温差。 例如你设计的温差是度,就是,每小时循环水量吨的话,每小时蒸发吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为℃,出水温度为℃,湿球温度为,则*:(℃)() 式中::冷却水的温度差,对单位水量即是冷却的热负荷或制冷量 对式()可推论出水蒸发量的估算公式 *:()×() 式中:当温度下降℃时的蒸发量,以总循环水量的百分比表示,考虑了各种散热因素之后确定之常数。 如:℃ 则{(×)}总水量 或℃,即温差为℃时的水蒸发量

*:℃() 式中:逼近度,即出水温度()逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取≥℃(推进≥即℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失。二、风吹损失。三、排污损失: 四、冷却池的附加蒸发损失水量 第2.2.5条冷却塔的蒸发损失水量可按下式计算: Δ 式中——蒸发损失水量,; Δ——冷却塔进水与出水温度差,℃。 ——循环水量,。 ——系数,℃1,可按表2.2.5采用。 系数 气温- 第2.2.6条冷却塔的风吹损失水量占进入冷却塔循环水量的百分数可采用下数值 机械通风冷却塔(有除水器) ~’$ ( $ ( {. ]* " ) 风筒式自然通风冷却塔(以下简称自然通风冷却塔) 当有除水器时

基于MCGS中央空调冷却水循环系统(超详细)

目录 摘要 (2) 前言 (2) 1.设计准备 (3) 1.1设计内容与要求 (3) 1.2设计思路 (4) 1.3 具体设计及实现功能 (4) 2.系统报警记录与参数设置 (4) 2.1 报警定义设置 (4) 2.1.1 冷却塔储水容量的报警定义设置 (4) 2.1.2 冷却塔出水温度报警定义的设置 (5) 2.2报警显示的设置 (6) 2.3报警数据的设置 (7) 2.4报警参数设置 (9) 3.历史数据报表和历史曲线的设置 (10) 3.1历史数据报表的设置 (10) 3.2 历史曲线的设置 (11) 4.运行与调试 (14) 4.1 系统运行 (14) 4.2 系统调试 (14) 4.2.1调试中出现的问题 (14) 4.2.2 解决方案 (14) 5.设计总结 (15) 参考文献 (16) 答谢 (17) 附录 (18)

基于MCGS中央空调冷却水循环系统演示 摘要冷却水循环系统是中央空调系统中的重要组成部件,它直接影响到中央空调供冷、供热功能的实现效果,所以对它准确的测试与处理要求很高。 本设计研究了基于MCGS组态环境在中央空调冷却水循环系统中得应用。利用组态软件MCGS设计了冷却水循环系统监控界面,提供了直观、清晰、准确的冷却水循环系统的运行状态,进而为控制运行、维修和故障诊断提供了多方面的可能性,充分提高了系统的工作效率。 关键词中央空调、冷却水循环、MCGS Abstract The cooling water circulation system is a key component in the central air conditioning system, it directly affects the central air-conditioning cooling and heating function to achieve the effect, so it is accurate testing and demanding. This design study Based on MCGS environment have central air-conditioning cooling water circulation system applications. Configuration software MCGS design of the cooling water circulation system monitoring interface provides an intuitive, clear, accurate operational status of the cooling water circulation system, and thus provide a wide range of possibilities for the control of the operation, maintenance and troubleshooting to fully enhance the system efficiency. Key words central air conditioning, cooling water circulation, MCGS 前言

水系统水力计算

7.2 空调水系统设计空调水系统设计是空气—水中央空调系统设计的主要内容之一。由于受到建筑空间和使用条件的限制,现代民用建筑大都采用风机盘管加新风的系统形式。特别是写字楼、酒店等高层、综合性建筑,面积大,层数和房间多,功能复杂,使用的空调设备数量和品种也多,而且布置分散,使得空调水系统庞大而复杂,造成管路系统和设备投资大,水泵能耗大,水系统对整个空调系统的使用效果影响也大。因此,在进行空调水系统设计时,应尽量考虑周全,在注意减小投资的同时也不忘为方便日后的运行管理和减少水泵的能耗创造条件。 7.2.1 空调水系统设计的步骤空调水系统设计的一般步骤如下: 1)根据各个空调房间或区域的使用功能和特点,确定用水供冷或供暖的空调设备形式采用大型的组合式空调机或中型柜式风机盘管,还是小型风机盘管。 2)根据工程实际确定每台空调设备的布置位置和作用范围,然后计算出由作用范围的调负荷决定的供水量,并选定空调设备的型号和规格。 3)选择水系统形式,进行供回水管线布置,画出系统轴测图或管道布置简图。 4)进行管路计算(含水泵的选择)。 5)进行绝热材料与绝热层厚度的选择与计算 (参见 6.4 部分内容)。 6)进行冷凝水系统的设计。 7)绘制工程图。空调水系统的管路计算空调水系统的管路计算(又称为水力计算、阻力计算)是在已知水流量和选定流速下确水系统各管段管径及水流阻力,计算出选水泵所需要的系统总阻力。 1. 管径的确定 1)连接各空调设备的供回水支管管径宜与空调设备的进出水接管管径一致,可由相设备样本查得 2)供回水干管的管径 (内径)d ,可根据各管段中水的体积流量和选定的流速由下式d=44v}c v (7 一4) 4v 一水的体积流量,单位为m3/s 一。一水流速度,单位为m/so 在水流量一定的情况下,管内水流速的高低既影响水管管径的大小,又涉及到水流阻力大小,还分别与投资费用和运行费用有关,过低或过高都不经济。一般水系统中管内水流速按表7-i 中的推荐值选用。 显然,由式(7-4 )求出的管径为计算管径,不是符合管道规格的管径,还需以此管径值为依据按管道的规格选定相近管径的管道型号。空调水系统通常使用钢管,主要是镀锌钢管和无缝钢管,当管径蕊DN 125 时可采用镀锌钢管,当管径>DN 125 时要采用无缝钢管。 2. 水流阻力的确定 空调水系统的水流阻力一般由设备阻力、管道阻力以及管道附件和管件阻力三部分组成。设备阻力通常可以在设备生产厂家提供的产品样本上查到,因此进行空调水系统水流阻力计算的主要内容是进行直管段的阻力(摩擦阻力)计算及管道附件(如阀门、水过滤器等)与管件(如弯头、三通等)的阻力(局部阻力)计算。 由流体力学知识可知,空调水系统的水流阻力△ P 的基本计算式为:

相关文档
相关文档 最新文档