文档库 最新最全的文档下载
当前位置:文档库 › microRNA sponge

microRNA sponge

microRNA sponge
microRNA sponge

Abstract. microRNAs (miRNAs), as gene expression regu-lators, have been identified to be closely associated with tumorigenesis. Thus a loss-of-function study is more likely to reveal the biological roles of endogenous miRNAs. Genetic knockout, antisense oligonucleotide inhibitors, and miRNA sponge (miR-SP) are usually performed to inhibit the activities of miRNAs of interest. In the present study, we utilized the miR-SP method, which has long-term rather than short-term effects of antisense oligonucleotide inhibitors, to generate a microRNA-122 sponge (miR-122-SP) mediated by lentivirus, and identified its silencing role in the Huh7 hepatoma cell line and U2OS osteosarcoma cell line. The results showed that miR-122-SP effectively sequestered ectopic miR-122 and restored the expression of miR-122 which targets cyclin G1 (CCNG1), Bcl-w and disintegrin and metalloprotease 10. Moreover, miR-122-SP overexpression rescued the effects of ectopic miR-122 on suppressing proliferation, inhibiting cell migration and invasion, arresting cell cycle at G1 phase, and activating caspase-3/7, not only in Huh7 human hepatoma cells, but also in U2OS osteosarcoma cells. miR-122-SP also knocked down endogenous miR-122 expression in Huh7 and promoted tumorigenesis in vivo. miR-122-SP therefore is a useful tool that may be utilized to study the functions of miR-122 with regard to liver development and tumorigenesis in vitro and in vivo.

Introduction

microRNAs (miRNAs) are an abundant class of small non-coding RNAs (~22 nucleotides) with a critical regulative function (1,2), that reduce mRNA stability and/or suppress translation by perfect or imperfect sequence-complementary binding to the 3'-untranslated region (3'-UTR) or the coding sequences of target mRNAs (3,4). miRNAs have been consid-ered to contribute to the majority of basic biological processes, such as development, differentiation, apoptosis and cell prolif-eration (5). Their deregulation has also been linked to cancer and other diseases (6,7). Therefore, the in-depth validation of the biological roles of miRNAs is important for understanding pathogenesis and raising new curative therapies. Several methods for gain- or loss-of-function have been developed to modify the miRNA expression in vitro or in vivo. However, the overexpression of exogenous miRNA (gain-of-function) often leads to neomorphic phenotypes for a strong concentration-dependent interaction between miRNAs and their targets (8). For this reason, a loss-of-function study is more likely to reveal the functions that depend on physiological miRNA levels (9). The miRNA antisense oligonucleotides inhibitors or antagomirs, genetic knockout and miRNA sponge (miR-SPs) methods, have been used to block the activity of miRNA (10-14). It has been reported that miR-SPs, which contain multiple binding sites complementary to a mature miRNA were introduced to sequester endogenous miRNAs and then their functions were suppressed in the in vitro differentiation of neurons (15), mesenchymal stem cells (16), cancer cell xenografts (17,18), bone marrow recon-stitutions from hematopoietic stem/progenitor cells (19) and animal models (20,21). Due to the difficult operation of genetic knockouts and short-term effects of antisense oligonucleotide inhibitors, miR-SPs are more suitable to chronically block the activities of endogenous miRNA in vivo.

microRNA-122 (miR-122), a highly abundant liver-specific miRNA that accounts for 70% of total liver miRNA expres-sion (22,23), has been associated with hepatitis C virus infection and replication (24,25), the regulation of liver metabolism and

microRNA sponge blocks the tumor-suppressing functions of microRNA-122 in human hepatoma and osteosarcoma cells JI MA1*, QI WU2*, Yue ZHANg1, JiNgHuA Li1, YoNgcHuN Yu1, QiuHui PAN1 and FENYONG SUN2

1Central Laboratory and 2Department of Medical Laboratory,

Shanghai Tenth People's Hospital of Tongji university, Shanghai 200072, P.R. china

Received June 12, 2014; Accepted September 9, 2014

DOI: 10.3892/or.2014.3517

Correspondence to: Professor Fenyong Sun, Department of

Medical Laboratory, Shanghai Tenth People's Hospital of Tongji

University, 301 Middle Yanchang Road, Shanghai 200072, P.R.

China

E-mail: sunfenyong2012@https://www.wendangku.net/doc/2f677287.html,

Professor Qiuhui Pan, Central Laboratory, Shanghai Tenth People's

Hospital of Tongji university, 301 Middle Yanchang Road, Shanghai

200072, P.R. China

E-mail: panqiuhui@https://www.wendangku.net/doc/2f677287.html,

*Contributed equally

Abbreviations: miRNAs, microRNAs; miR-122-SP, miR-122 sponge;

3'-UTR, 3'-untranslated region; miR-SPs, miRNA sponges; miR-122,

microRNA-122; Hcc, hepatocellular carcinoma; ccNg1, cyclin g1;

ADAM10, disintegrin and metalloprotease 10; ADAM17, disintegrin

and metalloprotease 17

Key words: microRNA sponge, microRNA-122, cell proliferation,

cell cycle, migration, tumorigenesis

hepatocellular carcinoma (Hcc) (26). miR-122 has been identi-fied to downregulate cyclin g1 (ccNg1) (27,28), and thus leads to G1 arrest (29), interrupts the interaction between CCNG1 and p53, and abrogates the p53-mediated inhibition of hepatitis B virus replication (30). Oncogene Bcl-w is also the target of miR-122, and the downregulation of Bcl-w by miR-122 subse-quently leads to the reduction of cell viability and activation of caspase-3/7 (28,31). overexpression of miR-122 affects Hcc intrahepatic metastasis by angiogenesis suppression, exerting some of its actions via the regulation of its targets disintegrin and metalloprotease 10 (ADAM10) and ADAM17, which are involved in metastasis (29,32). The loss-of-function study of miR-122 is performed using miR-122 antisense oligonucle-otides inhibitors or genetic knockouts, while sponge-mediated miR-122 silencing has yet to be studied in tumor cells.

In the present study, we generated a miR-sponge based on CMv promoter to silence the activity of miR-122 on tumor suppression using lentivirus. Our data showed that the miR-122 sponge (miR-122-SP) effectively blocked the functions of ectopic liver-specific miR-122 by inhibiting cell prolifera-tion, arresting cell cycle, inducing apoptosis and suppressing metastasis, not only in Huh7 hepatoma cells, but also in u2oS osteosarcoma cells. We also found that miR-122-SP efficiently knocked down the expression of endogenous miR-122 in Huh7 cells and promoted xenograft tumor growth. Our studies provide a potential method in which to investigate the miR-122 functions in liver development and tumorigenesis in vitro or in vivo through the application of miR-SPs.

Materials and methods

Construction of sponge plasmids and reporters. The oligonucleotides with three repetitive sequences, which are complementary to miR-122 with mismatches at positions 9-12, were annealed, ligated, gel purified and cloned into the Xho I/Not i site of a psicHecK2 vector (Promega, Madison, WI, USA), downstream of the Renilla luciferase gene, to generate the vector psicHecK2/miR-122-SP. We constructed the GFP reporters using the same annealing method and subcloned the sequences into the 3'-UTR of the EGFP in a pEGFP vector with a CMv promoter.

Cell culture and stable cell line production. The Huh7 cell line (American Type Culture Collection, Manassas, vA, USA) was maintained at 37?c, 5% co2 and in DMEM/high glucose (Invitrogen Life Technologies, Carlsbad, CA USA) with 10% fetal bovine serum (FBS). The U2OS cell line (American Type culture collection) was maintained at 37?c, 5% co2 and in RPMI-1640 supplemented with 10% FBS (both from invitrogen Life Technologies) in 25-ml culture flasks. For the miR-122-SP stable overexpression, the Huh7 or u2oS cells were infected with lentivirus that expressed miR-122-SP (Genchem & Genpharm Co., Ltd., Jiangsu, China) or its nega-tive control at 30-50% confluence. The monoclonal population of the stably infected cells was selected by a limiting dilution assay using the GFP marker.

Luciferase and GFP reporter assay. For the luciferase reporter assay, 293T cells (5x104 cells/well) were seeded in 24-well plates 24 h prior to transfection. The cells were co-transfected with 0.5 μg of the psicHecK2/miR-122-SP plasmids together with 30 nM of miR-122 mimics or 30 nM of the negative control (both from GenePharma, Shanghai, China) using Lipofectamine 2000 (invitrogen Life Technologies). Firefly and Renilla luciferase activities were measured by using the dual-luciferase reporter assay (Promega) 48 h after transfec-tion. The firefly luciferase activity was normalized to the Renilla luciferase activity. For the GFP reporter assay, U2OS cells (5x104 cells/well) seeded in 24-well plates were co-trans-fected with 0.5 μg of the pEGFP/miR-122-SP plasmids together with 30 nM of miR-122 mimics or 30 nM of the negative control (both from GenePharma) using Lipofectamine 2000 (Invitrogen Life Technologies). GFP expression was examined by a microscope after 48 h of transfection.

RT-qPCR analysis. The total RNA from tissue samples and cell lines was extracted using TRIzol reagent (Invitrogen Life Technologies) following the manufacturer's instructions. The RNA concentrations and quality were determined with a spec-trophotometer (eppendorf Ag, Hamburg, germany) and gel analysis. RT-qPCR was performed using SYBR Premix Ex Taq (Takara Bio, Inc., Shiga, Japan) and Applied Biosystems 7900 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) supplied with its analytical software. The forward and reverse primer pairs were designed for CCNG1, Bcl-w, and ADAM10 as described previously (28,29). The primer pair for the 18SrRNA Q-PCR was as follows: forward, 5'-CCTGGATACCGCAGCTAGGA-3' and reverse, 5'-GCG GCGCAATACGAATGCCCC-3'. The expression of mature miR-122 was assayed using the miRCURY LNA? Universal RT microRNA PCR Universal cDNA synthesis kit with specific primers (both from exiqon, Vedbaek, Denmark) on cell lines. Reverse transcription reaction was carried out starting from 1 μg of total RNA using real-time PCR was performed according to the miRCURY LNA? SYBR-Green master mix kit (Exiqon) protocol. The ??Ct method for rela-tive quantification was used to determine the gene expression.

Western blot analysis. The cells transfected with the indi-cated vectors or chemicals were subjected to western blotting with anti-CCNG1 (1:1,000), anti-Bcl-w (1:1,000) (both from Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), anti-ADAM10 (1:1,000; eBioscience, Inc., San Diego, CA, USA) and actin (1:1,500; Santa Cruz Biotechnology, Inc.) antibodies, respectively. The cells were harvested and lysed in 0.5 ml of lysis buffer (10 mM Tris-Hcl, pH 7.6, 5 mM eDTA, 50 mM NaCl, 30 mM sodium pyrophosphate, 50 mM NaF, 0.1 mM Na3vO4, 1% Triton X-100, 1 mM PMSF and protease inhibi-tors. Proteins (20 μg) were processed for SDS-PAGE, which was performed on 10% gels. The proteins were electrophoreti-cally transferred to PvDF membranes (Millipore, Billerica, MA, USA) and incubated with the primary antibodies followed by incubation with an HRP-conjugated secondary antibody (Santa Cruz Biotechnology, Inc.). After washing with TBS, the bound antibodies were visualized by enhanced chemilumi-nescence (Pierce Biotechnology, Inc., Rockford, IL,USA) and recorded on X-ray film.

