文档库 最新最全的文档下载
当前位置:文档库 › 生物化学脂类代谢习题答案

生物化学脂类代谢习题答案

生物化学脂类代谢习题答案
生物化学脂类代谢习题答案

脂类代谢

一、问答题

1、为什么摄入糖量过多容易长胖?

答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。

2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点?

答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;

②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。

3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。

4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。

答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。

5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么?

答:转变成胆汁酸、甾类激素、维生素D;

基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯

关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶)

6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

7、为什么在大多数情况下,真核生物仅限于合成软脂酸?

答:因为在真核生物中,β—酮脂酞—ACP缩合酶对链长有专一性,它接受14碳酸基的活力最强,所以,在大多数情况下,仅限于合成软脂酸。另外,软脂酸CoA对脂肪酸合成的限速酶乙酰CoA羧化酶有反馈抑制作用,所以通常只合成软脂酸,16碳以上的脂肪酸需在延长酶系的作用下生成。

二、名词解释:

脂肪酸的β—氧化:进入线粒体的脂酰CoA在酶的作用下,从脂肪酸的β—碳原子开始,依次两个两个碳原子进行水解,这一过程称为β—氧化。

酮体:酮体是丙酮、乙酰乙酸、β—羟丁酸三种物质的总称。

柠檬酸穿梭系统:在动物体中,柠檬酸穿梭是指线粒体内的乙酰CoA与草酰乙酸在柠檬酸合酶的催化下缩合生成柠檬酸,然后经内膜上的三羧酸转运蛋白运至胞液中,在柠檬酸裂解酶的催化下再重新生成乙酰CoA,这过程需消耗ATP将柠檬酸裂解回草酰乙酸和乙酰CoA,后者就可以用于脂肪酸合成,而草酰乙酸经还原成苹果酸,再氧化脱羧成丙酮酸,苹果酸和丙酮酸经内膜载体运回线粒体,丙酮酸在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可以又一次参与转运乙酰

CoA的循环。

必需脂肪酸:哺乳动物体内不能合成需从食物中摄取,维持动物正常生长所必需的脂肪酸称为必需脂肪酸。

三、填空题:

1.人体不能合成而需要由食物提供的必需脂肪酸有亚麻酸、亚油酸、花生四烯酸。

2.每一分子脂肪酸被活化为脂酰CoA需消耗 2 个高能磷酸键。3.一分子十四碳长链脂酰CoA可经 6 次β—氧化生成

7 个乙酰CoA。

5.脂酰CoA每一次β—氧化需经脱氢、水化、脱氢

和硫解等过程。

6.酮体指丙酮、乙酰乙酸和β—羟丁酸。

7.酮体合成的酶系存在肝内线粒体内膜,氧化利用的酶系存在于肝外线粒体。

8.脂肪酸合成过程中,超过16碳的脂肪酸主要通过

线粒体和内质网亚细胞器的酶系参与延长碳链。

9、脂肪酸的合成前体是乙酰CoA ,它主要存在于线粒体,需要通过柠檬酸穿梭系统跨膜传递机制进入胞液参加脂肪酸的合成。

10、脂肪酸合成过程中,逐加的二碳单位来自丙二酸单酰CoA 。

11、脂肪酸的合成主要在____胞液______进行,合成原料中的供氢体是___乙酰CoA______,它主要来自____糖酵解产物丙酮酸______。

13、脂肪动员是指脂肪在脂肪酶的作用下水解为

甘油和脂肪酸,以供其他组织的氧化利用。

三、单项选择题(在备选答案中只有一个是正确的)

1.脂肪酸彻底氧化的产物是:( D )

A.乙酰CoAB.脂酰CoA

C.H2O、CO2及释出的能量 D.乙酰CoA及FADH2、NADH + H+ 2.酮体生成过多主要见于:( D )

A.摄入脂肪过多 B.肝内脂肪代谢紊乱

C.脂肪运转障碍D.糖供给不足或利用障碍

3.关于脂肪酸从头合成的叙述,不正确的是:( B )

A.在胞液中进行

B.基本原料是乙酰CoA和NADPH+H+

C.关键酶是乙酰CoA羧化酶

D.脂肪酸合成过程中碳链延长需乙酰CoA提供乙酰基

4.下列与脂肪酸氧化无关的物质是:( D )

A.肉毒碱 B.CoASH C.NAD+D.NADP+

5.在脂肪酸β-氧化过程中将脂酰基载入线粒体的是:( B ) A.ACP B.肉碱 C.柠檬酸 D.乙酰CoA

6. 在动物体内,下列脂肪酸氧化产生的乙酰CoA的去向哪点不正确( B )

A.参与三羧酸循环氧化 B.净合成葡萄糖

C.合成胆固醇 D.在肝细胞内合成酮体

7.对患严重糖尿病的病人来说,下列哪一个不是其脂肪代谢的特点?( D )

A.脂肪的分解增多,人体消瘦 B.血液中酮体的含量较高

C.脂肪酸合成减少D.胆固醇的合成减少

8、下列哪种组织不能利用酮体?( B )

A.心脏 B.肝脏C.脑 D.肾上腺皮质

四、判断是非题。()

1、人体脂肪酸可转变为葡萄糖。(x )

2、在糖供应不足的情况下,脑可利用酮体作为燃料。(√)

3、人体可合成亚油酸和油酸。(×)

4、哺乳动物只能在9位和9位与羧基之间引入双键。(x )

5、自然界多不饱和脂肪酸的双键一般为顺式,双键间间隔一个亚甲基。(√)

6、酮体所包括的三种物质均可在肝外组织转变成乙酰CoA被利用。(x )

关于生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO和HO可净生成多少molATP。22答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一 次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成、的ATP,因此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×+1×+3-1=。

