文档库 最新最全的文档下载
当前位置:文档库 › 美国药典(USP)规定的色谱柱编号对应表

美国药典(USP)规定的色谱柱编号对应表

美国药典(USP)规定的色谱柱编号对应表
美国药典(USP)规定的色谱柱编号对应表

美国药典(USP)规定的色谱柱编号对应表默认分类2009-10-21 16:10:28 阅读44 评论0 字号:大中小美国药典(USP)规定的色谱柱编号对应表

美国药典规定色谱柱类型

L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱 L22:带有磺酸基团的多孔苯乙烯阳离子交换柱 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换柱 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶柱 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW 范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相,即C4柱 L27:30~50mm的全多孔硅胶微粒 L28:多功能载体,100?的高纯硅胶加以氨基键合以及C8反相键合的官能团 L29:氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5mm,孔径80? L30:全多孔硅胶键合乙基硅烷固定相 L31:季胺基改性孔径2000?的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂 L32: L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料 L33:能够分离分子量4000~40000MW范围蛋白质分子的球形硅胶固定相, pH稳定性好 L34:铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9mm球形 L35:锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150? L36:5mm胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰 L37:适合分离分子量2000~40000MW的聚甲基丙烯酸酯凝胶 L38:水溶性甲基丙烯酸酯基质SEC色谱柱 L39:亲水全多孔聚羟基甲基丙烯酸酯色谱柱 L40:Tris 3,5-二甲基苯基氨基甲酸酯纤维素涂覆多孔硅胶微球 L41:球形硅胶表面固定α1酸糖蛋白固定相 L42: C8和C18硅烷化学键合多孔硅胶固定相 L43:硅胶微球键合五氟代苯基固定相

色谱柱的种类与评价

色谱柱的种类与评价 一般地说,根据样品的性质决定采用何种液相色谱方法,然后再选择不同类型的柱。即不同类型的柱则代表了不同的色谱方法。 不同种类色谱柱的差异在于柱结构、柱填料和柱尺寸的不同。 色谱柱有不同的尺寸(长度和内径),分制备型、常规分析型和微型。不同类型柱的硬件也不同,(包括接头、柱管等方面),还有径向加压柱和夹套加热柱等。 不同液相色谱法的尺寸根据需要可以选取,普通分析3~30cm 长,内径4~8mm。常用20cm长、4.6mm内径的柱。制备型柱内径一般为8mm、25cm长。微型柱内径l~3mm,长10~20cm。不同的填料分析的效果可能不同,这是因为生产过程不同所致。同一厂商生产的同种填料因批号不同也会有差异,这种差异可能从基质就开始(表面积、杂质、特殊处理),还有键合的化学物质(一氯或三氯硅烷反应剂),不同厂家生产的填料还会因专利技术(预处理、键合过程、填装技术)等不同而呈现较大差异。由于种种差异、仅能假设同一批号的柱有基本相同的性质。

多数柱填料基质采用多孔硅胶微粒,通常有球形和无定形两种,具有不同的粒度、孔径和表面积。多孔聚合物微粒也适用于反相色谱。聚合物柱的流动相范围广,流动相pH值可在1至13之间。而硅胶基质pH仅能在2.5和7之间。显然,聚合物柱要好一些,但目前仍是以硅胶基质的柱为主。原则上,聚合物柱可以克服硅胶基质柱的某些不足,但需要大量的实验来证实,要进一步考查聚合物基质填料的全面优越性。 在实际工作中,选择性能良好的色谱柱可得到好的结果,首先要注意柱径、长度、填料种类和填料粒度。 评价色谱柱的好坏不仅只是N数,还应考虑组分在柱上的保留、键合相表面的物性、柱压降以及峰不对称因子As等。每一根新色谱柱都应标出详细参数,主要内容包括公司名称、柱名称(商标)、柱填料、尺寸。附一张标准参考色谱图,并标出色谱条件、样品名称、流动相组成、流速、柱温、进样体积、检测器、峰的保留时间及峰名称等。评价一根色谱柱的主要指标是:①塔板数N值;②峰不对称因子As;③柱压降;④键合相浓度。 此文章由广州深华生物技术有限公司编辑修改。