Cell proliferation assay. Ctrl-lentivirus (Ctrl-Lv) and miR-122-SP-Lv cells (2.5x105 cells/well) were transfected

with 30 nM miR-122 mimics or 30 nM negative control (GenePharma) using Lipofectamine 2000 (Invitrogen Life Technologies) as per the manufacturer's instructions in 6-well plates. The transfected cells (1x103 cells/well) were then seeded in 96-well plates. The MTT assay was performed on day 1, 3, 5 and 6. Absorbance of the samples was measured with a spectrophotometer reader at 490 nm, and each assay was performed in triplicate.

Colony formation assay. Each cell line transfected with synthesized oligonucleotides or vectors was seeded in 12-well plates (200 cells/well), incubated for 7-10 days to allow colony growth, and the colonies were stained with crystal violet. The colonies containing ≥50 cells were counted. The plating effi-ciency was calculated by dividing the average number of the colonies/dish by the number of the cells plated. The survival fractions were calculated by normalizing to the plating effi-ciency of the control groups.

Wound-healing scratch assay. For the wound-healing scratch assay, 2.5x105 Ctrl-Lv and miR-122-SP-Lv cells transfected with 30 nM of miR-122 mimics or negative controls were seeded in 12-well plates. After 24 h, a linear wound was made by scratching across the bottom of the dish on the monolayer of the confluent cells using a sterile p-200 pipette tip. The cells were rinsed gently with phosphate-buffered saline (PBS) and cultivated in the corresponding medium without serum supple-mented with 0.5% FBS. The same area of the gap was taken at x100 magnifications using a microscope equipped with a digital camera (Olympus, Centre valley, PA, USA) at 0 and 24 h after the scratching, and then quantified using imageJ software (https://www.wendangku.net/doc/2f677287.html,/ij/). The difference between the initial and final areas was calculated.

Cell Matrigel invasion assay. For the invasion assay, 1x105 Ctrl-Lv and miR-122-SP-Lv cells transfected with 30 nM of miR-122 mimics or negative controls were seeded in a Matrigel-coated chamber with 8.0 μM pores (Corning Costar, Corning, NY, USA). The cells were seeded in serum-free media in the upper chamber, and translocated towards complete growth media for 36 h. The lower compartment of the chamber was fixed in 1.5% glutaraldehyde for 1 h, stained with 0.1% violet crystal dye for 15 min, and washed twice with distilled water. The stained cells were viewed under a light microscope (Olympus).

Cell cycle analysis. To examine the effect of miR-122-SP on the blocking functions of miR-122 in cell cycle arrest, the Ctrl-Lv and miR-122-SP-Lv cells were transfected with 30 nM of miR-122 mimics or negative controls and then collected after 48 h and analyzed for DNA content by flow cytometry.

Caspase-3/7 activity analysis. The Ctrl-Lv and miR-122-SP-Lv cells transfected with 30 nM of miR-122 mimics or negative controls were seeded in 96-well plates (5x103 cells/well). After 24 h of incubation at 37?c, caspase-3/7 substrates (Promega) were added according to the manufacturer's instructions and incubated for 1 h at 37?c in the dark. The relative light intensity was measured in each well using a microplate luminometer.Xenograft tumor model. Huh7-ctrl-LV or Huh7-miR-122-SP-Lv cells (1x105) were inoculated subcutaneously into the right flanks of female athymic nude nu/nu mice (3-4 weeks old), respectively. The volume of the implanted tumor was measured every 4 days with a vernier caliper, using the formula: v = L x W2/2; where v, volume (mm3); L, biggest diameter (mm); W, smallest diameter (mm). The mice were subsequently sacrificed via cervical dislocation and the tumors were weighed 4 weeks after inoculation.

Study approval. All animal procedures were undertaken according to the United kingdom Co-ordinating Committee on Cancer Research (UkCCCR) Guidelines for the Welfare of Animals in Experimental Neoplasia and were approved by the central Laboratory, Shanghai Tenth People's Hospital of Tongji University (Shanghai, China).

Statistical analysis. Data were presented as means ± SD. The Student's t-test was applied to determine the differ-ences between sample means obtained from at least three experiments. Statistical analyses were performed using Excel software. All tests of statistical significance were two-sided. P<0.05 was considered to indicate statistical significance.

Results

Construction of miR-122-SP. To generate a miR-122-SP, three repetitive sequences, complementary to miR-122 with mismatches at positions 9-12 for enhanced stability, were intro-duced into the 3'-UTR of Renilla luciferase in a psicHecK2 vector (Fig. 1A and B). We first co-transfected HeK293T cells with psicHecK2/miR-122-SP plasmids and miR-122 mimics and assayed the activity of the Renilla luciferase 48 h after the transfection. The data showed that miR-122 decreased the activity of luciferase by directly binding to the miR-122-SP sites in the 3'-UTR region downstream of Renilla luciferase, while the luciferase activities in the cells co-transfected with miR-122 mimics and psicHecK2 vector, or microRNA nega-tive control (NC) and miR-122-SP, were not altered (Fig. 1D). To identify the effect of sponge, we sub-cloned miR-122-SP sites into the 3'-UTR of the EGFP in a pEGFP vector with a CMv promoter (Fig. 1C). We co-transfected this pEGFP/ miR-122-SP with miR-122 mimics into U2OS cells, and found that the GFP was silenced in the U2OS cells with miR-122 overexpression (Fig. 1E). These results showed that the ectopic miR-122 directly bound to the miR-122-SP, which subse-quently resulted in the decrease of reporter gene expression, suggesting that the construction of miR-122-SP was successful.

MiR-122-SP reduces miR-122 expression and upregulates the target genes of miR-122. As a liver-specific microRNA, miR-122 expression was confirmed to be downregulated in the Hcc of rodent and human (33). We detected miR-122 expres-sion in different types of cell lines by RT-qPCR. No endogenous expression of miR-122 was observed in Hep3B hepatoma cells and U2OS osteosarcoma cells, but a low expression of miR-122 was identified in Huh7 cells (Fig. 2A). To study the miR-122-SP effects on blocking miR-122 functions, we chose Huh7 hepatoma cells with a low expression of miR-122 and U2OS non-hepatoma cells without any expression of miR-122

as cell models. Due to the low efficiency and short-term effect of the transient transfection of plasmid, we used a lentivirus-mediated expression system to express miR-122-SP in Huh7 and U2OS cells in the same manner as indicated in Fig. 1C. The RT-qPCR results showed that stable overexpression of miR-122-SP led to a decrease of ectopic miR-122 expression in Huh7 and u2oS cells, as well as the downregulation of endogenous miR-122 expression in Huh7 cells (Fig. 2A). These results indicated that the lentivirus-mediated miR-122-SP expression was able to efficiently reduce the endogenous or ectopic expression of miR-122.

As a tumor suppressor, miR-122 has been identified to downregulate the expression of CCNG1 (involved in the cell cycle), Bcl-w (involved in apoptosis) and ADAM10 (involved in migration). To investigate whether miR-122-SP decreased the expression of these genes, we examined the mRNA and protein levels in Huh7 and u2oS cells. As expected, the mRNA levels of the Huh7 and u2oS cells were inhibited by ectopic miR-122, while the cells with miR-122-SP expression completely rescued the expression of these three genes (Fig. 2B). The western blot

results revealed the same effects of miR-122-SP on reducing the protein levels of ccNg1, Bcl-w and ADAM10 in the Huh7 and u2oS cells (Fig. 2c). However, the mRNA and protein levels of ccNg1, Bcl-w and ADAM10 were not significantly altered by miR-122-SP expression without ectopic miR-122. This result may be due to the low expression of miR-122 in Huh7 that could not obviously inhibit the expression of the three genes. These results suggested that miR-122-SP would clearly be able to restore the expression of CCNG1, Bcl-w and ADAM10 that was downregulated by ectopic miR-122.miR-122-SP blocks the functions of miR-122 in cell prolifera-tion. miR-122 has been identified to significantly inhibit tumor cell proliferation. To identify whether miR-122-SP suppressed the functions of miR-122 in cell proliferation, Ctrl-Lv or miR-122-SP-Lv cells were transfected with miR-122 mimics or the negative control. We found that Huh7 or u2oS ctrl-LV cell proliferation was significantly inhibited by the ectopic miR-122 expression through the MTT assay, while proliferations of the

Huh7 or u2oS miR-122-SP-LV cells transfected with miR-122

Figure 1. construction of microRNA-122 sponge (miR-122-SP). (A) Design of psicHecK2/miR-122-SP. Three miR-122 bulged binding sites were inserted into the 3'-untranslated region (3'-UTR) of Renilla luciferase reporter gene driven by the T7 promoter followed with firefly luciferase reporter gene driven by HSV-TK promoter. (B) The imperfect pairing between miR-122 and its sponge with bulged binding sites. (c) Design of pegFP/miR-122-SP. The same binding site sequences such as those in (A) were inserted into the 3'-UTR of GFP driven by the CMv promoter. (D) The activity of Renilla luciferase (RL) was downregulated by miR-122-SP depending on miR-122. HeK293T cells were co-transfected with psicHecK2/miR-122-SP and miR-122 mimics. The luciferase activities are not altered. The bars indicate that firefly luciferase (FL) activities normalized to Renilla from the psicHecK-2 vector. each experiment was repeated at least three times, and each sample was assayed in triplicate. **P<0.01 compared with the control. (E) The expression of GFP was downregulated by miR-122-SP depending on miR-122 in U2OS cells co-transfected with pEGFP/miR-122-SP and miR-122 mimics.

were not obviously altered (Fig. 3A). Fig. 3C also showed that miR-122 could suppressed the colony-forming efficiency of Huh7 and u2oS cells, while miR-122-SP with miR-122

mimics had no effect on colony formation (Fig. 3B and C). In

Figure 2. microRNA-122 sponge (miR-122-SP) reduces miR-122 expression and restores the expression of target genes downregulated by miR-122. (A) miR-122 expression in Hep3B, Huh7 and u2oS cancer cells was detected by RT-qPcR. Huh7 and u2oS cells infected by ctrl-lentivirus (ctrl-LV) or miR-122-SP-lentivirus (miR-122-SP-Lv) were transfected with 30 nM miR-122 mimics or negative control (NC), and then collected after 24 h for total RNA isolation. *

P<0.05 and **P<0.01 compared with NC. (B) The mRNA expression of cyclin G1 (CCNG1), Bcl-w and disintegrin and metalloprotease 10 (ADAM10) was determined by RT-qPCR. Data are shown as 2-??Ct values. ##P<0.001 compared with Ctrl-Lv + NC. *P<0.05 and **P<0.001 compared with Ctrl-Lv + miR-122. (C) The protein levels of CCNG1, Bcl-w and ADAM10 were examined by western blot analysis. β-actin was a loading control. Data present at least three

independent experiments with similar results.

