文档库 最新最全的文档下载
当前位置:文档库 › 正交分解法整体法和隔离法 知识讲解 提高

正交分解法整体法和隔离法 知识讲解 提高

正交分解法整体法和隔离法 知识讲解 提高
正交分解法整体法和隔离法 知识讲解 提高

物理总复习:正交分解法、整体法和隔离法

【考纲要求】

1、理解牛顿第二定律,并会解决应用问题;

2、掌握应用整体法与隔离法解决牛顿第二定律问题的基本方法;

3、掌握应用正交分解法解决牛顿第二定律问题的基本方法;

4、掌握应用合成法解决牛顿第二定律问题的基本方法。

【考点梳理】

要点一、整体法与隔离法

1、连接体:由两个或两个以上的物体组成的物体系统称为连接体。

2、隔离体:把某个物体从系统中单独“隔离”出来,作为研究对象进行分析的方法叫做隔离法(称为“隔离审查对象”)。

3、整体法:把相互作用的多个物体视为一个系统、整体进行分析研究的方法称为整体法。

要点诠释: 处理连接体问题通常是整体法与隔离法配合使用。作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。处理连接体问题的关键是整体法与隔离法的配合使用。隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。

要点二、正交分解法

当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有:

x F ma =(沿加速度方向) 0y F = (垂直于加速度方向)

特殊情况下分解加速度比分解力更简单。

要点诠释:正确画出受力图;建立直角坐标系,特别要注意把力或加速度分解在x 轴和y 轴上;分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程。一般沿x 轴方向(加速度方向)列出合外力等于ma 的方程,沿y 轴方向求出支持力,再列出f N μ=的方程,联立解这三个方程求出加速度。

要点三、合成法

若物体只受两个力作用而产生加速度时,这是二力不平衡问题,通常应用合成法求解。要点诠释:根据牛顿第二定律,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。特别是两个力相互垂直或相等时,应用力的合成法比较简单。

【典型例题】

类型一、整体法和隔离法在牛顿第二定律中的应用

【高清课堂:牛顿第二定律及其应用1例4】

例1、(2014 河北衡水中学模拟)在水平地面上放一木板B ,重力为100N ,再在木板上放一货箱A ,重力为500N ,设货箱与木板、木板与地面间的动摩擦因数μ均为0.5,先用绳子把货箱与墙拉紧,如图示,已知sin θ=3/5,cos θ=3/5,然后在木板B 上施一水平力F 。

要想把木板从货箱下抽出来,F 至少应为多大?

【答案】850N

【解析】分别对物体A 、B 或AB 整体:受力分析,如图所示,由受力平衡知:

对A :T cos θ–f 1=0 N 1–G 1–T sin θ

又f 1=μN 1

联立得到:T cos θ=μ(G 1+T sin θ) 即1cos sin G T μθμθ

=- f 1= T cos θ N 1= G 1+T sin θ

对B :F –f 1′–f 2=0 N 2–N 1′–G 2=0

又f 2=μN 2

联立得到:F =f 1+μ(N 1+G 2)

解得:F =850N

(或者采用先整体后隔离)

本题考查受力平衡的问题,分别以两个物体为研究对象,分析受力情况,建立直角坐标系后分解不在坐标轴上的力,列平衡式可得答案

举一反三

【变式1】如图所示,两个质量相同的物体A 和B 紧靠在一起放在光滑水平桌面上,如果它们分别受到水平推力1F 和2F ,且12F F >,则A 施于B 的作用力的大小为( )

A . 1F

B .2F

C .121()2F F +

D . 121()2

F F - 【答案】 C

【解析】设两物体的质量均为m ,这两物体在1F 和2F 的作用下,具有相同的加速度为122F F a m

-=,方向与1F 相同。物体A 和B 之间存在着一对作用力和反作用力,设A 施于B 的作用力为N (方向与1F 方向相同)。用隔离法分析物体B 在水平方向受力N 和2F ,根据牛顿第二定律有2N F ma -= 2121()2

N ma F F F ∴=+=+ 故选项C 正确。 【变式2】 如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用可伸长的轻绳相连,木块间的最大静摩擦力是mg μ,现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为 ( )

A.

3

5mg μ B.34mg μ

C. 32mg μ

D. 3mg μ 【答案】 B

【解析】 以四个木块为研究对象,由牛顿第二定律得 6F m a =

绳的拉力最大时,m 与2m 间的摩擦力刚好为最大静摩擦力mg μ, 以2m(右边的)为研究对象,

则 2F m g m a μ-=, 对m 有 mg T ma μ-=,联立以上三式得 3

4

T m g μ= B 正确。 例2、质量为M 的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t 内前进的距离为s 。耙地时,拖拉机受到的牵引力恒为F ,受到地面的阻力为自重的k 倍,所受阻力恒定,连接杆质量不计且与水平面的夹角θ保持不变。求:

(1)拖拉机的加速度大小。

(2)拖拉机对连接杆的拉力大小。

(3)时间t 内拖拉机对耙做的功。

【答案】(1)2

2s t (2)212[()]cos s F M kg t θ-+ (3)22[()]s F M kg s t -+ 【解析】(1)拖拉机在时间t 内匀加速前进s ,根据位移公式 212s at = ① 变形得 22s a t

= ②

(2)要求拖拉机对连接杆的拉力,必须隔离拖拉机,对拖拉机进行受力分析,

拖拉机受到牵引力、支持力、重力、地面阻力和连杆拉力T ,

根据牛顿第二定律

cos F kMg T Ma θ--= ③

联立②③变形得 212[()]cos s T F M kg t

θ=-+ ④ 根据牛顿第三定律连杆对耙的反作用力为

212[()]cos s T T F M kg t

θ'==

-+ ⑤ 拖拉机对耙做的功:cos W T s θ'= ⑥ 联立④⑤解得22[()]s W F M kg s t =-+ ⑦ 【总结升华】本题不需要用整体法求解,但在求拖拉机对连接杆的拉力时,必须将拖拉机与耙隔离开来,先求出耙对连杆的拉力,再根据牛顿第三定律说明拖拉机对连接杆的拉力。 类型二、正交分解在牛顿二定律中应用