4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO和HO时净生成的ATP的22摩尔数。. 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。 7、为什么在大多数情况下,真核生物仅限于合成软脂酸? 答:因为在真核生物中,β—酮脂酞—ACP缩合酶对链长有专一性,它接受14碳酸基的活力最强,所以,在大多数情况下,仅限于合成软脂酸。另外,软脂酸CoA对脂肪酸合成的限速酶乙酰CoA羧化酶

生物化学脂类代谢

掌握内容: 必需脂酸的概念及种类: 人体需要但又不能合成,必须从食物中获取的脂酸。人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。 脂肪动员: 概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。甘油三酯脂肪酶是脂肪动员的限速酶。(过程PPT29、30) 激素敏感性脂肪酶的定义和作用: 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶 脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素 抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸) 甘油的代谢甘油的主要去路: *经糖异生转变为葡萄糖 *氧化分解为水、二氧化碳、提供能量 *参与TG和磷脂的合成 甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能 ↓↓

合成磷脂和TG 糖异生 脂酸的氧化分解 概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A. 部位:肝、肌肉(脑和成熟红细胞不行) 反应阶段:1)脂酸的活化(胞液) 2)脂酰辅酶A进入线粒体 3)脂酰COA的β--氧化(线粒体) 过程及酶;

有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+) 1)软脂酸(16C饱和脂酸的)活化—2ATP 2)7次β--氧化4*7ATP 3)8乙酰COA进入TCA循环彻底氧化10*8ATP 净生成106ATP 脂酰辅酶Aβ--氧化小结 部位:线粒体 四部连续反应:脱氢、加水、再脱氢、硫解

生物化学-考试知识点_3脂质代谢

脂类代谢一级要求单选题 1 2 3 下列对血浆脂蛋白描述,哪一种不正确? A是脂类在血浆中的存在形式 B C D E 是脂类在血浆中的运输形式 是脂类与载脂蛋白的结合形式 脂肪酸-清蛋白复合物也是一种血浆脂蛋白 可被激素敏感脂肪酶所水解 E 用电泳法或超速离心法可将血浆脂蛋白分为四类,它们包括: A B C D E CM+α-脂蛋白+β-脂蛋白+高密度脂蛋白(HDL) CM+β-脂蛋白+α-脂蛋白+低密度脂蛋白(LDL) CM+α-脂蛋白+前β-脂蛋白+HDL CM+β-脂蛋白+前β-脂蛋白+HDL CM+β-脂蛋白+前β-脂蛋白+极低密度脂蛋白(VLDL) D 对于下列各种血浆脂蛋白的作用,哪种描述是正确的? A B C D E CM主要转运内源性 TG VLDL主要转运外源性 TG HDL主要将Ch从肝内转运至肝外组织 中间密度脂蛋白(IDL)主要转运 TG LDL是运输Ch的主要形式 E 4 5 6 7 8 胰高血糖素促进脂肪动员,主要是使: A C E LPL活性增高 B D DG脂肪酶活性升高 MG脂肪酶活性升高 TG脂肪酶活性升高 组织脂肪酶活性升高 C 控制长链脂肪酰辅酶A进入线粒体氧化速度的因素是: A脂酰辅酶A(CoA)合成酶活性 B D ADP含量 C E 脂酰CoA脱氢酶的活性 HSCoA的含量 肉毒碱脂酰转移酶的活性 D 脂肪酸的β-氧化需要下列哪组维生素参加? A维生素B1+维生素B2+泛酸 B D 维生素B12+叶酸+维生素B2 生物素+维生素B6+泛酸 C E 维生素B6+泛酸+维生素B1 维生素B2+维生素PP+泛酸 E 脂肪酸进行β-氧化前,必需先活化转变为脂酰CoA,主要是因为: A脂酰CoA水溶性增加 B D 有利于肉毒碱转运 C E 是肉毒碱脂酰转移酶的激活作为脂酰CoA脱氢酶的底物激活物 作为烯脂酰CoA水合酶的底物 D 下列哪种描述不适合于脂肪酸的β-氧化? Aβ-氧化是在线粒体中进行的 B C D E β-氧化的起始物是脂酰 CoA β-氧化的产物是乙酰 CoA β-氧化中脱下的二对氢给黄素腺嘌呤二核苷酸(FAD)及辅酶II(NADP+) 每经一次β-氧化可产生5摩尔三磷酸腺苷(ATP) D

生物化学真题之脂类代谢与合成

脂代谢 2014简述细胞质内脂肪酸氧化降解的三个步骤及其相关活性载体 (未) 第一个步骤是脂肪酸的 -氧化。 -氧化又包括活化、氧化、水合、氧化、断裂这五个步骤。每一轮氧化切下两个碳原子即乙酰辅酶A 第二个步骤是 氧化形成的乙酰辅酶A进入柠檬酸循环,继续被氧化最后脱出二氧化碳。 第三个大步骤中脂肪酸氧化过程中产出还原型的电子传递分子一一NADH和FADH2它们在第三步骤中把电子送到线粒体呼吸链,经过呼吸链,电子被运送给氧原子,伴随这个电子的流动,ADP经磷酸化作用转化为ATP。 所涉及的相关活性载体包括 -氧化中将脂肪酸的形式乙酰辅酶A转送到线粒体的载体肉碱。第三个步骤电子传递的载体包括:NADH-Q还原酶、琥珀酸一Q还原酶、细胞色素还原酶、细胞色素氧化酶等 2011脂肪酸 氧化和载体 脂肪酸 氧化共包括五个步骤 1?活化:脂肪酸在硫激酶的作用下形成脂酰辅酶A 2?氧化:脂酰辅酶A的羧基邻位被脂酰辅酶A脱氢酶作用,脱下两个氢原子转化为反式-2-烯酰辅酶A,同时产生FADH2