Figure 3. microRNA-122 sponge (miR-122-SP) blocks the functions of miR-122 in cell proliferation. (A) Ctrl-lentivirus (Ctrl-Lv) and miR-122-SP-Lv cells transfected with 30 nM miR-122 mimics or negative control (NC) were subjected to MTT analysis at different time periods. Data present at least three inde-pendent experiments. ##P<0.001 compared with Ctrl-Lv + NC. **P<0.01 compared with Ctrl-Lv + miR-122. (B and C) The results of colony formation assay. Representative images for colony enumeration are shown in (B). The data of colony formation efficiency of (c) miR-122-SP or control cells. Data present at least three independent experiments. **P<0.01.

accordance with the decrease of endogenous miR-122 expres-sion by miR-122-SP in Huh7, we also found that miR-122-SP promoted cell proliferation and increased the cell colony formation ability of Huh7 cells (Fig. 3A), which was caused by the downregulation of endogenous miR-122 in Huh7-mediated by miR-122-SP. These results indicated that miR-122-SP was able to rescue the effects of liver-specific miR-122 on suppressing proliferation, not only in Huh7 human hepatoma cells, but also in U2OS osteosarcoma cells.

miR-122-SP blocks the functions of miR-122 in cell migration and invasion. To study the effects of miR-122-SP on inhib-iting the functions of miR-122 in cell migration, we conducted wound-healing scratch experiments to assess cell migra-tion. Ctrl-Lv or miR-122-SP-Lv cells were transfected with miR-122 mimics or negative controls on 12-well plates. After culturing for 24 h in medium with 10% FBS, the confluent culture monolayer of these cells was scratched and cultured in

medium with 0.5% FBS for another 24 h. The same wounded area/well was examined by phase-contrast microscopy after scratching at 0 and 24 h. Transfection with miR-122 mimics significantly inhibited the migration of u2oS and Huh7 cells, while the miR-122-SP expression blocked the func-tions of miR-122 by inhibiting cell migration (Fig. 4A and B). Subsequently, we subjected a Matrigel invasion assay to define the effect of miR-122-SP on blocking the functions of miR-122 in suppressing cell invasion. As expected, the results showed that miR-122 decreased the number of invading cells in Huh7 and U2OS, while this decrease induced by miR-122 was significantly inhibited by miR-122-SP , suggesting a suppressor role of miR-122-SP for miR-122 in cell migration and invasion (Fig. 4C and D).

miR-122-SP blocks the functions of miR-122 in the regulation of cell cycle and caspase-3/7 activity. CCNG1 and Bcl-w were

identified as the targets of miR-122, and ectopic miR-122 led

Figure 4. microRNA-122 sponge (miR-122-SP) blocks the functions of miR-122 in cell migration and invasion. Ctrl-lentivirus (Ctrl-Lv) and miR-122-SP-Lv cells transfected with 30 nM miR-122 mimics or negative control (NC) were subjected to a wound-healing scratch assay and Matrigel invasion assay. (A) After transfection for 24 h, a line was drawn across the bottom of the dish on confluent cells and re-cultured in medium with 0.5% fetal bovine serum (FBS). Phase-contrast microscopy images were captured of the same wounded area at 0 and 24 h after the line. (B) cell migration quantification of images in (A) was assessed by scratch area at 0 h normalized to 24 h. Data present at least three independent experiments with similar results. *P<0.05 and **P<0.01. (C) The treated cells were re-plated in serum-free medium layered onto the top chambers and invaded to the bottom chamber containing serum-supplemented medium for 36 h at 37?c. (D) cell invasion quantification of images in (c) was assessed by detecting the absorbance at 570 nm. Data present at least three independent experiments with similar results. *P<0.05 and **P<0.01.

to G1 arrest of cancer cells and increased caspase-3/7 activity. Thus, we hypothesized that miR-122-SP affected the cell cycle and the activity of caspase-3/7 through miR-122. To confirm this, we harvested Ctrl-Lv and miR-122-SP-Lv cells 48 h after the cells were transfected with miR-122 mimics or negative controls to analyze the cell cycle distribution by FACS. Our results showed that there was a significant increase in the popu -lation of cells at G1 phase between the miR-122 expressing and the control cells (62.92 and 53.41% in Huh7 cells, and 55.03 and 43.73% in u2oS cells). However, miR-122-SP overexpression restored the distribution of G1 phase from 62.92 to 52.47% in Huh7 cells and 55.03 to 42.99% in u2oS (Fig. 5A). These results demonstrated that miR-122-SP reduced the effects of miR-122 on arresting cell cycle at G1 phase. Subsequently, we detected the caspase-3/7 activity of the Ctrl-Lv and miR-122-SP-Lv cells that were transfected with or without miR-122. The caspase-3/7 activity was inhibited by miR-122; however, it was

rescued by the overexpression of miR-122-SP in Huh7 and

Figure 5. microRNA-122 sponge (miR-122-SP) blocks the functions of miR-122 in the regulation of the cell cycle and caspase-3/7 activity. (A) Ctrl-lentivirus (Ctrl-Lv) and miR-122-SP-Lv cells transfected with 30 nM miR-122 mimics or negative control (NC) were harvested after 48 h and analyzed for DNA content by flow cytometry. Data represent at least three independent experiments with similar results. Values are presented as means ± standard deviation (SD), n=3. Compared with NC, ##P<0.01 compared with Ctrl-Lv + NC. **P<0.01 compared with Ctrl-Lv + miR-122. (B) Caspase-3/7 activities in Ctrl-Lv and miR-122-SP-Lv cells were measured after transfection with 30 nM miR-122 mimics or negative control after 48 h. Compared with NC, #P<0.05, compared with Ctrl-Lv + NC. *P<0.05 and **P<0.01 compared with Ctrl-Lv + miR-122.

Figure 6. Knockdown of microRNA-122 (miR-122) function by miR-122 sponge (miR-122-SP) promotes tumorigenesis. (A) Huh7-ctrl-lentivirus (ctrl-LV) or Huh7-miR-122-SP-LV cells were inoculated subcutaneously into nude mice (n=6). The mice were sacrificed and the tumors were weighed 28 days after inoculation. (B and c) increasing miR-122-SP expression in Huh7 cells exacerbates the tumor burden. (B) The average volume of tumors developed in nude mice is shown as mean ± standard deviation (SD). *P<0.05, compared with Ctrl-Lv. (C) The average tumor weight is indicated as mean ± standard deviation (SD). **P<0.01, compared with negative control.

U2OS cells (Fig. 5B). This suggested that miR-122-SP was able to block the functions of miR-122 in promoting cell apoptosis.

miR-122-SP blocks the functions of miR-122 in tumor suppres-sion. Although, a low expression of miR-122 was detected in Huh7 cells, miR-122-SP was able to reduce the endogenous miR-122 expression and block the functions of miR-122 in inhibiting cell proliferation. To determine whether miR-122-SP blocks activities of miR-122 in suppressing tumorigenesis in vivo, Huh7 cells infected with ctrl-LV or miR-122-SP-LV were subcutaneously inoculated into nude mice. The mean volume of xenograft tumors formed in the presence of miR-122-SP was larger than that of control (Fig. 6A and B). At the end of the experimental period, the mean weight of tumors with miR-122-SP overexpression was higher than that of the control (Fig. 6C). Thus, these data indicate that miR-122-SP blocks the functions of miR-122 in inhibiting tumorigenesis in vivo.

Discussion

To investigate the functions of miRNAs, the loss-of-function study is considered more reliable than that of gain-of-function for its blocking endogenous miRNAs activity (34). Several methods were utilized to study miRNA loss-of-function, including genetic knockouts, antisense oligonucleotide inhibi-tors (12,35,36) and sponges (9). The use of modified antisense oligonucleotide inhibitors, also designated as antagomirs or locked nucleic acids (LNAs), was the first method to block miRNA activity in animal cell cultures (12,36,37). However, antagomirs, as well as LNAs did not reach some tissues, such as the central nervous system, or the cells in a brain due to the blood-brain barrier (12,38,39). Moreover, they only provide short-term downregulation of the miRNA targets and block single miRNA rather than whole miRNA families (14), suggesting that antagomirs and LNAs are not suitable for generating transgenic animal models.

Compared to antisense oligonucleotide inhibitors, miR-SPs offer more advantages for many in vivo research applications. Firstly, sponges mediated by a lentiviral vector can stably and chronically block the miRNA activity in difficult-to-transfect cell lines or cells in vivo. Secondly, a single miR-SP can block the activities of the whole family of miRNAs sharing highly similar seed sequences while locating in multiple distant loci (9). Furthermore, a reporter gene or a selectable marker in sponge facilitates the introduction of sponge for tracing, screening and sorting cells with miRNAs. A tissue-specific or drug-inducible promoter in a sponge, such as the tet-on and tet-off system, is more useful to study the functions of many important miRNAs in development without leading to transgenic model death.

Accumulating evidence has demonstrated that miR-122 is downregulated in chronic hepatitis B (cHB) and Hcc of human (30,33), suggesting the possible relationship between hepatocarcinogenesis and liver-specific microRNA. currently, studies on miR-122 function in tumorigenesis is based on the ectopic expression of miR-122 in hepatoma cells in vitro. Although miR-122 has been confirmed to suppress tumori-genic properties of Huh7 cells, which express miR-122 at a lower level, by transfecion of anti-miR-122 oligonucleotides in vitro (29), the roles of endogenous of miR-122 in hepatoma cells in vivo have not been reported. Thus, we designed lentivirus-mediated miR-122-SP, which can be used to silence the activities of miR-122 in vitro and in vivo, to confirm or identify the roles of miR-122 in liver development and hepa-tocarcinogenesis. in this study, we confirmed that ectopic miR-122 downregulated the expression of CCNG1, Bcl-w and ADAM10, inhibited cell proliferation and migration, arrested the cell cycle at G1 phase, and induced cell apoptosis in Huh7 hepatoma cells in vitro. These effects of miR-122 on suppressing tumorigenesis be efficiently blocked by miR-122-SP. In addition, we may found similar results in U2OS osteosarcoma cells, that miR-122-SP was able to silence the functions of ectopic miR-122 in suppressing tumorigenic properties. These results suggest that miR-122-SP is an effec-tive tool for loss-of-function research in vitro, and raise the potential of miR-122 as small molecular medicine for other types of cancer therapy.

in this study, we found that endogenous miR-122 in Huh7 cells infected with miR-122-SP-Lv was evidently down-regulated (Fig. 2A) compared to cells infected with control lentivirus, and the effects of endogenous miR-122 on cell proliferation (Fig. 3) and migration (Fig. 4C and D) were efficiently blocked. However, the target expression of miR-122 and the effects of miR-122 on cell cycle and apoptosis were not significantly rescued by miR-122-SP, which we hypothesize are due to a lower expression of miR-122 in Huh7 cells. An increased expression level of miR-122 in Huh7, we identified a significant differences in target expression, cell proliferation, migration and apoptosis between the miR-122-SP-Lv and control cells. Furthermore, miR-122-SP was able to obviously promote xenograft tumor growth by silencing the endogenous miR-122 in Huh7 (Fig. 6). These data suggest that miR-122-SP-Lv is a useful tool for in vivo research. Using this system, we can examine more functions of miR-122 in liver development and hepatocarcinogenesis.