物体在受到三个或三个以上不同方向的力的作用时,一般都要用正交分解法,在建立直角坐标系时,不管选哪个方向为x 轴的正方向,所得的结果都是一样的,但在选坐标系时,为使解题方便,应使尽量多的力在坐标轴上,以减少矢量个数的分解。

例3、(2015 全国Ⅱ卷)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。某地有一倾角为θ=37°(sin37°=3/5)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图所示。假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为3/8,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2s 末,B 的上表面突然变为光滑,μ2保持不变。已知A 开始运动时,A 离B 下边缘的距离l =27m ,C 足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小g =10m/s 2。求:

(1)在0~2s 时间内A 和B 加速度的大小

(2)A 在B 上总的运动时间

【答案】(1)a1=3m/s2;a2 =1m/s2;(2)4s

【解析】(1)在0~2s时间内,A和B的受力如图所示,其中f1、N1是A与B之间的摩擦力和正压力的大小,f2、N2是B与C之间的摩擦力和正压力的大小,方向如图所示。

由滑动摩擦力公式和力的平衡条件得

f1=μ1N1 ⑴

N1=mg cosθ ⑵

f2=μ2N2 ⑶

N2=N1+mg cosθ ⑷

规定沿斜面向下为正方向。设A和B的加速度分别为a1和a2,由牛顿第二定律得mg sinθ–f1=ma1 ⑸

mg sinθ–f2+ f1=ma2 ⑹

联立以上各式可得:

a1=3m/s2⑺

a2=1m/s2⑻

(2)在t1=2s时,设A和B的速度分别为v1和v2,则

v1=a1t1=6m/s ⑼

v2=a2t2=2m/s ⑽

t>t1时,设A和B的加速度分别为a1′和a2′。此时A与B之间的摩擦力为零,同理可得

a1′=6m/s2 ⑾

a2′=–2m/s2 ⑿

即B做减速运动。设经过时间t2,B的速度减为零,则有

v2+a2′t2=0 ⒀

联立⑽⑿⒀式得

t2=1s ⒁

在t1+t2时间内,A相对于B运动的距离为

22221112122122221111()()22212m 22

7m s a t v t a t a t v t a t =++'-++'=< ⒂

此后B 静止不动,A 继续在B 上滑动。设再经过时间t 3后A 离开B ,则有

21123

131()2

l s v a t t a t -=+'+' ⒃ 可得 t 3=1s(另一解不合题意,舍去) ⒄

设A 再B 上总的运动时间为t 总,有

t 总=t 2+t 2+t 3=4s ⒅

(利用下面的速度图线求解,正确的,参考上述答案及评分参考给分)

举一反三

【变式1】质量为m 的物体放在倾角为α的斜面上,物体和斜面的动摩擦因数为μ,如沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直

线运动(如图所示),则F 为多少?

【答案】(sin cos )cos sin m a g g F αμααμα

++=- 【解析】本题将力沿平行于斜面和垂直于斜面两个方向分解,分别利用两个方向的合力与加速度的关系列方程。

(1)受力分析:物体受四个力作用:推力F 、重力mg 、支持力N F ,摩擦力f F 。

(2)建立坐标:以加速度方向即沿斜向上为x 轴正向,分解F 和mg (如图所示):

(3)建立方程并求解

x 方向: c o s s i n f F m g F m

a αα--=

y 方向: cos sin 0N F mg F αα--=

f N F F μ=

三式联立求解得 (sin cos )cos sin m a g g F αμααμα

++=- 【变式2】如图(a)质量m =1kg 的物体沿倾角θ=37?的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v 成正比,比例系数用k 表示,物体加速

度a 与风速v 的关系如图(b)所示。求:

(1)物体与斜面间的动摩擦因数μ;

(2)比例系数k 。

(2

10/g m s =sin 530.8=,cos530.6=)

【答案】(1)0.25μ= (2)0.84/k kg s =

【解析】 (1)对初始时刻:0sin cos mg mg ma θμθ-= ○1 由图读出204/a m s = 代入○1式, 解得:0sin 0.25cos g ma g θμθ

-==; (2)对末时刻加速度为零: sin cos 0mg N kv θμθ--= ○

2 又 cos sin N mg kv θθ=+ 由图得出此时5/v m s =

代入○2式解得: k =mg (sin θ-μcos θ)v (μsin θ+cos θ

=0.84kg/s 。 分解加速度:

分解加速度而不分解力,此种方法一般是在以某种力或合力的方向为x 轴正向时,其它力都落在两坐标轴上而不需再分解。

例4、如图所示,电梯与水平面间夹角为30,当电梯加速向上运动时,人对梯面的压力是其重力的6/5,人与梯面间的摩擦力是其重力的多少倍?

【答案】N F = 【解析】对人受力分析:重力mg ,支持力N F ,摩擦力

f (摩擦力方向一定与接触面平行,由加速度的方向推

知f 水平向右)。

建立直角坐标系:取水平向右(即F 的方向)

为x 轴正方向,竖直向上为y 轴正方向(如图),

此时只需分解加速度,

其中cos30x a a = sin30y a a =

(如图所示) 根据牛顿第二定律有 x 方向: cos30x f ma ma == ①

y 方向: sin30N y F mg ma ma -== ②

又 65N F mg = ③ 解①②③得 f = 。 【总结升华】应用分解加速度这种方法时,要注意其它力都落在两坐标轴上而不需再分解,如果还有其它力需要分解,应用分解加速度方法就没有意义了。

例5、某科研单位设计了一空间飞行器,飞行器从地面起飞时,发动机提供的动力方向与水平方向夹角60α=,使飞行器恰沿与水平方向成30θ=角的直线斜向右上方匀加速飞行。经时间t 后,将动力的方向沿逆时针旋转60°同时适当调节其大小,使飞行器依然可以沿原方向匀减速飞行,飞行器所受空气阻力不计。求:(1) t 时刻飞行器的速率;

(2)整个过程中飞行器离地的最大高度。

【答案】(1) v gt = (2) 234

H gt = 【解析】 (1)沿运动方向和垂直运动方向建立坐标系 沿运动方向: cos30sin30F mg ma ?