3?水合:反式-2-烯酰辅酶A水合成3-羟脂酰辅酶A,这部反应是在烯酰辅酶A 水合酶的作用下完成的 4?氧化:3-羟脂酰辅酶A在3-羟脂酰辅酶A脱氢酶的作用下转化为3-酮脂酰辅酶A,并产生NADH 5?硫解:3-同脂酰辅酶A受第二个辅酶A的作用发生硫解,断裂为乙酰辅酶A和一个缩短了两个碳原子的脂酰辅酶A,这部反应是在-酮硫解酶的催化下。 其总结果是脂肪酸链以乙酰辅酶A形式自羧基端脱下两个碳原子单元,缩短了的脂肪酸以脂酰辅酶A形式残留,又进入下一轮-氧化。 2010磷脂合成的共性 脂质合成所包括的绝大多数反应发生在膜结构的表面,与之相关的各种酶具有两亲性。 甘油磷脂合成的第一阶段是甘油-3-磷酸形成磷脂酸的反应途径,甘油酸和脂酰辅酶A在脂酰转移酶的作用下生成磷脂酸。磷脂酸一旦形成就很快转移为二脂酰甘油和CDP-二脂酰甘油。 常见的磷脂如磷脂酰乙醇胺、磷脂酰甘油、二磷脂酰甘油,这三种甘油磷脂的生物合成途径从开始到CDP-二脂酰甘油的生物合成途径是共通的,自CDP-二脂酰甘油一下就分别有各自的途径。这里说的CDP是5—胞苷二磷 酸。 2009某细胞内草酰乙酸的浓度对脂肪酸的合成有何影响? 草酰乙酸是柠檬酸循环的中间产物,其浓度在柠檬酸循环中有重要作用,是循环中最关键的底物之一。在肝脏中,决定乙酰辅酶A去向的是草酰乙酸,它带动乙酰辅酶A进入柠檬酸循环。进而影响到脂肪酸合成。 当草酰乙酸浓度低时,则不能充分带动乙酰辅酶 A 进入柠檬酸循环,换言之就是无法合成足够的柠檬酸。而柠檬酸又是脂肪酸合成中将乙酰辅酶 A 从线粒体转运到细胞溶胶中的三羧酸转运体系的基础,柠檬酸是乙酰基的载体。所以脂肪酸必然受到抑制。当草酰乙酸浓度高时,即能合成充分的柠檬酸,也意味着细胞溶胶中将会有

脂类代谢考试试题及答案

第九章脂类代谢 一、选择题(请将选择的正确答案的字母填写在题号前面的括号内) ()1合成甘油酯最强的器官是 A 肝; B 肾; C 脑; D 小肠。 ()2、小肠粘膜细胞再合成脂肪的原料主要来源于 A 小肠粘膜吸收来的脂肪水解产物; B 肝细胞合成的脂肪到达小肠后被消化的产物 C 小肠粘膜细胞吸收来的胆固醇水解产物; D 脂肪组织的水解产物; E 以上都对。 ()3、线粒体外脂肪酸合成的限速酶是 A 酰基转移酶; B 乙酰辅酶A羧化酶; C 肉毒碱脂酰辅酶A转移酶Ⅰ; D 肉毒碱脂酰辅酶A转移酶Ⅱ; E β—酮脂酰还原酶。 ()4、酮体肝外氧化,原因是肝脏内缺乏 A 乙酰乙酰辅酶A硫解酶; B 琥珀酰辅酶A转移酶; C β—羟丁酸脱氢酶; D β—羟—β—甲戊二酸单酰辅酶A合成酶; E 羟甲基戊二酸单酰辅酶A裂解酶。 ()5、卵磷脂含有的成分是 A 脂肪酸、甘油、磷酸和乙醇胺; B 脂肪酸、甘油、磷酸和胆碱; C 脂肪酸、甘油、磷酸和丝氨酸; D 脂肪酸、磷酸和胆碱; E 脂肪酸、甘油、磷酸。 ()6、脂酰辅酶A的β—氧化过程顺序是 A 脱氢、加水、再脱氢、加水; B 脱氢、脱水、再脱氢、硫解; C 脱氢、加水、再脱氢、硫解; D 水合、加水、再脱氢、硫解。 ()7、人体内的多不饱和脂肪酸是指 A 油酸、软脂肪酸; B 油酸、亚油酸; C 亚油酸、亚麻酸; D 软脂肪酸、亚油酸。 ()8、可由呼吸道呼出的酮体是 A 乙酰乙酸; B β—羟丁酸; C 乙酰乙酰辅酶A; D 丙酮。 ()9、与脂肪酸的合成原料和部位无关的是

A 乙酰辅酶A; B NADPH+H+; C 线粒体外; D 肉毒碱;E、HCO3- ()10、并非以FAD为辅助因子的脱氢酶有 A 琥珀酸脱氢酶; B 脂酰辅酶A脱氢酶; C 二氢硫辛酸脱氢酶; D β—羟脂酰辅酶A脱氢酶。 ()11、不能产生乙酰辅酶A的是 A 酮体; B 脂肪酸; C 胆固醇; D 磷脂; E 葡萄糖。 ()12、甘油磷酸合成过程中需哪一种核苷酸参与 A ATP; B CTP; C TTP; D UDP; E GTP。 ()13、脂肪酸分解产生的乙酰辅酶A的去路 A 合成脂肪酸; B 氧化供能; C 合成酮体; D 合成胆固醇; E 以上都是。()14、胆固醇合成的限速酶是 A HMGCoA合成酶; B 乙酰辅酶A羧化酶; C HMGCoA还原酶; D 乙酰乙酰辅酶A硫解酶。 ()15、胆汁酸来源于 A 胆色素; B 胆红素; C 胆绿素; D 胆固醇。 ()16、脂肪酸β—氧化的限速酶是 A 肉毒碱脂酰转移酶Ⅰ; B 肉毒碱脂酰转移酶Ⅱ C 脂酰辅酶A脱氢酶; D β—羟脂酰辅酶A脱氢酶; E β—酮脂酰辅酶A硫解酶。 ()17、β—氧化过程的逆反应可见于 A 胞液中脂肪酸的合成; B 胞液中胆固醇的合成; C 线粒体中脂肪酸的延长; D 内质网中脂肪酸的合成。 ()18、并非类脂的是 A 胆固醇; B 鞘脂; C 甘油磷脂; D 神经节苷脂; E 甘油二脂。 ()19、缺乏维生素B2时,β—氧化过程中哪一个中间产物合成受到障碍? A 脂酰辅酶A; B β—酮脂酰辅酶A; C α,β—烯脂酰辅酶A ; D L—β—羟脂酰辅酶A; E 都不受影响。 ()20、合成胆固醇的原料不需要 A 乙酰辅酶A; B NADPH; C A TP ; D O2。 ()21、由胆固醇转变而来的是