In conclusion, our design of miR-122-SP can successfully silence miR-122 effects on inhibiting tumorigenesis in vitro and in vivo, suggesting that miR-122-SP has potential roles for generating liver cancer models with a lower expression of miR-122 to investigate the miR-122 functions in liver develop-ment and diseases.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 81301704 to J.M.; grant no. 81071524 to F.S.) (URL: https://www.wendangku.net/doc/2f677287.html,/Portal0/ default152.htm)

References

1. Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857-866, 2006.

2. Garzon R, Fabbri M, Cimmino A, Calin GA and Croce CM: MicroRNA expression and function in cancer. Trends Mol Med 12: 580-587, 2006.

3. Zeng Y: Principles of micro-RNA production and maturation. Oncogene 25: 6156-6162, 2006.

4. Valencia-Sanchez MA, Liu J, Hannon gJ and Parker R: control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20: 515-524, 2006.

5. Ahmed FE: Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev Mol Diagn 7: 569-603, 2007.

6. Chen CZ: MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353: 1768-1771, 2005.

7. Croce CM: Oncogenes and cancer. N Engl J Med 358: 502-511, 2008.

8. Bushati N and Cohen SM: microRNA functions. Annu Rev Cell Dev Biol 23: 175-205, 2007.

9. Ebert MS and Sharp PA: MicroRNA sponges: progress and possibilities. RNA 16: 2043-2050, 2010.

10. Brown BD and Naldini L: Exploiting and antagonizing microRNA regulation for therapeutic and experimental appli-cations. Nat Rev Genet 10: 578-585, 2009.

11. kloosterman WP, Lagendijk Ak, ketting RF, Moulton JD and Plasterk RH: Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet devel-opment. PLoS Biol 5: e203, 2007.

12. krützfeldt J, Rajewsky N, Braich R, et al: Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685-689, 2005.

13. Park CY, Choi YS and McManus MT: Analysis of microRNA knockouts in mice. Hum Mol genet 19: R169-R175, 2010. 14. Ebert MS, Neilson JR and Sharp PA: MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4: 721-726, 2007.

15. Barbato C, Ruberti F, Pieri M, et al: MicroRNA-92 modulates k(+) Cl(-) co-transporter kCC2 expression in cerebellar granule neurons. J Neurochem 113: 591-600, 2010.

16. Huang J, Zhao L, Xing L and chen D: MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28: 357-364, 2010.

17. Bonci D, Coppola v, Musumeci M, et al: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: 1271-1277, 2008.

18. valastyan S, Reinhardt F, Benaich N, et al: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137: 1032-1046, 2009.

19. Papapetrou EP, korkola JE and Sadelain M: A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells 28: 287-296, 2010.

20. Gentner B, Schira G, Giustacchini A, et al: Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 6: 63-66, 2009.

21. Loya CM, Lu CS, van vactor D and Fulga TA: Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 6: 897-903, 2009.

22. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W and Tuschl T: identification of tissue-specific microRNAs from mouse. Curr Biol 12: 735-739, 2002.

23. Landgraf P, Rusu M, Sheridan R, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401-1414, 2007.24. Jopling CL, Norman kL and Sarnow P: Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. cold Spring Harb Symp Quant Biol 71: 369-376, 2006.

25. Jopling CL: Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans 36: 1220-1223, 2008.

26. Girard M, Jacquemin E, Munnich A, Lyonnet S and Henrion-caude A: miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 48: 648-656, 2008.

27. Gramantieri L, Ferracin M, Fornari F, et al: Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67: 6092-6099, 2007. 28. Ma L, Liu J, Shen J, et al: Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther 9: 554-561, 2010.

29. Bai S, Nasser MW, Wang B, et al: MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 284: 32015-32027, 2009.

30. Wang S, Qiu L, Yan X, et al: Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin g(1)-modulated P53 activity. Hepatology 55: 730-741, 2012.

31. Lin cJ, gong HY, Tseng Hc, Wang WL and Wu JL: miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 375: 315-320, 2008.

32. Tsai Wc, Hsu PW, Lai Tc, et al: MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49: 1571-1582, 2009.

33. Kutay H, Bai S, Datta J, et al: Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99: 671-678, 2006.

34. Sahu SC, O'Donnell MW Jr and Sprando RL: Interactive toxicity of usnic acid and lipopolysaccharides in human liver Hepg2 cells. J Appl Toxicol 32: 739-749, 2012.

35. Meister G, Landthaler M, Dorsett Y and Tuschl T: Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10: 544-550, 2004.

36. ?rom uA, Kauppinen S and Lund AH: LNA-modified oligo-nucleotides mediate specific inhibition of microRNA function. Gene 372: 137-141, 2006.

37. Davis S, Lollo B, Freier S and Esau C: Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34: 2294-2304, 2006.

38. Obad S, dos Santos CO, Petri A, et al: Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 43: 371-378, 2011.

39. Otaegi G, Pollock A and Sun T: An optimized sponge for microrna miR-9 affects spinal motor neuron development in vivo. Front Neurosci 5: 146, 2012.

民间钓鱼饵料配方

第一篇:民间钓鱼饵料配方大全之鲫鱼篇 一、诱鱼窝料配方 要想钓的多,必须先打窝,尤其是野钓时,打窝尤其重要,下面是网友在多年垂钓过程中总结的自制钓鲫鱼的窝料诱饵,有些效果很不错,有条件的钓友可以试试。 1、酒泡小米。单独用酒泡小米就是很好的诱饵,特别是用来钓鲫鱼效果就很好。笔者又加了一些辅料。具体方法是:酒泡小米随取随用。将适量的麦麸(7 00/0)、豆粉(30%)放人锅中炒出香味,用开水冲成散粒状,再加入30%的用酒泡过的小米,放人塑料袋中。头一天晚上准备,第二天使用。 2、发酵米饭粒。米饭不要太软,要颗粒状,500克,晾到稍有余温时加米酒曲适量,再加入100克细麸皮,拌匀放人干净的盒中,加盖密封。夏天2天左右,春秋3~4天,这时米饭经发酵有浓浓的香味,使用时可加些曲酒、味精。 3、玉米面发酵饵。取玉米面500克,用开水烫熟,加入适量蔗糖,然后装入塑料袋中扎口,在下暴晒。时间视气温而酌情掌握。夏天1—2天即可。使用前加些曲酒搅拌,以增加其香味。此饵香甜。 4、黄豆粉诱饵。新鲜的黄豆粉250克,加50克面粉,20克蜂蜜,装入塑料袋封口,到钓场后用池塘的水拌和成湿团,即可作诱饵,此饵有腥香味,又有甜味。用豌豆粉也行。 5、豆腐渣诱饵。用新鲜豆腐渣250克,加入200克面粉拌匀,上笼蒸熟,晾凉,掰碎使用。

6、蒸小米诱饵。小米500克、蒸熟成小米饭,加曲酒50克拌匀,装入塑料袋中密封。用时也可加少量麦麸粉,以增强诱鱼效果。 7、阿诱饵。阿3克,大茴香30克,桂皮3克,芝麻50克,青蚯蚓(活的)30克,麦麸粉500克,面粉100克。将上述中药研碎,芝麻炒熟磨粉,面粉、麦麸炒出香味。蚯蚓剁碎,且与上原料拌和,用池塘水对人拌捏成团即可作诱饵投入水中。此饵四季皆可使用。 8、海绵诱饵。选用一块柔软的海绵,剪成0.5厘米大的小碎块,用中药酒浸泡半个月。若钓其他鱼,海绵粒可稍大一些。使用时用打窝器将酒泡海绵料投入钓点。泡时海绵量可大一些,随时取用。 9、中药饼粉饵。丁香、山柰、甘草各2克,粉碎成细粉。 菜饼粉、芝麻饼粉、糠粉各100克,倒入锅中文火炒出香味,然后与中药粉混合,装入容器中,使用时,取一定的数量加水拌和,作诱饵。也可加少许面粉,做成面团挂钩。 10、小米菠萝酒诱饵。小米500克,蜂蜜30克,菠萝酒(用酒泡菠萝粒)一汤匙。将蜂蜜、菠萝酒与小米拌和,然后装入塑料瓶中,加盖密封。一个星期后使用。作为钓鲫鱼的诱饵效果很好。 11、颗粒饲料饵。喂鱼的颗粒饲料500克,玉米粉200克,小米200克,丁香酒一汤匙。先将颗粒饲料用温水泡软,散开,再加入玉米粉,用开水烫熟,放人蒸笼蒸15分钟。取出与小米拌和,加人丁香酒,装入塑料袋密封3—5天即可使用。 12、丁香酒米饼粉饵。丁香20克,曲酒500克,小米(或碎米、碎玉米)400克,饼粉500克,蜂蜜(或白糖)20克。

水库钓鱼调漂方法大全

水库钓鱼调漂方法大全 (一)、不带饵调标 1、空钩、半水调4目(即通常所说的调4钓2) ——调标步骤: (1)先在空钩、半水时,通过增减铅皮将浮标调到4目; (2)然后挂双饵(模拟饵,与真钓饵大小、重量基本一致,以下同),移动浮标达到钓2目; ——观察饵团在水下状态:下饵触底,上饵悬浮,下钩饵子线略有弯曲。 ——主要影响因素:饵团大小、重量要求严格,要求一致; 此法为目前广泛使用的“不灵不钝”的钓法,多数钓家认为此法较适合比赛池钓,原则不适宜大自然野钓。 2、空钩、半水调平水 ——调标步骤: (1)先在空钩、半水时,通过增减铅皮将浮标标尖调成平水; (2)然后挂双饵、移动浮标确定钓目N(例如N=1、2或3); ——饵团在水下状态:受饵团大小、重量影响大,双饵卧底,子线处于弯曲状态; ——适用垂钓场合(环境):属于钓钝,应用于有风浪、水流动干扰的环境。