美国药典(USP)规定的色谱柱编号

美国药典(USP)规定的色谱柱编号 L1和L8是美国药典(USP)规定的色谱柱编号,其实就是ODS柱和NH2柱。下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50m m表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50m m表面多孔薄壳型硅胶柱 L5:30~50m m表面多孔薄壳型氧化铝柱 L6:30~50m m实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10m m硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10m m全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱

L1和L8是美国药典

L1和L8是美国药典(USP)规定的色谱柱编号(2009-08-13 19:33:47)转载标签:杂谈分类:学术L1和L8是美国药典(USP)规定的色谱柱编号,其实就是ODS柱和NH2柱。下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱

色谱柱的分类及特点

3-1 柱的结构 1、堵棒(或导管) 2、接头 3、接头 4、密封圈 5、螺帽 6、柱密封圈 7、柱管 8、柱填料9 10、过滤片 3-2 柱的分类: 根据所有的担体材料分为三种: a.硅胶型:机械强度高,易制成小颗粒,理论塔板数高。 b.聚全物型:在广泛的PH值范围内稳定 c.羟基磷灰石型:对蛋白质等生物高分子样品有特殊的选择性。 根据分离方式分类: a.硅胶型

1)正相:SIL--磷脂、NH --糖、维生素E,CN--甾类激素。 2)反相:ODS(C18)、(C8 CN TMS Pheny1)低分子量化全物。 3)离子交换: WAX(弱碱阴离子交换)--核苷酸、蛋白质 WCX(弱酸阳离子交换)--蛋白质 SAX(强碱阴离子交换)--核苷酸 SCX(强酸阳离子交换)--儿茶酚胶 4)凝胶过滤: Diol--蛋白质GF--

蛋白质 b.聚合物型: 1)反相:ODP--50--肽,蛋白质,低分化合物。 2)离子交换:ISC--氨基酸,胍类化合物,ISA--糖,IC--无机离子,PA--蛋白质,ES--蛋白质。 3)配位交换:SCR(磺化聚苯乙烯)--糖。 4)离子排阻:SCR-101H 102H --有机酸 5)凝胶过滤:ION--多糖GS--水溶性分子 6)凝胶渗透色谱(GPC):GPD

--合成分子、橡胶。 7)羟基磷灰石型:HPC--蛋白质、核苷酸 按尺寸分类: 1.制备:30mm 50mm 内径,半制备:20mm内径。 2.分析:标准型柱:4_8mm内径。 快速色谱柱:3mm内径、5cm长、4.6mm内径。 小孔径柱:2.5mm内径,微孔径柱1mm内径。 3-3柱的技术指标 *耐压:不小于40Mpa。 *渗透性:反相--流动相甲醇1ml/min,压力3Mpa。