生物必修一知识点复习提纲完整版

第一章走进细胞 第1节从生物圈到细胞 1.病毒没有细胞结构,必须依赖活细胞才能生存。 2.生命系统结构层次:细胞、组织、器官、系统、个体、种群、群落、生态系统、生物圈。 [血液:组织][皮肤:器官][植物没有系统结构] [组织——①人:结缔、肌肉、神经、保护②植物:保护、疏导、营养、分生] 3.细胞是除病毒外的生物体结构和功能的基本单位。(还是代谢和遗传的基本单位) 4.单细胞生物:单个细胞就能完成各种生命活动; 多细胞生物:依赖各种分化的细胞密切合作,共同完成一系列复杂的生命活动。 [代谢:生物与环境间物质和能量的交换;增殖、分化:生长发育;基因的传递和变化:遗传和变异] 5.各种生物的生命活动都是在细胞内或细胞参与下完成的。 第2节细胞的多样性和统一性 ◎显微镜 1.高倍镜:“不要动粗” 2.高倍镜视野暗,低倍镜视野亮 *3.物镜:有螺纹。镜筒越长,放大倍数越大。 目镜:无螺纹。镜筒越短,放大倍数越大。 4.放大倍数=物镜放大倍数×目镜放大倍数 *5.①一行细胞数目计算方法:个数×放大倍数的倒数=最后看到的细胞数。 (如:在目镜10×,物镜10×的视野中有一行细胞,数目是20个,目镜不换,物镜换成40×那么在视野中能看见多少个细胞: 答:20×?=5) ②圆形视野范围细胞的数目计算方法:个数×放大倍数的倒数2=最后看到的细胞数。 一、原核细胞和真核细胞(有无以核膜为界限的细胞核) 1.原核生物:细菌(球、杆、螺旋菌、乳酸菌)、衣原体、蓝藻、支原体(没有细胞壁,最小的细胞生物)、放线菌、立克次氏体 真核生物:植物、动物、真菌(蘑菇、酵母菌、霉菌、大型真菌) 病毒非真非原 [蓝藻:发菜、颤藻、念珠藻、蓝球藻。蓝藻没有成型的细胞核,有拟核——环状DNA分子 蓝藻细胞质:含蓝藻素和叶绿素,就能进行光合作用(自养生物),还含有核糖体]

第八章 脂类代谢习题

第八章脂类代谢 一、名词解释 1.脂肪酸的β—氧化:脂脂肪酸在一系列酶的催化下,在ɑ、β碳原子间断裂,β-碳原子被氧化成羧基,生成乙酰CoA和比原先少两个碳的脂酰CoA的过程; 2.必需脂肪酸:人或动物正常生长发育羧必需的,而自身又不能合成,只有从食物中获得,的脂肪酸,通常指:亚油酸、亚麻酸和花生四烯酸; 3.-氧化及其它代谢产生的乙酰CoA,在一般细胞中可进入三羧酸循环进行氧化分解,但在肝脏细胞中,其氧化则不很完全,出现一些氧化的中 -羟丁酸和丙酮,它们称为酮体。肝脏生成的酮体可在肝外组织被利用; 4.血脂:血浆中所含的之类统称为血脂,包括甘油三酯、磷脂、胆固醇、胆固醇酯、游离脂肪酸等; 5.外源性脂类: 6.内源性脂类: 7. 脂肪酸α-氧化:α-氧化作用在哺乳动物的脑组织和神经细胞的微粒体中进行,由微粒体氧化酶系催化,使游离的长链脂肪酸在α-碳原子上的氢被氧化成羟基,生成α-羟脂酸。长链的α-羟脂酸是脑组织中脑苷脂的重要成分,α-羟脂酸可以进一步氧化脱羧,形成少一个碳原子的脂肪酸; 8. 脂肪酸ω-氧化:动物体内十二碳以下的短链脂肪酸,在肝微粒氧化酶系催化下,通过碳链甲基端碳原子(ω﹣碳原子)上的氢被氧化成羟基,生成ω﹣羟脂酸、ω﹣醛脂酸等中间产物,再进一步氧化为α,ω﹣二羧酸; 9. 柠檬酸-丙酮酸循环:线粒体内乙酰辅酶A与草酰乙酸缩合柠檬酸然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下需消耗ATP将柠檬酸裂解回草酰乙酸和乙酰辅酶A,后者可利用脂肪酸合成,而草酰乙酸经还原后在苹果酸脱氢酶的催化下生成苹果酸,苹果酸又在苹果酸酶的催化下变成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸; 10. 简单脂质:由脂肪酸与醇(甘油醇、一元醇)所形成的脂,分为脂、油、蜡;