3、无钩、半水调平水 ——调标步骤: (1)铅坠上先不挂子线和钩,在半水时,增减铅皮将标尖调成平水; (2)然后挂双饵、向上移动浮标确定钓目N(例如N=1、2或3); ——观察饵团在水下状态:铅坠触底(或躺底),钩子(饵团)及子线均横躺水底; ——适用垂钓环境:属于极钓钝,用于防止小杂鱼闹窝,以及钓刁滑鱼。 (二)、带饵调标 1、双饵、半水调平水 ——调标步骤: (1)先双钩挂饵,在半水状态下,通过增、减铅皮将标尖调成平水; (2)然后向上移动浮标确定钓目,使标尖露出水面N目(N=1、2或3目); ——饵团及子线在水下状况: (1)当只要看到钓目时,下饵就一定到底了,当钓目在3目以内时,水底饵团处于上饵悬浮,下饵轻触底,子线略有弯曲。 (2)甚至当我将钓目调到4目时,上饵仍然处于悬浮状态,只是下钩饵子线明显弯曲了。 ——灵敏度及实用性: (1)此种调法,由于在确定调目时,就完全消除了双饵重量的影响,因此,这种调法非常灵敏。

驱动程序安装方法

驱动程序安装方法 初识电脑的人,可能为安装驱动程序而头疼。因为对驱动程序了解得不多就会在安装过程中走不少弯路,下面就给大家介绍一下安装驱动程序的两种常用方法和一些实用技巧。 一、安装即插即用设备的驱动程序 安装前的准备工作很重要,一般我们拿到要安装的新硬件时,首先要查看外包装盒,了解产品的型号、盒内部件及产品对系统的最低要求等信息。紧接着就要打开包装盒,取出硬件产品、说明书和驱动盘(光盘或软盘),认真阅读说明书或驱动盘上的ReadMe 文件,一般说明书上写有安装方法和步骤,以及安装注意事项。除了阅读说明书外,还应记得硬件产品上印刷的各种信息以及板卡产品使用的主要芯片的型号。这些信息就是确定产品型号及厂家的重要依据,只有知道这些,才能在网上查找最新的驱动程序。最后按照说明书上介绍的方法来安装硬件。通常安装内置板卡、内置驱动器,使用串口或PS /2接口的设备都应关机断电后再操作,而安装USB设备、笔记本电脑的PC卡时可以带电热插拔。当然,如果是Win2000系统则均可热插拔。完成前面的准备工作之后,就可以启动Windows 来安装驱动程序了。通常情况下,Windows 能够自动检测到PCI 卡、AGP卡、ISA卡、USB设备以及多数打印机和扫描仪等外设,并提示用户插入安装盘。以YAMAHA724声卡为例,其在Win98下安装驱动程序的详细步骤如下。 1.Win98在启动过程中会自动检测即插即用设备,一旦发现了新设备,并且在INF目录下有该设备的.inf 文件,系统将自动安装驱动程序;如果这是一个新设备,INF目录下没有相应的.inf 文件,那么系统就会启动硬件向导。我们单击“下一步”让安装向导自动搜索设备驱动程序,然后再单击“下一步”。 2.在图3中只选中“指定位置”,插入驱动光盘,并单击“浏览”,根据说明书的介绍,选择简体中文版驱动程序所在的目录“E:\Lx_so u n d /Yamaha /Win9X”,点“确定”后单击“下一步”。需要注意的是:Win95的安装向导没有自动搜索功能,我们必须选择“从磁盘安装”,并指定驱动程序所在的位置。驱动程序所在的目录通常是驱动盘上的“Win95”、“Win9X”或“Windows98”目录。 3.硬件安装向导会在指定目录下查找与设备相符的.inf 文件,此例中,硬件向导将在指定目录下找到并向作户报告发现YAMAHA724声卡驱动程序,继续按“下一步”。 4.硬件安装向导显示Windows 准备安装的驱动程序的信息,单击“下一步”后,硬件向导便会根据.inf 文件的内容把指定的文件拷贝到相应的目录下,并在注册表中写入相应的信息,安装成功后显示出对话框。 5.对多数设备而言,到这里驱动程序就算安装完毕了。但如果你安装的是声卡那就还未结束,因为刚才的步骤只能装完声卡的主体部分。单击“完成”后,Windows 又会报告发现了两个新硬件,分别是声卡的DOS 仿真部件和声卡上的游戏控制端口。由于此时SBPCI9X.inf 文件已经被拷到“Windows /INF /Other”子目录下,所以Windows 能够自动安装好这两种设备的驱动程序。 6.驱动程序安装完毕后,我们需要检查设备能否正常工作。检查前还要进行额外的设置,例如使用网卡之前必须先安装和设置网络协议,用调制解调器上网之前要先“新建连接”等。此例中,在“控制面板”里打开“系统”→“设备管理器”→“声音、视频和游戏控制器”,可以看见下面多了三个设备,只要设备的小图标上没有黄色惊叹号,就表示驱动程序运行正常。 二、安装非即插即用设备的驱动程序

安装电脑程序步骤和方法

安装电脑程序步骤和方法 第一步,设置光启: 所谓光启,意思就是计算机在启动的时候首先读光驱,这样的话如果光驱中有具有光启功能的光盘就可以赶在硬盘启动之询读取出来(比如从光盘安装系统的时候)。 设置方法: 1?启动计算机,并按住DEL键不放,直到出现BIOS设置窗口(通常为蓝色背 景,黄色英文字)。 2?选择并进入第二项,“BIOS SETUP" (BIOS设置)。在里面找到包含BOOT文 字的项或组,并找到依次排列的"FIRST" "SECEND" "THIRD"三项,分别代表 “第一项启动”“第二项启动”和“第三项启动”。这里我们按顺序依次设置为 “光驱”“软驱”“硬盘”即可。(如在这一页没有见到这三项E文,通常BOOT右边的选项菜单为“SETUP”,这时按回车进入即可看到了)应该选择“FIRST”敲回车键,在出来的子菜单选择CD-ROM。再按回车键 3?选择好启动方式后,按F10键,出现E文对话框,按键(可省略),并 回车,计算机自动重启,证明更改的设置生效了。 第二步,从光盘安装XP系统 在重启之前放入XP安装光盘,在看到屏幕底部出现CD字样的时候,按回车键。才能实现光启,否则计算机开始读取硬盘,也就是跳过光启从?盘启动了。 XP系统盘光启之后便是蓝色背景的安装界面,这时系统会自动分析计算机信 息,不需要任何操作,直到显示器屏幕变黑一下,随后出现蓝色背景的中文界面。 这时首先出现的是XP系统的协议,按F8键(代表同意此协议),之后可以见到硬盘所有分区的信息列表,并且有中文的操作说明。选择C盘,按D键删除分区 (之前记得先将C盘的有用文件做好备份),C盘的位置变成“未分区",再在原C 盘位置(即“未分区”位置)按C键创建分区,分区大小不需要调整。之后原C盘位置变成了“新的未使用”字样,按回车键继续。

150项民间捕捉鱼虾及山野动物方法

150项民间捕捉鱼虾及山野动物方法 1、诱鱼入笼诱饵配制 (1)配方:阿魏1克,八角2克,南杏2克,小茴香2克,花生米25克,食母生3片。除阿魏外,其余五味均应分别炒熟,粉碎成粉,并分别存放。使用时再加入正宗蜂蜜2克,生蚯蚓10克。本药方在不需要用时绝对不要混合一经混合应立即用完,否则将失败。 (2)用量:以上药量可用于四只鱼笼诱捕。 (3)使用方法:将米糠与上述药物混合后,用布包好放进能使鱼能进不能出的鱼笼中(将笼口被做成有倒须的即可)再将鱼笼放进水里即可。 (4)放置位置:将鱼笼放于距水面一尺深处,气温低时可深些。为使药味迅速扩散,鱼笼就放入上风处,例如,刮南风时将殖笼放在南岩水下。如在急流中捕鱼,应将鱼笼放在急流的转弯处,即稳水区。鱼笼放入水中30分钟左右即可取起,这时鱼笼里可能已装满了各种鱼。换药换位置后可再捕鱼。 (5)此药对鱼有极大的引诱力,闻味即自动钻入鱼笼中,对各种鱼类、各种场合如江河、水溪、水库均适用。 2、特效捕虾术 一、原料 氰茂菊脂,本品为广谱高效安全杀虫剂,各地农药部门均可买到,用本品捕虾安全可靠。 二、使用方法 (1)用于塘内捕虾:在水深1.5左右的情况下,按每亩水面用药50克(每支2毫升)拦沙撒庆塘内即可。药发挥作用后,虾就游近岸边任作曲捕捞不会跑。捞后放清水中养着待售。水深时用量增加,反之则减。 (2)用于江河流水处捕虾:将氰茂菊脂,根据水深、水面宽及水流情况不同而不同,可从少到多试用,不够时再加,待见到两岸边的虾稍清醒有活动能力时,证明先撒的药已不再有足够效力,应再撒些药,如此一直到你不想再捕为止。 此法对鱼无伤害,虾源丰富的地方,一次可捕到上百斤,是简便易行的捕虾术。 3、特效钓鱼灵 配方:阿魏50克、芝麻30克、大蒜汁50克、面粉90克。 配制:将以上原料混合制成黄豆大小的丸,如太干可再加大蒜汁直到能捍成丸为止。 使用:将丸挂在鱼钓上放入河中几分钟后,鱼闻味即来抢食,百钓百中。

手机JAVA程序下载安装方法大全

手机JAVA程序下载安装方法大全 2009-04-19 15:23 一.JAVA程序传送到手机的方法: JAVA程序传送到手机的方法有4种,分别是手机上网直接下载安装,通过电脑下载到本地后,然后通过读卡器,数据线,蓝牙,红外线传输JAVA 程序到手机.具体方法说明如下. 1.手机上网下载: 通过手机上网下载以及使用短信定购的方式,直接在手机的个人文档或者应用程序中找到(根据手机各不相同),无需在安装,直接可以在类似“我的文件夹”之类的选项找到。 使用电脑下载就需要将文件传送到手机上。 2. 读卡器: 1 新买的卡,先在手机上格式你的 TF 卡:设置——手机状态——存储存储设备——卡——菜单键——格式 OK 或先安装 TF 卡到手机上采取拍照,录象的方式,激活 TF 卡的文件夹。如果是已经使用的就不必了... 2 .将我的电脑——工具 - 文件夹选项 - 查看中的,隐藏文件和文件夹——选显示 3 .打开我的电脑——工具 - 文件夹选项 - 查看,把“ 隐藏受保护的操作系统文件” 前面的勾去掉

4.然后用读卡器打开你的 TF ,就可以看见 TF 卡上的 KJAVA 了。copy JAVA程序(包括 *.JAR,*.JAD)到你 TF 卡的 KJAVA 目录里就行了 5 .安装 TF 卡到手机。 6 .进入手机“ 游戏和应用程序)里安装新的程序 OK 3.数据线传输: 通过安装购买手机时所附带的软件安装盘,安装其pc套件,用数据线接上手机与电脑,通过管理软件把JAVA程序文件*.JAD,*.JAR传送到手机上;MIDWAY2.8 也可以传输 JAVA 程序,但是需要开启 JAVA 设置 中的 "JAVA 加载器 " 4.蓝牙传输: 1 .把蓝牙适配器安上 2 .手机蓝牙开启 3 .双击电脑任务栏上的蓝牙图标,和手机匹配 4 .再点任务栏上的蓝牙图标,直接发送文件到手机,手机自动识. 5.红外线传输