?-= (1)

垂直运动方向: sin30cos300F mg ??-= (2)

解(1)(2)得 F = a g = t 时刻飞行器的速度 v at = 得 v gt =

(2)逆转后

垂直运动方向: cos30F mg ?'= (3)

沿运动方向: sin30mg ma ?'= (4)

求得 2

F '= 12a g '= 经过时间t ' 速度减为零 a t v ''= 求得2t t '=

离地最大高度:2221

13()sin 30224

H at a t gt ?''=+= 用合成法(平行四边形定则)求解: 图形如图所示,解析略。

类型三、合成法在牛顿第二定律中的应用 例6、如图所示,有一箱装得很满的土豆,以一定的初速在动摩擦因数为μ的水平地面上做匀减速运动,不计其它外力及空气阻力,则其中一个质量为m 的土豆A 受其它土豆对它的总作用力大小应是( )

A. mg

B. mg μ

C. D.

【答案】C

【解析】对箱子和土豆整体分析,设质量为M

Mg Ma μ= a g μ=

箱子在水平面上向右做匀减速运动,加速度方向向左,其中一个

质量为m 的土豆,合力大小为ma ,方向水平向左,一个土豆受重力,

把其它土豆对它的总作用力看成一个力F ,二力不平衡,根据合成法原理,

作出力的平行四边形,可知F

是直角三角形的斜边,

F ===所以C 正确。

【总结升华】这是一个典型的物体只受两个力作用且二力不平衡问题,用合成法解题,把力学问题转化为三角、几何关系问题,很简捷。

举一反三

【变式】 如图所示,一箱苹果沿着倾角为θ的光滑斜面加速下滑,在箱子正中央夹有一只质量为m 的苹果,它受到周围苹果对它作用力的方向是( )

A .沿斜面向上

B .沿斜面向下

C .垂直斜面向上

D .竖直向上

【答案】 C

作出力的平行四边形分析F 的方向,

垂直斜面向上。

【高清课堂:牛顿第二定律及其应用1例3】

例7、如图所示,质量为0.2kg 的小球A 用细绳悬挂于车顶板的O 点,当小车在外力作用下沿倾角为30°的斜面向上做匀加速直线运动时,球A 的悬线恰好与竖直方向成30°

夹角。

g = 10m/s 2,求:

(1)小车沿斜面向上运动的加速度多大?

(2)悬线对球A 的拉力是多大?

(3)若以(1)问中的加速度向下匀加速,则细绳与竖直方向夹角θ=?

【答案】(1)2

/10s m (2)N 32 (3)600; 【解析】解法一:用正交分解法求解

(1)(2)A 受两个力:重力mg 、绳子的拉力T ,根据牛顿第二定律列出方程

沿斜面方向: cos30sin30T mg ma -= (1)

垂直于斜面方向: sin30cos30T mg = (2)

解得 T =, a =2

/10s m

解法二:用合成法求解

小球只受两个力作用且二力不平衡,满足合成法的条件。拉力与

竖直方向成30角,合力方向沿斜面与水平面夹角也为30角,合力大小为ma ,如图,三角形为等腰三角形,所以:ma mg =,

210/a g m s ==。

由几何关系得拉力 2cos3023T mg ==

(3)用合成法求解

小车匀加速向下运动,小球向上摆动,设细线与竖直方向夹角

为θ,竖直向下的重力加速度为g,沿斜面向下的加速度为 a =2/10s m =g,从图中几何关系可看出二者的夹角为60,则细线的

方向与它二者构成一个等边三角形,即细线与竖直方向夹角60θ=。

【总结升华】物体只受两个力作用且二力不平衡问题往往已知合力方向,

关键是正确做出力的平行四边形。

【高清课堂:牛顿第二定律及其应用1例2】

例8、如图所示,一质量为0.2kg 的小球用细绳吊在倾角为θ=53o 的斜面上,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦。求下列几种情况下下,绳对球的拉力T :

(1)斜面以2

5/m s 的加速度水平向右做加速运动;

(2)斜面以210/m s 的加速度水平向右做加速运动;

(3)斜面以210/m s 的加速度水平向右做减速运动;

【答案】(1)N N N T 4.0,2.211==(2)20N =2 2.83T N = 45

α=

(3)N N N T 8.2,4.033==

【解析】斜面由静止向右加速运动过程中,当a 较小时,小球受到三个力作

用,此时细绳平行于斜面;当a 增大时,斜面对小球的支持力将会减小,

当a 增大到某一值时,斜面对小球的支持力为零;若a 继续增大,小球将

会“飞离”斜面,此时绳与水平方向的夹角将会大于θ角。而题中给出的

斜面向右的加速度25/a m s =,到底属于上述哪一种情况,必须先假定小

球能够脱离斜面,然后求出小球刚刚脱离斜面的临界加速度才能断定。

设小球刚刚脱离斜面时斜面向右的加速度为0a ,此时斜面对小球的支持力恰好为零,小球只受到重力和细绳的拉力,且细绳仍然与斜面平行。对小球受力分析如图所示。 0cot mg ma θ= 代入数据解得:207.5/a m s =

(1)斜面以25/m s 的加速度水平向右做加速运动,0a a <,小球没有离开斜面,

小球受力:重力mg ,支持力1N ,绳拉力1T ,进行正交分解,

水平方向: 11cos sin T N ma θθ-=

竖直方向: 11sin cos T N mg θθ+=

解得N N N T 4.0,2.211==;

(2)因为2010/a m s a =>,所以小球已离开斜面,斜面的支持力20N =, 由受力分析可知,细绳的拉力为 (图中F ma =)

2 2.83T N ===

此时细绳拉力2T 与水平方向的夹角为 arctan 45mg ma

α== (3)斜面以10m/s 2的加速度水平向右做减速运动,加速度方向向左,与向左加速运动一样,当加速度达到某一临界值时,绳子的拉力为零,作出力的平行四边形,合力向左,重力竖直向下, 0t a n ma mg