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃肠腔肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收吸收途径:

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 第四阶段:氧化磷酸化 CO 2 NADH+FADH 2 H 2 O [O] TAC 循环 ATP ADP 变 五、糖的有氧氧化 1、反应过程 -1 NAD + 乳 酸 NADH+H + 调节方式 ① 别构调节 ② 共价修饰调 第一阶段:糖酵解途径 G (Gn ) 丙酮酸乙酰CoA 胞液 线粒体

○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: ③乙酰CoA 进入柠檬酸循环及氧化磷酸化生成ATP 概述:三羧酸循环(Tricarboxylic acid Cycle, TAC )也称为柠檬酸循环或 Krebs 循环,这是因为循环反应中第一个中间产物是含三个羧基的柠檬酸。它由一连串反应组成。 反应部位:所有的反应均在线粒体(mitochondria)中进行。 涉及反应和物质:经过一轮循环,乙酰CoA 的2个碳原子被氧化成CO 2;在循 环中有1次底物水平磷酸化,可生成1分子ATP ;有4次脱氢反应,氢的接受体分别为NAD +或FAD ,生成3分子NADH+H+和1分子FADH2。 总反应式:1乙酰CoA + 3NAD + + FAD + GDP + Pi + 2H 2O2CO 2 + 3(NADH+H + ) + FADH 2 + CoA + GTP 特点:整个循环反应为不可逆反应 生理意义:1. 柠檬酸循环是三大营养物质分解产能的共同通路 。 2. 柠檬酸循环是糖、脂肪、氨基酸代谢联系的枢纽。 丙酮酸乙酰CoA + + 丙酮酸脱氢酶复合体

生物化学脂类代谢习题答案

脂类代 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

脂类代谢考试试题及答案

第九章脂类代 一、选择题(请将选择的正确答案的字母填写在题号前面的括号) ()1合成甘油酯最强的器官是 A 肝; B 肾; C 脑; D 小肠。 ()2、小肠粘膜细胞再合成脂肪的原料主要来源于 A 小肠粘膜吸收来的脂肪水解产物; B 肝细胞合成的脂肪到达小肠后被消化的产物 C 小肠粘膜细胞吸收来的胆固醇水解产物; D 脂肪组织的水解产物; E 以上都对。 ()3、线粒体外脂肪酸合成的限速酶是 A 酰基转移酶; B 乙酰辅酶A羧化酶; C 肉毒碱脂酰辅酶A转移酶Ⅰ; D 肉毒碱脂酰辅酶A转移酶Ⅱ; E β—酮脂酰还原酶。 ()4、酮体肝外氧化,原因是肝脏缺乏 A 乙酰乙酰辅酶A硫解酶; B 琥珀酰辅酶A转移酶; C β—羟丁酸脱氢酶; D β—羟—β—甲戊二酸单酰辅酶A合成酶; E 羟甲基戊二酸单酰辅酶A裂解酶。 ()5、卵磷脂含有的成分是 A 脂肪酸、甘油、磷酸和乙醇胺; B 脂肪酸、甘油、磷酸和胆碱; C 脂肪酸、甘油、磷酸和丝氨酸; D 脂肪酸、磷酸和胆碱; E 脂肪酸、甘油、磷酸。 ()6、脂酰辅酶A的β—氧化过程顺序是 A 脱氢、加水、再脱氢、加水; B 脱氢、脱水、再脱氢、硫解; C 脱氢、加水、再脱氢、硫解; D 水合、加水、再脱氢、硫解。 ()7、人体的多不饱和脂肪酸是指 A 油酸、软脂肪酸; B 油酸、亚油酸; C 亚油酸、亚麻酸; D 软脂肪酸、亚油酸。 ()8、可由呼吸道呼出的酮体是 A 乙酰乙酸; B β—羟丁酸; C 乙酰乙酰辅酶A; D 丙酮。 ()9、与脂肪酸的合成原料和部位无关的是

A 乙酰辅酶A; B NADPH+H+; C 线粒体外; D 肉毒碱;E、HCO3- ()10、并非以FAD为辅助因子的脱氢酶有 A 琥珀酸脱氢酶; B 脂酰辅酶A脱氢酶; C 二氢硫辛酸脱氢酶; D β—羟脂酰辅酶A脱氢酶。 ()11、不能产生乙酰辅酶A的是 A 酮体; B 脂肪酸; C 胆固醇; D 磷脂; E 葡萄糖。 ()12、甘油磷酸合成过程中需哪一种核苷酸参与 A ATP; B CTP; C TTP; D UDP; E GTP。 ()13、脂肪酸分解产生的乙酰辅酶A的去路 A 合成脂肪酸; B 氧化供能; C 合成酮体; D 合成胆固醇; E 以上都是。()14、胆固醇合成的限速酶是 A HMGCoA合成酶; B 乙酰辅酶A羧化酶; C HMGCoA还原酶; D 乙酰乙酰辅酶A硫解酶。 ()15、胆汁酸来源于 A 胆色素; B 胆红素; C 胆绿素; D 胆固醇。 ()16、脂肪酸β—氧化的限速酶是 A 肉毒碱脂酰转移酶Ⅰ; B 肉毒碱脂酰转移酶Ⅱ C 脂酰辅酶A脱氢酶; D β—羟脂酰辅酶A脱氢酶; E β—酮脂酰辅酶A硫解酶。 ()17、β—氧化过程的逆反应可见于 A 胞液中脂肪酸的合成; B 胞液中胆固醇的合成; C 线粒体中脂肪酸的延长; D 质网中脂肪酸的合成。 ()18、并非类脂的是 A 胆固醇; B 鞘脂; C 甘油磷脂; D 神经节苷脂; E 甘油二脂。 ()19、缺乏维生素B2时,β—氧化过程中哪一个中间产物合成受到障碍? A 脂酰辅酶A; B β—酮脂酰辅酶A; C α,β—烯脂酰辅酶A ; D L—β—羟脂酰辅酶A; E 都不受影响。 ()20、合成胆固醇的原料不需要 A 乙酰辅酶A; B NADPH; C ATP ; D O2。 ()21、由胆固醇转变而来的是