美国药典USP31 71 无菌检查法中文版

美国药典USP31-NF26无菌检查法《71》.doc 71 STERILITY TESTS 无菌检查法 此通则的各部分已经与欧洲药典和/或日本药典的对应部分做了协调。不一致的部分用符号()来标明。 下面这些步骤适用于测定是否某个用于无菌用途的药品是否符合其具体的各论中关于无菌 检查的要求。只要其性质许可,这些药品将使用供试产品无菌检查法项下的膜过滤法来检测。如果膜过滤技术是不适合的,则使用在供试产品无菌检查法项下的培养基直接接种法。除了具有标记为无菌通道的设备之外,所有的设备均须使用培养基直接接种法进行检测。在结果的观测与理解项下包含了复验的规定。 由于无菌检查法是一个非常精确的程序,在此过程中程序的无菌状态必须得到确保以实现对结果的正确理解,因此人员经过适当的培训并取得资质是非常重要的。无菌检查在无菌条件下进行。为了实现这样的条件,试验环境必须调整到适合进行无菌检查的方式。为避免污染而采取的特定预防措施应不会对任何试图在检查中发现的微生物产生影响。通过在工作区域作适当取样并进行适当控制,来定期监测进行此试验的工作条件。 这些药典规定程序自身的设计不能确保一批产品无菌或已经灭菌。这主要是通过灭菌工艺或者无菌操作程序的验证来完成。 当通过适当的药典方法获得了某物品中微生物污染的证据,这样获得的结果是该物品未能达到无菌检验要求的结论性证据,即便使用替代程序得到了不同的结果也无法否定此结果。如要获得关于无菌检验的其他信息,见药品的灭菌和无菌保证<1211> 按照下面描述的方法配制实验用培养基;或者使用脱水培养基,只要根据其制造商或者分销商说明进行恢复之后,其能够符合好氧菌、厌氧菌、霉菌生长促进试验的要求即可。使用经过验证的工艺对培养基进行灭菌操作。 下面的培养基已经被证实适合进行无菌检查。巯基醋酸盐液体培养基主要用于厌氧菌的培养。但其也用于检测好氧菌。大豆酪蛋白消化物培养基适合于培养霉菌和好氧菌。 Fluid Thioglycollate Medium 巯基醋酸盐液体培养基

USP《671》美国药典-包装容器——性能检测译文

《671》包装容器——性能检测 本章规定了用来包装的塑料容器及其组件功能性质上的标准(药品、生物制剂、营养补充剂和医疗器械),定义了保存、包装、存储和标签方面的凡例与要求。本文提供的试验用于确定塑料容器的透湿性和透光率。盛装胶囊和片剂的多单元容器章节适用于多单元容器。盛装胶囊和片剂的单位剂量容器章节适用于单位剂量容器。盛装胶囊和片剂的多单元容器(没有密封) 的章节适用于没有密封的聚乙烯和聚丙烯容器。盛装液体的多元和单元容器的章节适用于多元的和单元的容器。 一个容器想要提供避光保护或作为一个符合耐光要求的容器,由具有耐光的特殊性质的材料组成,包括任何涂层应用。一个无色透明或半透明的容器通过一个不透明的外壳包装变成耐光的(见凡例和要求 ),可免于对光的透射要求。在多单元容器和封盖与水泡的单位剂量容器由衬垫密封情况下,此处使用的术语“容器”指的是整个系统的组成。 盛装胶囊和片剂的多元容器 干燥剂——放置一些颗粒4—8目的无水氯化钙在一个浅的容器里,仔细剔除细粉,然后置于110°干燥,并放在干燥器中冷却。 试验过程——挑选12个类型和尺寸一致的容器,用不起毛的毛巾清洁密闭表面,并打开和关闭每个容器30次。坚决每次应用容器密闭一致。通过扭矩关闭螺旋盖容器,使气密性在附表规定的范围内。10个指定的测试容器添加干燥剂,如果容器容积大于等于20mL,每个填充13mm以内封闭;如果容器的容积小于20毫升,每个填充容器容量的三分之二。如果容器内部的深度超过63mm,惰性填料或垫片可以放置在底部来最小化容器和干燥剂的总重量;干燥剂层在这样一个容器中深度不低于5cm。添加干燥剂之后,立即按附表中规定的扭矩封闭螺旋帽容器。剩余的2个指定为对照容器,每个添加足够数量的玻璃珠,重量约等于每个测试容器的重量,并用附表中规定的扭矩封闭螺旋帽容器。记录各个容器的重量,如果容器的容积小于20毫升,精确到0.1毫克;如果容器容积为20毫升或以上但小于200毫升,精确到毫克;如果容器容积为200毫升及以上,精确到厘克(10毫克);在相对湿度75±3%和温度23±2°的环境下存储。[注意——浓度为35g/100mL的氯化钠溶液放在干燥器底部的渗透系统来维持指定湿度。其他的方法可以用来维护这些条件。] 336±1小时(14天)后,用同样的办法记录每个容器的重

usp美国药典结构梳理

USP35-NF-30结构整理 vivi2010-10-02 USP总目录: 1 New Official Text修订文件 加快修订过程包括勘误表,临时修订声明(IRAS),修订公告。勘误表,临时修订声明,修订公告在USP网站上New Official Text部分刊出,勘误表,临时修订公告也会在PF上刊出2front matter前言 药典与处方集增补删减情况,审核人员,辅料收录情况 3凡例