如何调漂及找底方法大全,总有一种适合你

如何调漂及找底方法大全,总有一种适合你半水调漂 1、台钓钓组: 台钓钓组的精华之处,在于其能非常灵敏的反应鱼吃食的信号。其钓组的搭配比较精细-------------- 小竿,细线,小漂(长流线型浮漂,细尾),轻坠,小钩, 长脑线(拴鱼钩的线)。至于怎么组装,这里都有详细的图文,一看就明白,就不多费唇舌了。 一切就续后,就是试漂,调漂。一般的文字资料,都介绍以调四目钓两目,为台钓入门的基础。我也用其做为调漂的基本参数。所谓目,就是浮漂上的彩色的小格,一格为一目,调四目,就是要让浮漂露出水面四个小格。 而所谓的钓两目,就是看水面露出两个小格,看其上浮或者下沉和横移而来判断鱼咬钩情况。 这个时候,学钓的人也许就会糊涂了,怎么调着是四目,而钓着却说两目?差两个呢,别着急,这个就涉及到了台钓和咱们民间所流传的钓渔方式的关键。我们民间这种钓鱼方式一般钓鱼人都称做传统钓,传统钓钓组的坠子是躺在地面上,坠子的重力大于浮漂的浮力,一般是漂调几目就钓几目。 而台钓的坠子是悬浮在水中的。它的重力小于漂的浮力,这个是他们之间的本质区别。 才说的调四目,就是调漂时将浮漂调的在水面上露四目。钓二目,是指在垂钓时视标在水面上露出的两目,而少的两目是鱼饵的重量,因为上面已经说过,台钓的钓组在空钩情况下是悬浮水中的。所以当双钩挂饵下水后(饵的大小适当情况下,约黄豆粒大),浮漂会自然下沉两目,水面还会剩余两目,而剩余的这两目,就是所谓“钓两目”,开始露在水面的四目就是所谓的调“四目到这里该明白“调四目钓两目”这个专业说法的由来吧? 这个四目如何调呢? (1)首先,我们将铅皮缠到铅皮座上,然后扬竿入水找深浅,也就是所谓的找底。如果入水后,看不到浮漂,就将漂向上移动,直到漂尾与水面一平。 (2)接着就提竿,将浮漂向下移动(浮漂座上下各有两个太空豆)但是暂时不要移

驱动程序的安装方法

什么是“驱动程序”呢?驱动程序即添加到操作系统中的一小块代码,其中包含有关硬件设备的信息。有了此信息,计算机就可以与设备进行通信。驱动程序是硬件厂商根据操作系统编写的配置文件,可以说没有驱动程序,计算机中的硬件就无法工作。操作系统不同,硬件的驱动程序也不同,各个硬件厂商为了保证硬件的兼容性及增强硬件的功能 会不断地升级驱动程序。如:Nvidia 显卡芯片公司平均每个月会升级显卡驱动程序2-3次。驱动程序是硬件的一部分,当你安装新硬件时,驱

动程序是一项不可或缺的重要元件。凡是安装一个原本不属于你电脑中的硬件设备时,系统就会要求你安装驱动程序,将新的硬件与电脑系统连接起来。驱动程序扮演沟通的角色,把硬件的功能告诉电脑系统,并且也将系统的指令传达给硬件,让它开始工作。 当你在安装新硬件时总会被要求放入“这种硬件的驱动程序”,很多人这时就开始头痛。不是找不到驱动程序的盘片,就是找不到文件的位置,或是根本不知道什么是驱动程序。比如安装打印机这类的硬件外设,并不是把连接线接上就算完成,如果你这

时候开始使用,系统会告诉你,找不到驱动程序。怎么办呢?参照说明书也未必就能顺利安装。其实在安装方面还是有一定的惯例与通则可寻的,这些都可以帮你做到无障碍安装。初识电脑的人,可能为安装驱动程序而头疼。因为对驱动程序了解得不多就会在安装过程中走不少弯路,下面就给大家介绍一下安装驱动程序的两种常用方法和一些实用技巧。一、安装即插即用设备的驱动程序 安装前的准备工作很重要,一般我们拿到要安装的新硬件时,首先要查看外包装盒,了解产品的型号、盒

内部件及产品对系统的最低要求等信息。紧接着就要打开包装盒,取出硬件产品、说明书和驱动盘(光盘或软盘),认真阅读说明书或驱动盘上的ReadMe 文件,一般说明书上写有安装方法和步骤,以及安装注意事项。除了阅读说明书外,还应记得硬件产品上印刷的各种信息以及板卡产品使用的主要芯片的型号。这些信息就是确定产品型号及厂家的重要依据,只有知道这些,才能在网上查找最新的驱动程序。最后按照说明书上介绍的方法来安装硬件。通常安装内置板卡、内置驱动器,使用串口或PS /2接口的设备都应关机断电后

2020年海竿使用方法大全(课件)

2020年海竿使用方法大全(课 件) 海竿使用方法大全 大家都喜欢用海竿钓鱼,但有些钓鱼人的方法不是很对。为此,小编特整理出海竿使用方法,供广大钓鱼人查看。 一、海竿选择与应用 海竿的选择原则:海竿的长度与硬度:海竿要想投得远,竿是主体。一般来说,长竿投得远些,短竿就投得近些。竿的硬软与投远也有密切的关系。软竿反应灵敏,但难投远;硬竿易投远,但反应不灵敏。因此,竿的软硬选择一般我们应考虑所钓鱼目标和使用方式,一般钓大鱼或手持竿手感钓鱼选择弹性好的中硬竿,海钓小型鱼类如鲷类鱼或放竿看竿头信号钓法则宜选择软稍竿。海竿的主要优点这一是能放长线,钓大鱼,遛鱼方便跑鱼少.因此将海竿投远是关键因素,选择海竿的主要因素有以下几个。......感谢聆听1、根据用途选择海竿:海竿可用于海钓和淡水钓。如果条件允许可海钓竿和淡水钓竿分开购买使用。如果兼顾淡、海二用的海竿长度竿长一般在2.1-—--2.4为宜。可节省大笔开支。 2、淡水钓海竿的选择:淡水钓用海竿一般是在大水面

的环境下使用,如水库、湖泊、大型的鱼塘,一般选择长度在2。7—--—3。1米为宜,如果你经常施钓的水域环境的钓点位置面积较宽阔这个长度范的海竿是最合适的。如果施钓的水域环境的钓点位置面积小,海竿长度以1.8—-—-2.4米为宜。竿过长在投掷时竿头及坠、钩组容易挂到身后的树、石壁等障碍物,造成断竿损线等事故,而且在投掷时因空间小而产生心理干扰,造成定点不准,投不到位等情况发生。因面影响施钓成绩.......感谢聆听 3、海钓竿的选择:海钓方式有船排钓、矶钓、深海船钓等,矶钓、深海船钓都有其专用设备,在此不做讨论,在这里我们通常为船、排钓。船、排钓的施钓环境一般都很狭小,在福建沿海可供海钓的船只一般一条船最多可容纳3—4人,可布竿9把,已经很拥挤了.如果使用长度3米以上的海竿布竿时竿体要横贯船体两侧,给钓手的活动造成很大的不便,不小心还会造成拌倒压断竿子等事故。另外由于施钓环境多为海产养殖区,海域内鱼排纵横,水下绳索交错.排与排之间的钓位空隙也只有1-2米施钓多为垂直放线,远投已经是不可能的,因此,建议不使用长竿,竿长一般在 1.8-—--2.4为宜,船排海钓短竿具有操作灵活方便等优点.......感谢聆听 4、线轮的配置:线轮的配置一般选择可绕线长度在150 --—200米为宜,淡水主线一般4--—5号,海钓5—-

(详细的)ONE程序安装使用方法

ONE程序安装使用方法 一.软件安装 1.安装平台: Windows XP(可以是linux环境,方法类似) 2.所需软件: 至少需要: one_1.3.0.zip(windows版) jdk-6u18-windows-i586(jdk1.6) 还可以需要: ActivePerl(windows平台perl解释器) Graphviz(用于将程序生成的数据绘图,程序会生成与graphviz兼容的文件) 3.安装步骤: (1)安装JDK: 双击安装JDK,选择任意路径,比如D:\Program Files\Java\jdk1.6.0_10,后面还要选择JRE 路径,比如D:\Program Files\Java\jre6 (2)注册环境变量: 右键点击我的电脑->属性->高级->环境变量—>系统变量中新建以下三个环境变量及其对应值。

set JA V A_HOME =D:\Program Files\Java\jdk1.6.0_10 set PA TH =%JA V A_HOME%\bin;%PA TH% (中间那个是分号) set CLASSPATH =.;%JA V A_HOME%\lib\tools.jar (最前面是一个点加一个分号)然后,开始-》运行-》CMD打开WINDOWS平台的命令行窗口(黑屏窗口),如果在黑屏里输入javac,能够出来一些提示,而不是命令不存在,就说明环境变量注册成功。 (3)编译源代码: 假设one程序文件夹的路径为F:\one_1.3.0\one_1.3.0(注意,用cd命令进入one_1.3.0所在的最下层目录),在WINDOWS平台的命令行窗口中,进入到该目录,如下图所示: 输入命令编译程序,命令为compile.bat,如下图所示:

民间秘制钓鱼饵料DIY配方

民间秘制钓鱼饵料DIY 配方 各位钓友好!很高兴认识大家,我喜欢钓鱼,也喜欢学习一些自制饵料方法,这些年也总结了一些常用饵料自制配方和经验。我会和各位钓友慢慢分享这些配方。有什么好的建议和配方也可以联系我。我们钓鱼爱好者每次外出钓鱼,特别是用自制的饵料上大鱼时,觉的很有成就感。所以我也喜欢上饵料DIY 了,以前经常用的那些大品牌饵料现在基本很少用了,就是偶尔做些配方佐料。我一般情况下的自制原则,材料都是五谷杂粮,特殊的加些民间流传钓鱼中药。我希望更多的钓友都能加入垂钓饵料DIY 行列。 我很乐意和钓友分享饵料DIY 配方并且更希望大家支持,分享些自己常用的简单配方,我慢慢积累,总结。等差不多了,写成一本书《饵料DIY 配方大全》。分享给钓友!我的生活我做主,我爱钓鱼,我健康,我快乐! 自制饵料的优势: 1.材料质优价廉,一般情况下身边就可以找到,简单。 2.随时,随环境,随鱼的种类,钓鱼时节,钓鱼水质调换配方原料(大家都知道长时间用一种饵料鱼会有警惕性条件反射)。 3.自制饵料不仅环保,无污染,而且还不用那些华丽塑料包装袋,低碳对环境污染少。 4.由于大多数人都使用品牌饵料,时间一长慢慢鱼也就对那些饵料非常敏感,所以那些大公司不断推出新品就是为了适应鱼的条件反射性抗体,但是无论他们