θ'= 0a '为绳子拉力为零的临界加速度 22040tan /10/3

a g m s m s θ'==>,所以绳子有拉力。 小球受力:重力mg ,支持力3N ,绳拉力3T ,进行正交分解,

水平方向: 33sin cos N T ma θθ-=

竖直方向: 33cos sin N T mg θθ+=

解得N N N T 8.2,4.033==。

解法二:采用分解加速度的方式

x 方向: sin cos mg T ma θθ-=

所以 sin cos 0.4T mg ma N θθ=-=

2.8N N =

在针对两个未知力垂直时比较简捷,细节是对加速度要进行分解。

【总结升华】这是一道很难的例题,涉及到应用牛顿第二定律解决临界问题,临界条件要判断正确。熟练应用正交分解,对只有两个力,二力不平衡时应用平行四边形定则求解较简捷,在针对两个未知力垂直时采用分解加速度的方式求解比较简捷,简化了运算,解题速度快。

力的正交分解法

专题一:物体的受力分析 (一)物体的受力分析 物体之所以处于不同的运动状态,是由于它们的受力情况不同。要研究物体的运动,必须分析物体的受力情况。正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。 如何分析物体的受力情况呢?主要依据力的概念,从物体所处的环境(有多少个物体接触)和运动状态着手,分析它与所处环境的其他物体的相互联系。具体的分析方法是: 1、确定所研究的物体,然后找出周围有哪些物体对它产生作用。 不要找该物体施于其他物体的力。比如所研究的物体叫A,那么就应该找出“甲对A”和“乙对A”及“丙对A”的力……而“A对甲”或“A对乙”等力就不是A所受的力。也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。 2、要养成按步骤分析的习惯。 先画重力:作用点画在物体的重心。 其次画接触力(弹力和摩擦力):绕研究对象逆时针(或顺时针)观察一周,看研究对象跟其他物体有几个接触点(面),某个接触点(面)若有挤压,则画出弹力,若还有相对运动或趋势,则画出摩擦力。分析完这个接触点(面)后再依次分析其他接触点(面)。 再画其他场力:看是否有电场、磁场作用,如有则画出场力。 3、画完受力图后再作一番检查。 检查一下画出的每个力能否找出它的施力物体,若没有施力物体,则该力一定不存在。特别是检查一下分析的结果,能否使研究对象处于题目所给的运动状态,否则必然发生了多力或漏力的现象。 4、如果一个力的方向难以确定,可用假设法分析。 先假设此力不存在,观察所研究的物体会发生怎样的运动,然后审查这个力应在什么方向时,研究对象才能满足给定的运动状态。 5、合力和分力不能重复地列为物体所受的力。 力的合成与分解的过程是合力与分力“等效替代”的过程,合力和分力不能同时存在。在分析物体受力情况时,如果已考虑了某个力,那么就不能再考虑它的分力。例如,在分析斜面上物体的受力情况时,就不能把物体所受重力和“下滑力”并列为物体所受的力,因为“下滑力”是物体所受重力在沿斜面方向上的一个分力。 专题二:力的正交分解法 1、定义:把力沿着两个选定的互相垂直的方向分解,叫做力的正交分解法。 说明:正交分解法是一种很有用的方法,尤其适于物体受三个或三个以上的共点力作用的情怳。 2、正交分解的原理 一条直线上的两个或两个以上的力,其合力可由代数运算求得。当物体受到多个力的作

牛顿定律分推1 正交分解法求加速度

成都七中高2014级物理分推作业 牛顿第二定律:利用正交分解法求加速度 1.由牛顿第二定律F =ma 可知,无论怎样小的力都可以使物体产生加速度,可是当用 很小的力去推很重的桌子时,却推不动,这是因为( ) A .牛顿第二定律不适用于静止的物体 B .桌子加速度很小,速度增量也很小,眼睛观察不到 C .推力小于桌子所受到的静摩擦力,加速度为负值 D .桌子所受的合力为零,加速度为零 2.下列说法正确的是( ) A 物体所受合外力为零时,物体的加速度必为零 B 物体所受合外力越大,则加速度越大,速度也越大 C 物体的速度方向一定与物体受到的合外力的方向一致 D 物体的加速度方向一定与物体受到的合外力的方向一致 3.一个质量为2 kg 的物体同时受到两个力的作用,这两个力的大小分别为2 N 和6 N , 当这两个力的方向发生变化时,物体的加速度大小可能为( ) A .1 m/s 2 B .2 m/s 2 C .3 m/s 2 D .4 m/s 2 4.如图3所示,有一辆汽车满载西瓜在水平路面上匀速前进.突然发现意外情况,紧急 刹车做匀减速运动,加速度大小为a ,则中间一质量为m 的西瓜A 受到其他西瓜对它的 作用力的大小是( ) A .m g 2-a 2 B .ma C .m g 2+a 2 D .m (g +a ) 5.如图,小球P 、Q 的质量相等,其间用轻弹簧相连,光滑斜面倾角为θ,系统静止时,弹簧与轻绳均平行与斜面,则在轻绳被突然剪断的瞬间,下列说法正确的是 ( ) A .两球的加速度大小均为gsin θ B .Q 球的加速度为零 C .P 球的加速度大小为2gsin θ D .P 球的加速度大小为gsin θ 6.自动扶梯与水平面的夹角为30o角,扶梯上站着一个质量为50kg 的人,随扶梯以加