药典, 1标题和修订 2 药典地位和法律认可 3标准复合性 4专论和通则 5 专论组成 6 检验规范和检验方法 7 测试结果 8 术语和定义 9 处方和配药 10 包装存储与标签 4通则 4.1章节列表 4.2一般检查和含量测定(章节编号小于1000)

检查和含量分析的一般要求 检查和含量分析的仪器, 微生物检查,生物检查和含量测定, 化学检查和含量测定, 物理检查和测定 4.3一般信息(章节号大于1000) 5食物补充剂通则 6试剂(试剂,指示剂,溶液等) 7参考表 性状描述和溶解性查询表(按字母顺序) 8食品补充剂各论(字母顺序) 9NF各论(辅料标准) 10 USP各论 11术语 附件:通则的章节中文目录(使用起来比较方便,直接找对应章节号即可)一、通用试验和检定 (1)试验和检定的总要求 1 注射剂 11 参比标准物 (2)试验和检定的装置 16 自动分析方法 21 测温仪 31 容量装置,如容量瓶、移液管、滴定管,各种规格的误差限度

41 砝码和天平 (3)微生物学试验 51 抗菌效力试验 55 生物指示剂:耐受性能试验 61 微生物限度试验 61 非灭菌制品的微生物检查:计数试验 62 非灭菌制品的特定菌检查,如大肠杆菌、金葡菌、沙门氏菌等 71 无菌试验 (4)生物学试验和检定 81 抗生素微生物检定 85 细菌内毒素试验 87 体外生物反应性试验:检查合成橡胶、塑料、高聚物对哺乳类细胞培养的影响 88 体内生物反应性试验:检查上述物质对小鼠、兔iv、ip或肌内植入的影响 91 泛酸钙检定 111 生物检定法的设计和分析 115 右泛醇检定 121 胰岛素检定 141 蛋白质——生物适应试验,用缺蛋白饲料大鼠,观察水解蛋白注射液和氨基酸混合物的作用 151 热原检查法 161 输血、输液器及类似医疗装置的内毒素、热原、无菌检查 171 维生素B12 活性检定 (5)化学试验和检定 A 鉴别试验 181 有机含氮碱的鉴别 191 一般鉴别试验 193 四环素类鉴别 197 分光光度法鉴别试验 201 薄层色谱鉴别试验 B 限量试验

USP色谱柱解释

L1和L8是美国药典(USP)规定的色谱柱编号,其实就是C18柱和NH2柱。下面是对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称C18或ODS L2:30~50um表面多孔薄壳型键合C18(ODS)固定相 L3:多孔硅胶微粒即一般的硅胶柱 L4:30~50um表面多孔薄壳型硅胶 L5:30~50um表面多孔薄壳型氧化铝 L6:30~50um实心微球表面包覆磺化碳氟聚合物-强阳离子交换固定相 L7:全多孔硅胶微粒键合C8官能团固定相简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相 L10:多孔硅胶微球键合氰基固定相(CN)简称CN柱 L11:键合苯基多孔硅胶微球固定相简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子填料 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1)简称C1柱 L14:10um硅胶化学键合强碱性季铵盐阴离子交换固定相简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L18: 3~10um全多孔硅胶化学键合胺基(NH2)和氰基(CN) L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol)简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球 L22:带有磺酸基团的多孔苯乙烯阳离子交换树脂 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换树脂 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相 L27:30~50um的全多孔硅胶微粒

美国药典USP31(921)翻译版(上)