反应速度怎么快,也赶不上鱼对饵料的敏感度。而我们饵料DIY 就不同了,非常灵活,可以随时随地调整配方结构,添加原料。有钓鱼经验的渔夫用饵料也一般是搭配使用,不单一使用一种饵料。 说起我钓鱼生活和饵料配方还要追溯到我父亲上一辈人了,我父亲曾经就是一个钓鱼爱好者自他手里就研究过许多民间秘制饵料配方。家里有流传下来酝酿了20 年的秘制钓鱼药酒。我也经常在配制饵料时给里面稍微滴几滴。效果就是不错。由于我的爱好,也使我从事服务于钓友的行业——渔具经营:经常和钓友们交流,给他们配置钓鱼装备,虽然现在工作比较繁忙,自己现在已经很少出去钓鱼了,但是看见钓友们喜获丰收的惊喜我也觉的挺有成就感的,特别是他们用我的秘制配方喜获丰收,有的钓友非常热情还把自己的渔获通过快递发些给我以表自己喜获丰收的喜悦心情。我真的挺感动的。我的渔具店有淘宝店和实体店。那些药酒的方子,中草药配方等各种民间配方我也会陆续分享给各位钓友,比较成熟的,经过许多钓友测试过的,好的方子我也已经制成了饵料成品希望有机会与大家分享。

创建安装程序的两种方法

创建安装程序的两种方法 创建安装程序是程序员经常遇到的问题之一。本文仅探讨在Windows 平台上创建安装(Setup)程序的两种方法。 一、使用Visual C++ 编程生成Setup 程序 生成Setup 程序最直接的方法当然是通过编程来实现。 对于Windows 平台来说,没有比Visual C++ 更好的开发工具了( 原因很简单,有谁能比Microsoft 更了解Windows 平台呢?)。下面的例程就是使用Visual C++ 5.0 编译完成的。 Setup 程序主要处理两个方面的问题: (1)用户界面。评价一个Setup 程序的优劣时,用户界面是否美观是其中的一个重要因素。此外,通过交互式界面还应能够获得用户的相关信息(比如目标目录)。 (2)文件拷贝与程序组的生成。也就是按照用户输入的信息,生成相应的目录并完成文件拷贝功能(这要涉及到解压缩问题)。一般来说,还应包括将可执行文件的图标添加到指定的程序组中。 1、为Setup 程序设置背景 Setup 程序的用户界面以对话框为主,不过若有美丽 的 背景则能为你的程序增色不少。你可以选择一个合适的BMP 文件,将它插入到工程文件(project)中,并通过重载主窗口类的OnPaint() 函数显示出来。值得注意的是,背景图片不应过于眩目,否则会有喧宾夺主之感。例如,要加入的BMP 文件的ID 号是IDB_BIT。下面给出应加在OnPaint() 中的 函数。 void Background(CDC *pDC) { CDC * pmem; CBitmap * pback; CBitmap * pold; BITMAP ff; pmem=new CDC; pbit=new CBitmap; pbit->LoadBitmap(IDB_BIT); pmem->CreateCompatibleDC(pDC); pold=(CBitmap *) pmem->SelectObject(pbit);

民间钓鱼谚语大全

民间钓鱼谚语大全 1、涨水钓河口,鱼儿爱往这里游。 2、春鱼吃钓快似箭。 3、水浑钩浅,水清钓深。 4、水草旁,树荫下,夏季钓鱼不放空。 5、清堰钓码头港钓尾,排洪闸上钓两边。 6、早春钓艳阳,仲春钓雨雾。 7、出门看天色,钓鱼看水色。 8、春天会钓滩,收获不一般。 9、水底青苔多,钓鱼没汤喝。 10、早春钓午后,仲春钓全天。 11、清明前后,鲫鱼抢钩。 12、早钓近,午钓远,天阴下雨钓岸边。 13、春钓滩,夏钓阴,秋钓潭,冬钓阳。 14、金秋八月桂花香,正是钓鱼的好时光。 15、仲春鱼儿贪晒阳,阴雨钓比晴天强。 16、春季钓草滩,诱饵味要鲜。 17、要想上鱼忙,避开大路旁。 18、雪前钓鱼,雪后拥炉。 19、秋钓霜降后,冬钓下雪前。 20、阳春三月桃花开,摆籽的鱼儿蹦上来。

21、水宽鱼大,水浅鱼小。 22、清水无鱼混水摸鱼,不清不混好钓鱼。 23、水至清则无鱼。 24、虾有虾路,鱼有鱼路。 25、红虫和蚯蚓,春天鱼爱品。 26、西南风,钓两头。 27、宁钓下风,不钓平静。 28、过了清明,钓翁早行。 29、大麦须须亮,鲤鱼遍沟放。 30、春暖天晴深水处,饵钩落底无鱼顾。 31、早晚钓一阵,回家吃一顿。 32、大麦黄,钓鱼忙。 33、冬季当午太阳照,背风向阳把鱼钓。 34、钓鱼面对风,鱼竿弯弯动。 35、草窝钓鱼背向风,元草钓鱼面对浪。 36、夏季鱼找食,冬季食找鱼。 37、暴雨过后钓上游,水库湖泊钓沟岔。 38、一番江水一番鱼,一方鱼吃一方饵。 39、夏季里麦子黄,抓紧时机钓鱼忙。 40、水下小鱼多,大鱼不在窝。 41、堰钓码头港钓尾,排洪闸上钓两边。 42、春钓还是活饵好,红虫蚯蚓牵鱼跑。

元宵节互动小游戏

元宵节互动小游戏 篇一:元宵节趣味游戏活动方案 元宵节趣味游戏活动方案 活动主旨: 每年农历的正月十五,春节刚过,迎来的就是中国的传统节日——元宵节。按中国民间的传统,人们要点起彩灯万盏,以示庆贺。出门赏月、燃灯放焰、喜猜灯谜、共吃元宵,合家团聚、同庆佳节,其乐融融。通过元宵这一传统节日,揭开中华民族传统习俗的神秘面纱,借助各类课程与活动的整合,让学生了解中国的传统节日风俗,传承中华民族的悠久文化。 活动目的: 1、让学生了解一些元宵节的传统风俗。 2、让学生了解一些元宵节的文化背景。 3、通过学生的动手参与,学会一些民俗技艺,加深对传统节日的感性认识。 通过亲子游园活动体验过节的热闹气氛,玩中乐,玩中学。 一、扮时钟 游戏规则: 1、在白板或墙壁上画一个大的时钟模型,分别将时钟的刻度标识出来; 2、找三个人分别扮演时钟的秒针、分针和时针,手上拿着三种

长度不一的棍子或其他道具(代表时钟的指针)在时钟前面站成一纵列(注意是背向白板或墙壁,扮演者看不到时钟模型); 3、主持人任意说出一个时刻,比如现在是3小时45分15秒,要三个分别扮演的人迅速的将代表指针的道具指向正确的位置,指示错误或指示慢的人受罚 4、可重复玩多次,亦可有一人同时扮演时钟的分针和时针,训练表演者的判断力和反应能力。 二、循环相克令 游戏规则:全体同学分成2组,每次每组出一个代表比赛,赢的一方继续留在台上进行下一场比赛,输的一方下台,派组里第二个选手和留在台上一方的同学继续比赛。以此类推,最后留在台上的一方为优胜方。 方法:令词为“猎人、狗熊、枪”,两人同时说令词,在说最后一个字的同时做出一个动作——猎人的动作是双手叉腰;狗熊的动作是双手搭在胸前;枪的动作是双手举起呈手枪状。 双方以此动作判定输赢,猎人赢枪、枪赢狗熊、狗熊赢猎人,动作相同则重新开始。 三、官兵捉贼 游戏规则: 用具:分别写着“官、兵、捉、贼”字样的四张小纸 人数:4个人 方法:将四张纸折叠起来,参加游戏的四个人分别抽出一张,抽

手机程序软件的安装

程序软件的安装 安装程序时请在手机里作如下设置: 1:安装主题(或程序)时提示不兼容的话,请做如下操作:设置--手机设置--应用程序--程序管理--“软件安装”可以选择"仅限已注册的程序/全部",选择"全部",在线证书检查:"必须通过检查/开/关",选择"关". 2:若安装程序时手机提示“设备会出项严重问题”:不必理会,继续安装。 安装软件或游戏可以通过五种方法安装: 在软件安装前先具备几个条件: 一是传送软件到手机上的几个设备,如:已经安装好驱动的数据线及PC套件),蓝牙适配器或读卡器等。 二是已经下载到PC上的S60安装软件, 说到安装软件,第三版S60系列机器程序文件通常有sisx、jar。两者相当于pc里的setup.exe,只要在手机自带的文件管理里直接开启即可安装。另外,尽量把程序安装在mmc卡上,保持较大的机器空间对提高机器的稳定性有好处。 (1)用数据线配合PC套件安装: 连接好数据线,打开PC套件,选择界面里的安装软件,或直接传送文件到手机里,然后再安装就可以了。 (2)通过蓝牙适配器安装: 连接好蓝牙适配器,搜索到PC或手机,从PC上传送SIS的安装文件到手机上,在消息里打开就可以直接安装了,安装完毕后将消息里的蓝牙消息就可以删除了; (3)通过读卡器安装: 关机后取出存储卡,如果你的读卡器不能直接读取存储卡,就加上适配器使用,将安装的SIS文件复制到存储卡上,然后装进手机,在设置--数据管理--文件管理--方向键向右,在里面找到刚才传的SISX安装文件,直接打开就可以自动安装了;安装后也你可以考虑是否删除存储卡里复制过来的原始安装文件来节约存储卡空间。 (4)通过邮件提取法安装: 先将安装文件通过邮箱发送到手机设置的那个邮箱里去,到手机里的信息——信箱里接收邮件,然后提取附件,最后还是按照以上的方法安装就可以了。 (5)复盖安装法: 还有一种SIS文件的另类安装方法,就是通过UnMakeSIS软件在PC上将SIS软件的打包文件解开,直接复制里面的文件到指定文件夹即可,例如解开某个程序后共生成9个文件,将附带这9个文件连同外面的r文件夹一同复制到你要安装的盘符下(建议安装在E盘)的相应文件夹中,之后就会自动在功能表中生成这个程序的运行图标,点击即可进入该程序,我们在这里不推荐大家这样安装软件,知道方法就可以了。 软件、游戏、主题桌面程序都为symbian系统的程序,所以原理都是相同的。 (6)自动安装法: 将可直接安装的程序软件放到存储卡E:\Private\10202dce目录下,断开传输连接后,手机