高一物理---正交分解法

高一物理正交分解法 所谓“正交分解法”就是将受力物体所受外力(限同一平面内的共点力)沿选 定的相互垂直的x 轴和y 轴方向分解,然后分别求出x 轴方向、y 方向的合力ΣF x 、ΣF y ,由于ΣF x 、ΣF y 相互垂直,可方便的求出物体所受外力的合力ΣF (大小和方向 一、正交分解法的三个步骤 第一步,立正交 x 、y 坐标,这是最重要的一步,x 、y 坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x 与y 的方向一定是相互垂直而正交。 第二步,将题目所给定跟要求的各矢量沿x 、y 方向分解,求出各分量,凡跟x 、y 轴方向一致的为正;凡与x 、y 轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。 第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。 第四步,根据各x 、y 轴的分量,求出该矢量的大小,一定表明方向,这是最终的一步。 求物体所受外力的合力或解物体的平衡问题时,常采用正交分解法。) 例1 共点力F 1=100N ,F 2=150N ,F 3=300N ,方向如图1所示,求此三力 的合力。 y 53° 37° O x 37° 解:三个力沿 x ,y 方向的分力的合力x x x x F F F F 321++=∑: ?+?-?=37sin 53sin 37cos 321F F F N N N 6.03008.01508.0100?+?-?=N 140= y y y y F F F F 321++=∑? -?+?=37cos 53cos 37sin 321F F F N N N 8.03006.01506.0100?-?+?=N 90-= (负值表示方向沿y 轴负方向) 由勾股定理得合力大小:ΣF=22)()(y x F F ∑+∑ =N 22)90(140-+=166.4N ∵ΣF x ﹥0、ΣF y ﹥0 ∴ΣF 在第四象限内,设其与x 轴正向夹角为α,则: tg α= x y F F ∑∑= N N 14090=0.6429 ∴α=32.7o 运用正交分解法解题时,x 轴和y 轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题 。 运用正交分解法解平衡问题时,根据平衡条件F 合=0,应有ΣF x =0,ΣF y =0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。 例2 重100N 光滑匀质球静止在倾角为37o的斜面和与斜面垂直的挡板间, 求斜面和挡板对球的支持力F 1, F 2。 y F 1 x F 2 G 37° 图 3 解:选定如图3所示的坐标系,重球受力如图3所示。由于球静止,所 以有: ?? ?=?-=?-037sin 0 37cos 2 1G F G F ∴ N N G F 808.010037cos 1=?=?= N N G F 606.010037sin 2=?=?=

力的正交分解法经典试题内附答案

力的正交分解法经典试题(内附答案) 1.如图1,一架梯子斜靠在光滑竖直墙和粗糙水平面间静止,梯子和竖直墙的夹角为α。当α再增大一些后,梯子仍然能保持静止。那么α增大后和增大前比较,下列说法中正确的是 C A.地面对梯子的支持力增大 B.墙对梯子的压力减小 C.水平面对梯子的摩擦力增大 D.梯子受到的合外力增大 2.一个质量可以不计的细线,能够承受的最大拉力为F。现在把重力G=F 的重物通过光滑的轻质小钩挂在这根细线上,两手握住细线的两端,开始两手并拢,然后沿水平方向慢慢地分开,为了不使细线被拉断,细线的两端之间的夹角不能大于(C ) A.60° B.90° C.120° D .150° 3.放在斜面上的物体,所受重力G可以分解使物体沿斜面向下滑的分力G 1和使物体压紧斜面的分力G 2,当斜面倾角增大时(C ) A. G 1和G 2都增大 B. G 1和G 2都减小 C. G 1增大,G 2减小 D . G 1减小,G2增大 4.如图所示,细绳MO 与NO所能承受的最大拉力相同,长度MO>NO ,则在不断增加重物G 的重力过程中(绳O C不会断)( A ) A.ON 绳先被拉断 B .O M绳先被拉断 C.ON 绳和OM 绳同时被拉断 D.条件不足,无法判断 5.如图所示,光滑的粗铁丝折成一直角三角形,BC 边水平,AC 边竖直,∠AB C=β,AB 、AC 边上分别套有细线系着的铜环,细线长度小于BC,当它们静止时,细线与AB 边成θ角,则 ( D ) A.θ=β B .θ<β C.θ>2 π D .β<θ<2 π θ G C O M N α 图

6.质量为m的木块沿倾角为θ的斜面匀速下滑,如图1所示,那么斜面对物体的作用力方向是 [D ] A.沿斜面向上 B.垂直于斜面向上 C.沿斜面向下 D.竖直向上 7.物体在水平推力F的作用下静止于斜面上,如图3所示,若稍稍增大推力,物体仍保持静止,则 [BC ] A.物体所受合力增大 B.物体所受合力不变 C.物体对斜面的压力增大 D.斜面对物体的摩擦力增大 8.如图4-9所示,位于斜面的物块M在沿斜面向上的力F作用下,处于静止状态,则斜面作用于物块的静摩擦力的(ABCD ) A.方向可能沿斜面向上 B.方向可能沿斜面向下 C.大小可能等于零 D.大小可能等于F

力的合成与分解知识点典型例题

力的合成与分解知识点 典型例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

力的合成与分解典型例题 1.合力 当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力的作用效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力. 2.共点力 如果一个物体受到两个或者更多力的作用,有些情况下这些力共同作用在同一点上,或者虽不作用在同一点上,但他们的力的作用线延长线交于一点,这样的一组力叫做共点力. 3.共点力的合成法则 求几个已知力的合力叫力的合成.力的合成就是找一个力去替代几个已知的力,而不改变其作用效果. 力的平行四边形定则:如右图所示,以表示两个力的有向线段为邻边作平行四边形,这两边夹角的对角线大小和方向就表示合力的大小和方向.(只适用于共点力) 下面根据已知两个力夹角θ的大小来讨论力的合成的几种情况: (1)当0θ=?时,即12F F 、同向,此时合力最大,12F F F =+,方向和两个 力的方向相同. (2)当180θ=?时,即12F F 、方向相反,此时合力最小,12F F F =-,方向 和12F F 、中较大的那个力相同. (3)当90θ=?时,即12F F 、相互垂直,如图,2212F F F =+,1 2 tan F F α= . (4)当θ为任意角时,根据余弦定律,合力2212122cos F F F F F θ=++ 根据以上分析可知,无论两个力的夹角为多少,必然有1212F F F F F -+≤≤成立. 【例1】 将二力F 1、F 2合成F 合,则可以肯定 ( ) A .F 1和F 合是同一性质的力 B .F 1、F 2是同一施力物体产生的力 C .F 合的效果与F 1、F 2的总效果相同 D .F 1、F 2的代数和等于F 合