921WATER DETERMINATION水分测定 Many Pharmacopeial articles either are hydrates or contain water in adsorbed form. As a result, the determination of the water content is important in demonstrating compliance with the Pharmacopeial standards. Generally one of the methods given below is called for in the individual monograph, depending upon the nature of the article. In rare cases, a choice is allowed between two methods. When the article contains water of hydration, the Method I (Titrimetric), the Method II (Azeotropic), or the Method III (Gravimetric) is employed, as directed in the individual monograph, and the requirement is given under the heading Water. 很多药典物品要么是水合物,要么含有处于吸附状态的水。因此,测定水分含量对于证实与药典标准的符合性是很重要的。通常,在具体的各论中会根据该物品的性质,要求使用下面若干方法中的一个。偶尔,会允许在2个方法中任选一个。当该物品含有水合状态的水,按照具体各论中的规定,使用方法I(滴定测量法)、方法II(恒沸测量法)、或方法III(重量分析法),这个要求在标题水分项下给出。 The heading Loss on drying (see Loss on Drying 731) is used in those cases where the loss sustained on heating may be not entirely water. 在加热时的持续失重可能不全是水分的情况下,使用标题干燥失重(见干燥失重<731>)。 METHOD I (TITRIMETRIC) 方法I(滴定测量法) Determine the water by Method Ia, unless otherwise specified in the individual monograph. 除非具体各论中另有规定,使用方法Ia来测定水分。 Method Ia (Direct Titration) 方法Ia(直接滴定) Principle— The titrimetric determination of water is based upon the quantitative reaction of water with an anhydrous solution of sulfur dioxide and iodine in the presence of a buffer that reacts with hydrogen ions. 原理:水分的滴定法检测是基于水与二氧化硫的无水溶液以及存在于缓冲液中与氢离子反应的碘之间的定量反应。 In the original titrimetric solution, known as Karl Fischer Reagent, the sulfur dioxide and iodine are dissolved in pyridine and methanol. The test specimen may be titrated with the Reagent directly, or the analysis may be carried out by a residual titration procedure. The stoichiometry of the reaction

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

美国药典色谱柱分类

L1—Octadecyl silane chemically bonded to porous silica or ceramic micro-particles,3to 10μm in diameter. L2—Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core,30to 50μm in diameter. L3—Porous silica particles,5to 10μm in diameter. L4—Silica gel of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L5—Alumina of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L6—Strong cation-exchange packing–sulfonated fluorocarbon polymer coated on a solid spherical core,30to 50μm in diameter. L7—Octylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter. L8—An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support,10μm in diameter. L9—10-μm irregular or spherical,totally porous silica gel having a chemically bonded,strongly acidic cation-exchange coating. L10—Nitrile groups chemically bonded to porous silica particles,3to 10μm in diameter. L11—Phenyl groups chemically bonded to porous silica particles,5to 10μm in diameter. L12—Astrong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core,30to 50μm in diameter. L13—Trimethylsilane chemically bonded to porous silica particles,3to 10μm in diameter. L14—Silica gel 10μm in diameter having a chemically bonded,strongly basic quaternary ammonium anion-exchange coating. L15—Hexylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter.