能救命的民间失传珍贵绝技

能救命的民间失传珍贵 绝技 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

能救命的民间失传珍贵绝技 能救命的民间失传珍贵绝技,很多病一用就灵 - 瀛子 - 瀛の小笺 急救脑血栓疗效如神 治疗血栓一法。此法百试百灵,无不神效。病人如果出现口眼歪斜,不能言则为中风和栓塞之症,应马上检查患者口腔两齿间定有两白色如带状物,并用割刀竖切断之。病人马上恢复常态。另检查舌下,如有如疣状物,应以镊子钳之出血,定有回天神力。应当牢记此法。救人于顷刻之间。还人健康,快乐自己。 能救命的民间失传珍贵绝技,很多病一用就灵 - 瀛子 - 瀛の小笺 用针点刺“风疙瘩”出尽恶血中风就不会发作 有中风先兆或中风刚发作时如果治疗及时,完全可以消除中风的发生。中风先兆或刚发中风时在患者的后头颈部风池,风府附近有一“风疙瘩”,用针点刺出尽恶血,中风就不会发作了。方法简单,又没有危险性, 希望大家广为流传,为身边的亲人和朋友保驾护航,如果大家都知道了这样的方法就可以消灭中风了。具体操作方法:用手捏住“风疙瘩”随便用什么针都行,多点刺几下,再用火罐拔,使其出尽恶血。注:不可刺的太深,以免发生危险。 能救命的民间失传珍贵绝技,很多病一用就灵 - 瀛子 - 瀛の小笺 针刺龈交穴治疗小便频繁 嘴唇中间有一条细筋,靠近顶端应该有一个米粒大小的白点,用消毒针挑破这个白点。就行了。

解释如下: 这个米粒白点的位置就是龈交穴,是督脉的终点,为任,督,足阳明胃经的交汇点。是任脉的盖头。龈交鼓起突出,就是盖头揭开了,膀胱的开关海底会阴穴之上的曲骨穴(女叫赤女亦曰玉女穴,男叫铜壶滴漏穴)就会漏水。 能救命的民间失传珍贵绝技,很多病一用就灵 - 瀛子 - 瀛の小笺 扁桃体发炎,用针刺后溪穴,疗效极快。 一患者,感冒嗓子疼的特别厉害,连咽唾液都不行,采用针刺后溪穴,针刺到后溪穴后,即刻感到疼痛减轻,又留了二十分钟针,咽部竟一点不舒服的感觉都没有了,三天以后便彻底的好了(中间再没做任何治疗)。这之后,他每遇扁桃体发炎,即针后溪,几乎都能立即止痛。 另一患者,感冒发烧39.6度,扁桃体已经化脓,不能咽任何东西,随针刺后溪穴,当即就能咽唾液了,留针一小时后既可以吃东西了,以后又连针了五天便痊愈了。 能救命的民间失传珍贵绝技,很多病一用就灵 - 瀛子 - 瀛の小笺 能救命的民间失传珍贵绝技,很多病一用就灵 - 瀛子 - 瀛の小笺 第四批【健康长寿】精品推荐如下: [精]【30年验方】带状疱疹剧痛止痛迅速,有效率100% [精]【神奇功效】《氯霉素眼药水》治愈发痒鳞痣和全身奇痒湿疹疙瘩[精]【偏方集锦】神奇的好偏方,搓脚心治伤风感冒等51个效方 [精]【祖传秘方】同仁医院发的补肾生精奇特秘方 [精]【民间偏方】《泡脚最补肾》方法有讲究!

windows 2000集成应用程序自动安装方法

制作windows 2000集成应用程序自动安装的方法!! [这个贴子最后由ke8880在2003/08/15 07:25pm 第1 次编辑] [转载] Windows无人值守、集成安装IE6、驱动程序、应用软件 把Service Pack 2集成到Windows 2000安装程序中,只是我们万里长征的第一步,我们还需要把以前手工进行操作的驱动程序的安装集成到Windows 2000的安装文件中,需要说明一点的是,这种驱动程序的集成方式是基于Windows的OEM版本的制作方式。 ----------------==========================小知识 ==================------------- OEM版本的Windows Original Equipment Manufacturer,原始设备生产商的缩写。一些著名的品牌商品制造商,常常因为自己的厂房不能达到大批量生产的要求,又或者需要某些特定的零件,因此向其他厂商求助,这些伸出援手的厂商就被称为OEM。 对于Windows来说,由于像Dell、HP等PC厂商不能生产Windows 2000但是又需要大批量Windows,因此就和微软形成OEM关系,同时由于需要商品是大批量的,所以也会在一定程度上降低单价,并且为OEM 版本的Windows进行一定程度上的定制——比如添加驱动程序、应用程序等。 这也是我们可以自动安装以下驱动程序的源泉——制作类似于OEM版本的Windows。 ----------------================================================== -------------- 1. RAID、SCSI磁盘控制器驱动安装 对于Windows 2000/XP之类的基于NT内核的操作系统,即插即用硬件的安装可以安排在系统安装之后再进行(即系统安装到GUI模式阶段才开始安装);不过对于SCSI、RAID卡的驱动安装情况可能有所不同,如果你需要将操作系统安装在RAID或SCSI硬盘上,那么它们的驱动程序必须在安装系统之前就正确加载(它们的安装时机应是位于系统安装的TextMode阶段)。基于这样的原因,磁盘控制器之类的硬件和常见的即插即用硬件的驱动程序安装方式肯定是不一样的,我们应该区别对待。 安装此类驱动程序常见的模式是将硬件的驱动程序拷贝到软盘上,这样在系统开始安装的时候按下F6,然后系统会为你加载软盘中的驱动程序。这样的驱动程序软盘根目录下肯定有一个名为Txtsetup.oem的文件,它会告诉安装程序怎样安装SCSI、RAID卡的驱动程序,至于这个文件的详细资料我们不再详细加以介绍,如果你有兴趣的话,可以参考微软的驱动开发包中相关部分。实例——在最初的我安装Windows 2000的时候,总是先将IWill SIDERAID 100的驱动程序放入软驱,然后再安装的初期及时按下F6来加载RAID卡的驱动程序,通过以下方式改造可以让我的RAID卡的驱动直接加载(就如同它已经内置了驱动程序一样)。 (1)把Windows 2000原版光盘上的所有文件拷贝到f:\win2k下,并在i386目录下建立一个$OEM$ 子目录(f:\win2k\i386\$OEM$); (2) 在$OEM$目录下新建TEXTMODE子目录(f:\win2k\i386\$OEM$\TEXTMODE); (3) 把RAID卡的Windows 2000驱动程序都拷贝到TEXTMODE目录下(RAID卡随盘驱动程序可

#高中研究性学习课题集锦

研究性学习课题 (一)环境保护 加快防治“白色污染”的步伐对(某地区)废电池回收情况的调查及建议 饮用水污染和自然人为因素的关系和控制对策环保筷的开发和推广 空气中SO2对土壤的负面影响及治理措施绿岛的保护 废旧电池的回收和利用(某某地区)空气污染现状及对策 浅谈水资源的污染其治理汽车尾气的治理及再利用 如何降低汽车尾气净化的成本关于城市垃圾资源化的设想和调查 塑料及其回收利用摘掉城市的毒瘤——城市垃圾处理问题研究 大气污染和人体健康汽车安全和环保问题 酸雨和人体健康环保和产业的结合 光污染和光能节约汽车和环境 无污染汽车燃煤脱硫的简史及其发展 关于海水淡化问题的研究降解塑料的发展 关于口香糖的报告水体的富营养化 土地沙漠化的防治富营养水质的生物治理城市的供水、净水及水再利用创造绿色电能粉煤灰性能研究及综合利用城市生活垃圾的绿色处理 无污染能源在家庭中的利用绿色消费 杀虫剂使用的反思氟利昂问题 核聚变、核裂变及环境污染厄尔尼诺和拉尼娜 二恶英污染可可西里藏羚羊保护 日韩发生重大核事故臭氧层破坏 太湖零点行动长江上游生态保护黄河断流西部开发和环境保护 绿色文明淮河治污零点行动 苏州河综合整治电磁辐射污染 环境和健康无磷洗衣粉为何难以推广的探研 厨房生活垃圾能再利用吗 工业废水污染情况 农药污染的影响石材石粉尘污染的调查 工厂密集度和生活环境的关系大气污染对农作物的影响 居室污染 食品污染 研究影响空气污染指数的因素及对策常见植物对环境变化的反应研究和对策 洗涤剂、工厂废弃物等对生态环境的影响研究磷对水质的污染 小区环境对住宅和人的影响北方沙尘暴又起的原因分析 沿海生态环境调查手帕和餐巾纸的利弊研究 (二)生活中的化学问题 农用生物肥新型建筑材料的开发和利用 生命之源——营养家庭包装以氢气(天然气)为燃料的灶具正确提取热量及饮食 对化妆品成分的研究方便面可食性内分装 油烟革命装潢材料的使用及改进 金属防锈的研究关于低自由基、无毒香烟 有关饮料中非食用色素的调查化学和农村经济 纯净水是否“纯净”

民间钓鱼谚语大全

民间钓鱼谚语大全 导读:1、涨水钓河口,鱼儿爱往这里游。 2、春鱼吃钓快似箭。 3、水浑钩浅,水清钓深。 4、水草旁,树荫下,夏季钓鱼不放空。 5、清堰钓码头港钓尾,排洪闸上钓两边。 6、早春钓艳阳,仲春钓雨雾。 7、出门看天色,钓鱼看水色。 8、春天会钓滩,收获不一般。 9、水底青苔多,钓鱼没汤喝。 10、早春钓午后,仲春钓全天。 11、清明前后,鲫鱼抢钩。 12、早钓近,午钓远,天阴下雨钓岸边。 13、春钓滩,夏钓阴,秋钓潭,冬钓阳。 14、金秋八月桂花香,正是钓鱼的好时光。 15、仲春鱼儿贪晒阳,阴雨钓比晴天强。 16、春季钓草滩,诱饵味要鲜。 17、要想上鱼忙,避开大路旁。 18、雪前钓鱼,雪后拥炉。 19、秋钓霜降后,冬钓下雪前。 20、阳春三月桃花开,摆籽的鱼儿蹦上来。

21、水宽鱼大,水浅鱼小。 22、清水无鱼混水摸鱼,不清不混好钓鱼。 23、水至清则无鱼。 24、虾有虾路,鱼有鱼路。 25、红虫和蚯蚓,春天鱼爱品。 26、西南风,钓两头。 27、宁钓下风,不钓平静。 28、过了清明,钓翁早行。 29、大麦须须亮,鲤鱼遍沟放。 30、春暖天晴深水处,饵钩落底无鱼顾。 31、早晚钓一阵,回家吃一顿。 32、大麦黄,钓鱼忙。 33、冬季当午太阳照,背风向阳把鱼钓。 34、钓鱼面对风,鱼竿弯弯动。 35、草窝钓鱼背向风,元草钓鱼面对浪。 36、夏季鱼找食,冬季食找鱼。 37、暴雨过后钓上游,水库湖泊钓沟岔。 38、一番江水一番鱼,一方鱼吃一方饵。 39、夏季里麦子黄,抓紧时机钓鱼忙。 40、水下小鱼多,大鱼不在窝。 41、堰钓码头港钓尾,排洪闸上钓两边。

相关文档