糖类代谢和脂肪代谢

第四章生命的物质变化和能量转换 第4节生物体内营养物质的转变 一、教学目标: 知识与技能:1、知道糖类、脂肪在生物体内的代谢过程。 2、知道糖类、脂肪之间的转变关系。 3、初步学会用所学知识解释日常生活中的营养物质转变实例。 过程与方法:通过分析日常生活中糖类、脂肪代谢及相互转变的实例,感受这两大类营养成分在体内的代谢过程。 情感态度与价值观:通过学习营养物质的相互转变,逐步养成科学合理的饮食习惯。 二、重点: 1、糖类的代谢 2、脂肪的代谢 三、难点: 糖类、脂肪之间的转变过程及途径 四、教学准备: 多媒体课件、学案 五、教学过程

附:生物体内营养物质的转变(学案) 学习目标: 1.知道糖类、脂肪在生物体内的代谢过程 2.知道糖类、脂肪之间的转变关系 3.通过学习营养物质转变,结合生活实际,养成健康的饮食与生活习惯 学习重点: 糖类、脂肪代谢过程 学习难点: 糖类、脂肪的相互转变 学习过程: 一.自主学习 1.知识回顾:人体消化系统组成、食物消化过程与消化酶;物质进出细胞的方式;生物体中能源物质的种类;细胞有氧呼吸的过程(三羧酸循环) (1)人体所需营养物质主要有_______________________________ _ ; 可以通过_____________途径获得。当我们吃了食物,实际上食物__________(是,不是)已经进入了人体,而是需要先经过___________________然后才能够被利用。 (2)三大主要营养物质分别是____________、______________、________________; 淀粉的消化过程是:___________________________________________________ _ ;消化的最终产物是___________,以________________方式被小肠上皮细胞吸收。 蛋白质的消化过程是:_________________________________________________ ;消化的最终产物是___________,以________________方式被小肠上皮细胞吸收。 脂肪的消化过程是:________________________________________ ____________;消化的最终产物是__________和_________,以______________方式被小肠上皮细胞吸收。2.阅读,思考,讨论: 糖类代谢 (1)生物体细胞主要以__________________方式利用葡萄糖获得能量。 (2)动物体内的___ 细胞和细胞可以以形式储存一定量的糖类物质。(3)北京填鸭在肥育期要填饲过量的糖类饲料,减少运动,从而使鸭在短期内变成肥鸭,这说明什么? () 脂类代谢 (1)为什么长期偏食高油、高脂食物的人更容易肥胖? (2)饮食中摄入脂肪就不能控制体重了吗?

生物化学脂质代谢知识点总结(精选.)

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

第5章 脂类代谢

第5章脂类代谢 学习要求 1.掌握必需脂酸的概念,脂肪动员、脂解激素、抗脂解激素因子的概念;甘油三酯的分解代谢,脂酸的β-氧化;酮体的生成和利用;游离脂酸的运输、甘油的氧化;甘油三脂合成代谢的细胞定位及原料;胆固醇的代谢及调节;血浆脂蛋白的代谢。 2.熟悉脂类的概念、组成、分类、消化吸收及生理功能、甘油磷酸的代谢。 3.了解脂酸的分类、鞘磷脂的代谢、多不饱和脂酸及其衍生物;高脂蛋白血症、脂肪肝、酮症。 基本知识点 脂类是脂肪和类脂的总称。脂肪即甘油三酯(TG),主要生理功能是储能及供能.类脂包括胆固醇(Ch)、胆固醇酯(CE)、磷脂(PL)和糖脂(GL)等。是生物膜的重要成分,并参与细胞识别及信息传递,还是多种生理活性物质的前体。 脂类的消化在小肠上段,在胆汁酸盐和辅脂酶的共同参与下,甘油三酯被胰脂酶水解成甘油一酯和脂酸,胆固醇酯被胆固醇酯酶水解成胆固醇和脂酸,磷脂被磷脂酶水解成溶血磷脂和脂酸,这些消化产物主要在空肠被吸收。吸收的甘油及中、短链脂酸经门静脉入血;长链脂酸在小肠粘膜细胞内再合成脂肪,与apoB48、磷脂、胆固醇等形成CM后经淋巴管进入血循环。 甘油三酯是机体能量储存的主要形式。甘油三酯水解产生甘油和脂酸。甘油活化、脱氢、转变为磷酸二羟丙酮后,循糖代谢途径代谢。脂酸则在肝、骨骼肌、心肌等组织中分解氧化,释出大量能量,以ATP形式供机体利用。脂酸的分解需经活化,进入线粒体,β氧化(脱氢、加水、再脱氢及硫解)等步骤。脂酸在肝内β氧化生成乙酰CoA,后者在肝线粒体生成酮体,但肝不能利用酮体,需运至肝外组织氧化。长期饥饿时脑及肌组织主要靠酮体氧化供能。 脂酸合成是在胞液中脂酸合成酶系的催化下,以乙酰CoA为原料,在NADPH、ATP、HCO3-及Mn2+的参与下,逐步缩合而成的。乙酰CoA需先羧化成丙二酰CoA后才参与还原性合成反应,所需的氢全部由NADPH提供,最终合成16碳软脂酸。更长链的