美国药典USP气相色谱柱对照表

美国药典USP气相色谱柱对照表 L62 C30硅胶键合于完全多孔球状硅胶,粒径3~15μm。 G48 Highly polar, partially cross-linked cyanopolysiloxane. Rt-2560 G46 14% 氰丙基苯基- 86% 甲基聚硅氧烷 CB-1701MXT?-1701Rtx?-1701VF-1701ms OV-1701CBX-1701DB-1701DB-1701P G43 6% 氰丙基苯基- 94% 二甲基聚硅氧烷 MXT?-624DB-624MXT?-Volatiles CBX-1301 MXT?-1301OV-1301CB-624Rtx?-1301 VF-624ms/VF-1301ms Rtx?-624CB-1301CBX-624 G42 35% 苯基- 65% 二甲基乙烯聚硅氧烷 DB-35Rtx?-35MXT?-35CBX-35 HP-35DB-35MS G38 固定相G1 加减尾剂 MXT-1Rtx?-1MS Rtx?-1 G36 1% 乙烯基- 5% 苯基甲基聚硅氧烷 Rtx?-5MS Rtx?-5CBX-5MXT?-5 G35 聚乙二醇和硝基对苯二甲酸二乙二醇酯 DB-FFAP HP-FFAP CB-FFAP G32 20% Phenylmethyl-80% dimethylpolysiloxane. MXT?-20 G27 5% 苯基- 95% 甲基聚硅氧烷 CB-5XTI?-5Rtx?-5SIL MS VF-5ms Rtx?-5PONA HP-5MS HP-5DB-5MS SE-52DB-5SE-54 G25 聚乙二醇TPA(Carbowax 20M 对苯二酸) FFAP CBX-FFAP G19 25% 苯基- 25% 氰丙基甲基聚硅氧烷 OV-225Rtx?-225VF-23ms CBX-225 G17 75% 苯基- 25% 甲基聚硅氧烷 MXT?-65 G16 聚乙二醇(平均分子量15,000) DB-WAX CBX-Wax CB-WAX Stabilwax?PEG-20M Stabilwax?-DB Stabilwax?-DA MXT?-WAX

美国药典USP40-左氧氟沙星API

USP 40 Official Monographs / Levofloxacin 4831 Acceptance criteria: See Table 1. Sample solution: 1mg/mL of Levofloxacin in Mobile phase Chromatographic system Table 1(See Chromatography ?621?, System Suitability .)Relative Relative Acceptance Mode: LC Retention Response Criteria,Detector: UV 360 nm Name Time Factor NMT (%) Column: 4.6-mm × 25-cm; 5-μm packing L1Levodopa related Column temperature: 45°compound A 0.90.830.1Flow rate: 0.8mL/min Injection size: 25μL Levodopa 1.0——System suitability Levodopa related Sample: Standard solution compound B 2.8 0.83 0.5 Suitability requirements 5,6-Dihydroxy-in-Tailing factor: 0.5–1.5 dole-2-carboxylic Relative standard deviation: NMT 1.0%acid 6.0 2.5 0.1Analysis 0.1Samples: Standard solution and Sample solution individual Calculate the percentage of levofloxacin (C 18H 20FN 3O 4)— 0.3 total in the portion of Levofloxacin taken: Unknown impurities 1.0unknown Total impurities — — 1.1 Result = (r U /r S ) × (C S /C U ) × 100 r U = peak response of levofloxacin from the Sample ADDITIONAL REQUIREMENTS solution ?P ACKAGING AND S TORAGE : Preserve in tight, light-resistant r S = peak response of levofloxacin from the containers, in a dry place, and prevent exposure to ex-Standard solution cessive heat. C S = concentration of USP Levofloxacin RS in the ?USP R EFERENCE S TANDARDS ?11?Standard solution (mg/mL) USP Levodopa RS C U = concentration of Levofloxacin in the Sample USP Levodopa Related Compound A RS solution (mg/mL) 3-(3,4,6-Trihydroxyphenyl)alanine.Acceptance criteria: 98.0%–102.0% on the anhydrous C 9H 11NO 5213.19 basis USP Levodopa Related Compound B RS 3-Methoxytyrosine.IMPURITIES C 10H 13NO 4211.22 ?R ESIDUE ON I GNITION ?281?: NMT 0.2%. Use a platinum crucible. Delete the following: Levofloxacin ??H EAVY M ETALS , Method II ?231?: NMT 10ppm ?(Official 1-Jan-2018) ?O RGANIC I MPURITIES , P ROCEDURE 1 [N OTE —Procedure 1 is recommended if levofloxacin N -ox-ide is a potential organic impurity. Procedure 2 and Pro-cedure 3 are recommended if levofloxacin related com-pound B is a potential organic impurity.] Solution A, Mobile phase, Sample solution, and Chro-matographic system: Proceed as directed in the C 18H 20FN 3O 4·1/2H 2O 370.38Assay . 7H -Pyrido[1,2,3-de ]-1,4-benzoxazine-6-carboxylic acid, System suitability solution: 1mg/mL of USP Levoflox-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-acin RS in Mobile phase 7-oxo-hydrate (2:1), (S )-; Sensitivity solution: 0.3μg/mL of USP Levofloxacin RS (?)-(S )-9-Fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piper-in Mobile phase azinyl)-7-oxo-7H -pyrido[1,2,3-de ]-1,4-benzoxazine-6-car-System suitability boxylic acid, hemihydrate [138199-71-0].Samples: System suitability solution and Sensitivity Anhydrous [100986-85-41]. solution Suitability requirements DEFINITION Relative standard deviation: NMT 1.0%, System suit-Levofloxacin contains NLT 98.0% and NMT 102.0% of ability solution C 18H 20FN 3O 4, calculated on the anhydrous basis.Signal-to-noise ratio: NLT 10, Sensitivity solution IDENTIFICATION Analysis ?A . I NFRARED A BSORPTION ?197K ? Sample: Sample solution ?B . The retention time of the major peak of the Sample Calculate the percentage of each individual impurity in solution corresponds to that of the Standard solution , as the portion of Levofloxacin taken: obtained in the Assay.Result = (r U /r S ) × (1/F ) × 100 ASSAY ?P ROCEDURE r U = peak response of each impurity Buffer: 8.5g/L of ammonium acetate, 1.25g/L of cu-r S = peak response of levofloxacin pric sulfate, pentahydrate, and 1.3g/L of L -isoleucine in F = relative response factor (see Table 1)water Acceptance criteria: See Table 1. Mobile phase: Methanol and Buffer (3:7) Standard solution: 1mg/mL of USP Levofloxacin RS in Mobile phase USP Monographs