利用“分解加速度”解题的方法

1 利用“分解加速度”解题的方法 黄贤胜 ( 文昌中学 广东 汕尾城区 516624 ) [摘 要] 牛顿第二定律是中学物理的基础,它给出了物体运动状态的变化与外力的定量关系.本文重点分析在应用牛顿第二定律解答有关习题时,对于一个加速度不为零的物体,如何利用分解加速度使问题简化. [关键词] 牛顿第二定律;加速度;正交分解;方法 在应用牛顿第二定律解答有关习题时,按照常规思维,一般采用力的正交分解法,但有些问题只对力进行分解,显得繁难,我们可以转换思维角度,同时分解加速度,将显得较为简捷.对于一个加速度不为零的物体,把作用于物体的力进行分解、叠加得到两个互相垂直的合力,将物体的合加速度沿这两个合力的方向正交分解,根据加速度的对应关系列式,再应用牛顿第二定律求解. 例1:如图1所示,光滑水平面上放一质量为M 的斜物块,倾角为θ.假定斜面光滑,斜面上放有质量为m 的光滑物块,现对M 施加力F .求: 使m 对于M 保持相对静止时,水平推力F . 解:m 受力如图1,由线性叠加原理可知,相互垂直的 力或运动彼此互不影响.那么m 相对M 的加速度1a 仅由 沿斜面方向的合力θsin mg 确定,即 θsin 1g a = (1) 物体m 合加速度a (m 的实际加速度)是由物体m 沿斜面方向的合力θsin mg 和垂直斜面方向的合力θcos mg N -各自产生的加速度合成,因此将加速度a 沿这两个合力的方向正交分解(如图2),根据加速度的对应关系,有 1cos a a =θ 所以 θtan g a = (2) 对m 和M 组成的系统,由牛顿第二定律有 a m M F )(+= (3) 将(2)式代入(3)式,得

《正交分解法》专项练习

G 正交分解法解决平衡问题 1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和45o ,求绳AO 和BO 对物体的拉力的大小。 2. 如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 3. 要把在山上采的大理石运下来,可以修如图的斜面,如果大理石与路面的动摩擦因数为3 3,那么要使物体在斜面上匀速滑下,需要修倾角θ为多少度的路面面? 4.如图,位于水平地面上的质量为M=100kg 的小木块,在大小为F=400N 方向与水平方向成a=300角的拉力作用下沿地面作匀速直线运动。求: (1) 物体对地面的压力多大? θ

(2)木块与地面之间的动摩擦因数? 5.用与竖直方向成θ=37°斜向右上方,大小为F=200N的推力把一个质量m=10kg的木块压在粗糙竖直墙壁上正好向上做匀速运动。求墙壁对木块的弹力大小和墙壁与木块间的动摩擦因数。 (g=10m/s2,sin37°=0.6,cos37°=0.8) 6.如图所示,水平细杆上套一环A,环A与球B间用一不可伸长轻质绳相连,质量分别为m A=0.4 kg和m B=0.3 kg,由于B球受到水平风力作用,使环A与球B一起向右匀速运动.运动过程中,绳始终保持与竖直方向夹角θ=30°,重力加速度取g=10 m/s2,求: (1)B球受到的水平风力大小; (2)环A与水平杆间的动摩擦因数.

参考答案: 1.T OA =73.2N T OB =51.95N 2.N=327N f=100N 3.300 4.800N 5.0.5 6. 4 7

高中物理牛顿运动定律典型例题精选讲解解析

2012牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛 顿(定义使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力 的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右 为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, 0 图1

专题11-12 正交分解法在牛顿第二定律中的应用

1 专题11 正交分解法在牛顿第二定律中的应用(各题2/10s m g =) 1、 地面上放一木箱,质量为10kg ,用50N 的力与水平方向成37°角拉木箱,使木箱从静 止开始沿水平面做匀加速直线运动,假设水平面光滑,(取g=10m/s 2,) (1)画出物体的受力示意图 (2)求物块运动的加速度的大小 (3)求物块速度达到s m v /0.4=时移动的位移 2.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2, 求(1)物体运动的加速度(2)物体在拉力作用下5s 3.如图所示某人站在一架与水平成θ角的以加速度a 向上运动的自动扶梯台 阶上,人的质量为m ,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。 练习1.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2 , 求(1)物体运动的加速度 (2)物体在拉力作用下5s 内通过的位移大小。 2、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向 上减速运动,a 与水平方向的夹角为θ.求人受的支持力和摩擦力.

2 专题12:牛顿第二定律的应用——两过程问题(各题2/10s m g =) 1,质量为2kg 的物体置于水平地面上,用水平力F 使它从静止开始运动,第4s 末的速度达到24m/s ,此时撤去拉力F ,物体还能继续滑行72m. 求:(1)水平力F (2)水平面对物体的摩擦力 2,质量为2kg 的物体静止在水平地面上,在水平恒力F 的作 用下开始运动,4s 末速度达到4m/s ,此时将力F 撤去,又经 过6s 物体停止运动,求力F 的大小 3,质量为1.5kg 的物块,在水平恒力F 的作用下,从水平面上A 点从静止开始运动,运动 一段距离后撤去该力,物块继续滑行t=2.0s ,后停止在B 点,已知AB 之间x=5.0m , 2.0=μ,求恒力F 的大小 4,如图,质量为2kg 的物体,受到20N 的方向与水平方向成 37角的拉力作用,由静止开始沿水平面做直线运动,物体与水平面间的动摩擦因数为0.4, 当物体运动2s 后撤去外力F ,则:(1)求2s 末物体的速度大小? (2)撤去外力后,物体还能运动多远?(2/10s m g =) 37