第七章脂类代谢习题及答案

第七章脂类代谢 一、知识要点 (一)脂肪得生物功能: 脂类就是指一类在化学组成与结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中得物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类与类固醇及其衍生物、衍生脂类及结合脂类。 脂类物质具有重要得生物功能。脂肪就是生物体得能量提供者。 脂肪也就是组成生物体得重要成分,如磷脂就是构成生物膜得重要组分,油脂就是机体代谢所需燃料得贮存与运输形式。脂类物质也可为动物机体提供溶解于其中得必需脂肪酸与脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面得脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞得表面物质,与细胞识别,种特异性与组织免疫等有密切关系。 (二)脂肪得降解 在脂肪酶得作用下,脂肪水解成甘油与脂肪酸。甘油经磷酸化与脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP与CoA在脂酰CoA合成酶得作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统得帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢与硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA与比原先少两个碳原子得脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2与少一个碳原子得脂肪酸;经ω-氧化生成相应得二羧酸。 萌发得油料种子与某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成得乙酰CoA合成苹果酸,为糖异生与其它生物合成提供碳源。乙醛酸循环得两个关键酶就是异柠檬酸裂解酶与苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸与乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 (三)脂肪得生物合成 脂肪得生物合成包括三个方面:饱与脂肪酸得从头合成,脂肪酸碳链得延长与不饱与脂肪酸得生成。脂肪酸从头合成得场所就是细胞液,需要CO2与柠檬酸得参与,C2供体就是糖代谢产生得乙酰CoA。反应有二个酶系参与,分别就是乙酰CoA羧化酶系与脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系得催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子得丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20与少量碳链更长得脂肪酸。在真核细胞内,饱与脂肪酸在O2得参与与专一得去饱与酶系统催化下,进一步生成各种不饱与脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。 3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。 (四)磷脂得生成 磷脂酸就是最简单得磷脂,也就是其她甘油磷脂得前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应得磷脂。磷脂

脂类代谢习题答案

第八章脂类代谢习题答案 1.解释下列名词: (1)脂肪酸的β-氧化:脂脂肪酸在一系列酶的催化下,在α、β碳原子间断裂,β-碳原子被氧化成羧基,生成乙酰CoA和比原先少两个碳的脂酰CoA的过程。 (2)BCCP:生物素羧基载体蛋白,作为乙酰CoA羧化酶的一个亚基,在脂肪酸合成中参与乙酰CoA羧化形成丙二酸单酰CoA。 (3)ACP:是一种低分子量的蛋白质,组成脂肪酸合成酶复合体的一部分,并且在脂肪酸生物合成时作为酰基的载体,酰基以硫酯的形式结合在4-磷酸泛酰巯基乙胺的巯基上,后者的磷酸基团又与酰基载体蛋白的丝氨酸残基酯化。 (4)乙醛酸循环:在乙醛酸体中,由脂肪酸氧化产生的乙酰CoA在一系列酶的作用下转变为琥珀酸和乙醛酸,乙醛酸进一步转变为草酰乙酸,再与乙酰CoA作用形成循环反应的过程。其中的异柠檬酸裂解酶和苹果酸合成酶是其中的关键酶。 (5)必需脂肪酸:人或动物正常生长发育羧必需的,而自身又不能合成,只有从食物中获得,的脂肪酸,通常指:亚油酸、亚麻酸和花生四烯酸。 (6)酮体:脂肪酸β-氧化及其它代谢产生的乙酰CoA,在一般细胞中可进入三羧酸循环进行氧化分解,但在肝脏细胞中,其氧化则不很完全,出现一些氧化的中间产物:乙酰乙酸、β-羟丁酸和丙酮,它们称为酮体。肝脏生成的酮体可在肝外组织被利用。 (7)脂肪酸的α-氧化:脂肪酸的α-氧化是直接以游离的脂肪酸为底物,在α-C上氧化,每进行一次氧化产生少一个C的脂肪酸和CO2。 (8)脂肪酸合成酶系统:是一类存在于细胞质中的多酶复合体,能催化脂肪酸合成的一套循环反应,它由:转乙酰酶、转丙二酰酶、β-酮脂酰ACP合成酶、β-酮脂酰ACP还原酶、β-羟脂酰ACP脱水酶、烯酰ACP还原酶和酰基载体蛋白组成。 2.填空题 (1)脂肪甘油脂肪酸 (2)亚油酸亚麻酸花生四烯酸 (3)3-磷酸甘油脂酰CoA 磷脂酸二酰甘油二酰甘油转酰酶 (4)CDP-二酰甘油UDPG ADPG (5)β-氧化ω-氧化 (6)1个琥珀酸和1个NADH 乙醛酸体 (7)唾液酸 (8)S-腺苷甲硫氨酸 (9)胆酸类固醇激素维生素D (10)乙酰CoA (11)脂酰肉碱β-氧化乙酰辅酶A (12)乙酰乙酸β-羟基丁酸丙酮 (13)β-氧化 (14)0.5n-1 0.5n 0.5n 0.5n (15)线粒体乙酰-CoA 2 (16)脱氢水化脱氢硫解乙酰CoA 5 (17)146 (18)CO2和少了1 C的脂肪酸 (19)ACP CoA 4’-磷酸泛酰巯基乙胺 3.选择题(1~n个答案) (1)c (2)a (3)a (4)bcd (5)bcd (6)c (7)abc (8)c (9)c (10)abd(11)d (12)c