气相色谱色谱柱的选择及分类

气相色谱色谱柱的选择及分类 1.1 固定相的选择 当面对一个未知物时,先试用现有GC柱,如果该柱分离不理想,根据你对样品的了解,基本原则是分析物与固定相有相似化学性质时才会相互作用。这说明对样品越了解,越容易找到合适的固定相。 非极性分子——通常仅由C和H组成并且无偶极矩,直联(正烷)是常见的非极性化合物的例子。 极性分子——主要由C和H组成同时也有其他原子,如:N、O、P、S或卤素。样品包括有醇类、胺类、硫醇类、酮类、有机卤化物等。 可极化物质——主要由C和H组成同时包含不饱和键。通常有:炔和芳香族化合物。 如果你的样品是具有相似的化学性质的非极性组分的混合物,比如大多数石油馏分中的烃,你可以试用OV-1毛细管色谱柱,它按沸点顺序分离。如果你怀疑有芳族化合物,试着用有苯基的SE-52或SE-54柱。 极性或可极化组分样品能够在中极性和/或可极化固定相色谱柱上进行分析,如有苯基或类似基团固定相,比如OV-17或OV-225柱。如果需要更高极性,可以选用聚乙二醇(PEG)固定相,即通常所说的WAX固定相。 1.2膜厚选择 薄膜比厚膜洗脱组分快、峰分离好、温度低。 一般而言,色谱柱的膜厚为0.25到0.5μm。对于流出达300℃的大多数样品(包括蜡、甘油三脂、甾族化合物等)能够很好的分析。对于更高的洗脱温度,可以用0.1μm的液膜。而厚液膜对于低沸点化合物有利,对于流出温度在100℃~200℃之间的物质,用1~1.5μm的液膜效果较好。超厚膜(3~5μm)用于分析气体、溶剂和可吹扫出来的物质,以增加样品组分与固定相的相互作用。另一个选择厚膜的原因是当用大口径柱时保持分离度和保留时间。由于这个原因,大口径柱都只有厚膜。厚膜的流失较大,温度极限必须随膜厚度增加而下降。 1.3长度选择 一般情况,15m柱用于快速筛选简单混合物或分子量极高的化合物。30m柱是最普遍的柱长。超长柱(50、60或100m、150m)用于非常复杂的样品。

相关文档
相关文档 最新文档