高中物理:正交分解法的应用

高中物理:正交分解法的应用 正交分解法是高中物理中矢量运算的重要工具,在力学和运动学中由广泛的应用。在力学中,是在作好受力示意图的基础上,列出力学关系的方程式,进行定量计算的重要环节。由于高中阶段涉及的物理量多数是矢量,若不能掌握这种方法,将会在物理学习过程中造成极大的障碍。熟练掌握正交分解法,应注意以下几点: 1.如何建立科学合理的直角坐标系? 2.x、y轴上对应力学关系的方程式是什么? 3.正交分解法的应用有哪些? (一)建立直角坐标系的方法 在高中物理中,多数物体受到的力都是共点力,且都落在同一个平面内,在三维空间中的较少,建立的坐标系时有以下要求: 1. 以各个力所在的平面为坐标平面 2. 以研究对象的质心为坐标原点 3. 建立坐标轴 (1)在静力学中,应以少分解力为原则建立x、y轴 (2)做直线(沿水平面、斜面、直杆)运动的物体,应以运动方向和垂直于运动方向建立坐标轴 (3)在圆周运动中,以径向和垂直于径向建立坐标轴 (二)列出力学关系的方程式 在分析x、y轴上的力学关系时,应结合物体的运动状态 1.若为平衡状态,则所有的力在x轴上的合力为0,所有的力在y轴上的合力也为0,即:ΣFX=0,ΣFy=0 2.在直线运动中若为非平衡状态,如果是以运动方向为x轴、垂直于运动方向为y轴,则所有的力在x轴上的合力为ma,所有的力在y轴上的合力为0,即:ΣFX=ma,ΣFy=0 (三)正交分解法在力学中的应用 1.分析相对运动趋势:以接触面和垂直于接触面建立直角坐标系,分析物体在平行于接触面上的除去摩擦力以外的其他力的合力方向,该力方向即为物体的运动趋势方向。 2.求静摩擦力的大小:利用物体在平行于接触面上的力学关系方程式求解 3.求支持力(正压力)的大小:利用物体在垂直于接触面上的力学关系方程式求解 4.求滑动摩擦力的大小 滑动摩擦力的计算方法有两种,为: (1)利用接触面上的坐标轴上的力学关系方程进行计算; (2)先利用垂直于接触面上坐标轴上的力学方程求出FN,再利用f滑=μFN进行计算 5.求合力的大小 6.求向心力的大小

高中物理牛顿运动定律典型例题精选讲解

牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示, F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s 2 的加速度的作用力为 1N,即1N=1kg.m/s 2 . 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300 ,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向, 竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, F N -mg=masin300 因为 56=mg F N ,解得5 3 =mg F f . 练习2.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图3-1-15所示.在物体始终相对于斜 面静止的条件下,下列说法中正确的是( ) A .当θ一定时,a 越大,斜面对物体的正压力越小 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当a 一定时,θ越大,斜面对物体的正压力越小 D .当a 一定时,θ越大,斜面对物体的摩擦力越小 练习3.一物体放置在倾角为θ的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是() A .当θ一定时,a 越大,斜面对物体的正压力越大 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当θ一定时,a 越大,斜面对物体的正压力越小 D .当θ一定时,a 越大,斜面对物体的摩擦力越小 问题2:必须弄清牛顿第二定律的瞬时性。 1.物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力.若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变). 2.中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性: A .轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等. B .软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),由此特点可知,绳与其物体相互间作用力的方向总是沿着绳子且背离受力物体的方向. C .不可伸长:即无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 30a F m g F f 图1 x y x a a 图图

正交分解法求合力+公式

1.在车厢的顶部用一根细线悬挂一质量为m的小球、某段时间内发现细线与竖直方向的夹角为θ, 则小球所受的合力为多少? 2.如图所示,质量为10kg的物块以一定的速度冲上倾角θ=300的光滑的斜面 (1)求物块的合力 (2)若斜面存在摩擦,且摩擦力大小为5N,则物块所受合力为多少? 3.如图所示,水平地面上质量为m=2kg的物体,与地面间的动摩擦因数为μ=0.2,当物体受到斜 向上与水平面成θ=370角的拉力F=20N作用而向右运动,求物体受到的合力 4.如图所示,质量为60kg的滑雪运动员在倾角θ=300的斜坡顶端,从静止开始匀加速下滑到达坡 地,动摩擦因数μ=0.04,求滑雪运动员的合力

5. 质量m =1kg 的小球穿在倾角θ=300的斜杆上,若球受到一个大小为F =20N 的水平推力作用, 则球的合力为多少?(动摩擦因数μ=0.5) 必修一公式 一、运动的描述 1.t x v = v :平均速度 x :位移 t :时间 2.t v a ?= v ?:速度变化量 a :加速度 二、匀变速直线运动 1.at v v +=0 a :加速度 v :末速度 0v :初速度 2.2 02 1at t v x + = x :位移 t :时间 v :平均速度 3.2 022v v ax -= 4.2 v v v += 三、自由落体运动 1.gt v = v :末速度 2.2 2 1gt h = h :下落高度 3.gh v 22 = g :重力加速度 五、相互作用 1.mg G = G :重力 m :质量 g :重力加速度 2.kx F = F :弹力 k :劲度系数 x :形变量 3.N f F F μ= f F :摩擦力 μ:动摩擦因素 N F :压力 注:k 由材料,匝数,粗细决定。μ由粗糙程度,材料决定。 六、牛顿运动定律 ma F = F :合力 m :质量 a :加速度 注:牛顿第一定律又称为惯性定律。惯性只由质量决定。

正交分解法中坐标系的建立原则

正交分解法以退为进,将求解一般三角形的过程转化为求解直角三角形的过程,是处理多力平衡问题及多力产生加速度问题的常用方法;运动的分解可以将一个复杂的曲线运动变成两个简单直线运动的叠加,是处理匀变速曲线运动的基本方法。这两种方法中都涉及到直角坐标系的建立,直角坐标系建立的方法不同,实际运算过程有很大差异。那么,该如何确定直角坐标系的最佳建立方案呢?下面分别对正交分解法、运动的分解中坐标系建立的原则进行说明。 一、正交分解法中坐标系的建立原则 (一)正交分解法处理多力平衡问题 直角坐标系建立的基本原则是: 1.让尽可能多的力落在坐标轴上; 2.尽量不分解未知力。 原则一可以最大限度减少需要分解的力的个数,达到减少运算过程的目的;原则二能避免未知量后面带“小尾巴”(指或),同样降低了中间运算的难度。 例:一个倾角为(90°>>0°)的光滑斜面固定在竖直的光滑墙壁上, 一质量为m铁球在水平推力F作用下静止于墙壁与斜面之间,且推力的作用线通过球心,如图所示,求斜面与墙壁对铁球的弹力大小分别是多少?