糖类代谢和脂肪代谢

《生物体内营养物质的转变》第一课时说课稿 各位评委老师好! 我是来自成都市新都区升庵中学的生物教师李珍。我今天说课的题目是《生物体内营养物质的转变》,现行高中生物沪科版高中第一册(试用本)第四章第四节第一课时的内容。本节内容可以说是对生命的物质变化和能量转换的补充,是对本书主要知识的延伸和总结。根据前面的学习和初中的知识,并联系生活经验,学生对生物体内糖类、脂肪、蛋白质可以相互转变具有一定的认识,但是具体的代谢途径和转变过程却不甚了解。因此,我根据课程标准和学生情况,确定了本节的教学目标,并进一步确定了教学重难点。 接下来我将从四个方面来说一下这节课。 (一)教学环境设计 这节课我以学生的认知规律为基础,以问题探究为主线,以学生的“做”为核心,利用多媒体教学环境引导学生自主探究,合作讨论。利用多媒体课件、电子白板和投影等方式提高互动效率,同时与传统的板书优势互补,帮助学生构建知识体系。 (二)设计理念 本节的内容大多都是建立在学生已有知识基础上的,与学生生活实际紧密相关,且具有较大的思维空间。因此,我以陶行知先生的“教学做合一”为指导思想,以问题驱动为教学方法,引导学生主动探究,独立思考,合作讨论,在“做中错,错中学”。 (三)教学风格 以高中生物新课标为教学理念,坚持科学性和实效性相结合,培养能力和提高认知相结合。通过例举常见的生活实例,创造亲切愉悦的学习氛围。 接下来,我重点说一下教学流程及对课堂的设计。 (四)教学流程 首先是问题引入,我是通过一组图片来导入这堂课的。今年7月,湖北多地遭遇有史以来最强暴雨袭击。相关报道每天都会出现,可以说是今夏最受关注的国内新闻之一。学生应该有所耳闻,所以能积极主动开始本节的学习。然后展示救灾物资去向清单,紧接着提问:“从救灾物品的种类看,人体从食物中获得的主要营养物质有哪些呢?”这样学生通过思考各食物主要的营养成分,明确本节课的学习对象,开始本节的学习。 接下来,为了帮助学生更好的完成自主探究,在新课之前,我设置了知识铺垫环节。即以问题串的形式引导学生:1. 回忆三大营养物质的结构和功能;2. 联想生活中有关营养物质转变的现象;3. 联系已学知识总结物质代谢的基本规律。在思考讨论之后,学生在情感上能认同营养物质的转变,在认知上对物质代谢有总体的认识,为有效地进行自主探究奠定了基础。 知识铺垫之后,依次进行糖代谢和脂肪代谢的学习。首先是糖代谢途径,教材对于这部分知识的描述比较全面,需要补充说明的知识也比较少。因此,采用学生先自主学习后同桌讨论的模式进行,最后利用电子白板让学生展示代谢图解。这个时候我并不提供固定的格式,而是让学生根据自己的思维模式去自由发挥,在展示环节让学生通过比较、修正,提高处理和归纳信息的能力。当然,最后我会逐步引导学生以血糖为核心,绘制血糖的三来源和三去向图解,帮助他们更有条理地认识这部分知识。为了让学生更深刻地理解糖代谢,也让这节课更有趣,我设置了一系列的生活场景,让他们去分析可能发生的代谢途径。这样,他们在现实生活的背景下,能更充分地理解和应用知识,学以致用。 脂肪代谢部分需要补充的知识点稍微多一些,因此在小组讨论之前,我提醒学生参考糖代谢图解,鼓励他们在教材知识的基础上大胆猜测,最后通过激烈的讨论明确各途径。为了帮助学生理解和应用这部分知识,我设置了角色扮演环节,即让学生扮演营养师给出建议。比如,减肥能吃含脂肪的食物吗?要想减肥应该慢跑还是快跑?这样学生能更好的理解脂肪

生物化学课后习题之脂类代谢

第五章脂类代谢 单选题 1下列哪种代谢所形成的乙酰CoA为酮体生成的主要原料来源? A来源于葡萄糖氧化分解B甘油转变而成 C脂肪酸β-氧化生成D丙氨酸转变而成 E甘氨酸转变而成 2乙酰CoA羧化酶和丙酮酸羧化酶的共同点是: A受柠檬酸的调节B受乙酰CoA的调节 C以NAD+为辅酶D以HSCoA为辅酶 E以生物素为辅酶 3对于下列各种血浆脂蛋白的作用,哪种描述是正确的? A CM主要转运内源性TG B VLDL主要转运外源性TG C HDL主要将Ch从肝内转运至肝外组织 D中间密度脂蛋白(IDL)主要转运TG E LDL是运输Ch的主要形式 4控制长链脂肪酰辅酶A进入线粒体氧化速度的因素是: A脂酰辅酶A(CoA)合成酶活性B ADP含量 C脂酰CoA脱氢酶的活性D肉毒碱脂酰转移酶的活性 E HSCoA的含量 5某饱和脂肪酸1摩尔在体内完全氧化为CO2、H2O同时形成147摩尔ATP,此饱和脂肪酸为: A硬脂酸B十四碳脂肪酸 C软脂酸D二十碳脂肪酸 E十二碳脂肪酸 6下列哪种物质可作为卵磷脂和脑磷脂合成中的共同重要原料? A甘氨酸B S-腺苷蛋氨酸 C丝氨酸D苏氨酸 E三磷酸胞苷(CTP) 7生物合成胆固醇的限速步骤是 A焦磷酸牛儿酯→焦磷酸法呢酯 B鲨烯→羊毛固醇 C羊毛固醇→胆固醇 D3-羟基-3-甲基戊二酰CoA→甲基二羟戊酸(MVA) E二乙酰CoA→3-羟基-3-甲基戊二酰CoA 8当6-磷酸葡萄糖脱氢受抑制时,其影响脂肪酸生物合成是因为: A乙酰CoA生成减少B柠檬酸减少 C ATP形成减少 D NADPH+H+生成减少 E丙二酸单酰CoA减少 9高脂饮食时,血浆胆固醇浓度增加是因为: A乙酰CoA增加B乙酰CoA羧化酶活性增强 C肝内HMGCoA合成酶活性升高D肝内脂酰CoA合成酶活性降低

相关文档