分析:铁球受四个外力作用且处于静止状态,属多力平衡问题,可运用正交分解法处理,在轴沿水平方向时仅需分解一个外力,运算过程简单。 解:铁球受力如图,建立直角坐标系 由平衡条件可得: 解得:

说明:选择直角坐标系的建立方法时,应对照原则综合考虑,而且原则一优先于原则二,即在原则一满足的前提下再考虑原则二。 (二)正交分解法处理多力产生加速度的问题 直角坐标系建立的原则是: 1.让加速度和尽可能多的力落在坐标轴上; 2.坐标轴指向与加速度方向趋于相同; 3.尽量不分解未知量。 在这类问题中,建立直角坐标系时需要考虑的因素略多一些。首先,加速度是矢量,同样可以按需要进行分解,为了简化分解过程,应该把它也考虑进去;其次,坐标轴指向就是该方向上所有矢量的正方向,如果坐标轴指向与相应的加速度分量方向相反,必须在含加速度分量的一项前加一个负号,否者就会在矢量性上犯错误。最后,为了降低了中间运算的难度,要考虑避免未知量后面带“小尾巴”。 例:自动扶梯与水平方向成θ角,梯上站一质量为m的人,当扶梯以加速度a匀加速上升时,人相对于扶梯静止,求人受到的支持力和摩擦力。

力的正交分解专项练习(含详细答案)

力的正交分解专项练习(含详细答案) 1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和40o ,求绳AO 和BO 对物体的拉力的大小。 2. 如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 3. (8分)如图6所示,θ=370 ,sin370 =0.6,cos370 =0.8。箱子重G =200N ,箱子与地面的动摩擦因数μ=0.30。要匀速拉动箱子,拉力F 为多大? 4.(8分)如图,位于水平地面上的质量为M 的小木块,在大小为F 、方向与水平方向成a 角的拉力作用下沿地面作匀速直线运动。求: (1 ) 地面对物体的支持力? (2) 木块与地面之间的动摩擦因数?

5.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在 档板和斜面之间放一个重力G=20N 的光滑球,把球的重力沿垂直于斜面和垂直于档板的方向分解为力F 1和F 2,求这两个分力F 1和F 2的大小。 6.(6分)长为20cm 的轻绳BC 两端固定在天花板上,在中点系上一重60N 的重物,如图11 所示: (1)当BC 的距离为10cm 时,AB 段绳上的拉力为多少? (2)当BC 的距离为102cm 时.AB 段绳上的拉力为多少? 7.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少? 8.如图所示重20N 的物体在斜面上匀速下滑,斜面的倾角为370,求: (1)物体与斜面间的动摩擦因数。 (2)要使物体沿斜面向上匀速运动,应沿斜面向上施加一个多大的推力? (sin370=0.6, cos370=0.8 )

高中物理公式集锦以及典型例题分析合集

一、力学 胡克定律:f = kx 重力:G = mg 滑动摩擦力:f = μN 求F 1、F 2的合力的公式:θcos 2212221F F F F F ++=合 两个分力垂直时:2221F F F +=合 万有引力:F =G 221r m m G = 6.67×10-11 N ·m 2 / kg 2 万有引力=向心力 '422 222mg ma r T m r m r v m r Mm G =====πω 2R Mm G mg = GM gR =2 黄金代换式 第一宇宙速度:s km gR r GM v /9.7=== 第二宇宙速度:v 2=11.2km /s , 第三宇宙速度:v 3=16.7km /s 牛二定律: t p ma F ??==合 匀变速直线运动:v t = v 0 + a t S = v o t +12 a t 2 as v v t 2202=- 初速为零的匀加速直线运动, 在1s 、2s ……内的位移比为12:22:32……n 2 在第1s 内、第 2s 内……位移比为1:3:5……(2n-1) 在第1m 内、第2m 内……时间比为1:()21-:(32-)……(n n --1) 连续相邻的相等的时间间隔内的位移差:? s = a T 2 CheckBox1

匀速圆周运动公式 线速度:V = t s =2πR T =ωR=2πf R 向心加速度:a =v R R T R 222244===ωππ2 f 2 R 角速度:ω=φπ πt T f ==22 向心力:F= ma = m v R m 2=ω2 R = m 422πT R =42πm f 2R 平抛:水平分运动:水平位移:x= v o t 水平分速度:v x = v o 竖直分运动:竖直位移:y =2 1g t 2 竖直分速度:v y = g t 功 : αcos Fs W = 动能: 22 1mv E k = 重力势能:E p = mgh (与零势面有关) 动能定理: W 合= ?E k = E k 2 - E k 1 = 21222 121mv mv - 机械能守恒: mgh 1 +222212 121mv mgh mv += 功率:P = W t =Fv cos α (t 时间内的平均功率) 物体的动量 P=mv, 力的冲量 I=Ft 动量定理:F 合t=mv 2-mv 1 动量守恒定律:11v m +m 2v 2 = m 1v 1’+m 2v 2’ 简谐振动的回复力 F=-kx 加速度x m k a -=

高中物理必修一牛顿第二定律典型例题

高一物理牛顿第二定律典型例题讲解与错误分析 【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动. 【答】 D. 【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少? 【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度. (1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0. (2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为: 它的方向与反向后的这个力方向相同.

【例3】沿光滑斜面下滑的物体受到的力是 [ ] A.力和斜面支持力 B.重力、下滑力和斜面支持力 C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力 【误解一】选(B)。 【误解二】选(C)。 【正确解答】选(A)。 【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。若理解为对斜面的正压力,则是斜面受到的力。 在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。 【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ] A.不断增大 B.不断减少 C.先增大后减少 D.先增大到一定数值后保持不变 【误解一】选(A)。

典型共点力平衡问题例题

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少? (3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情 况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、 摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。

设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得T≈8N, (2)圆环将要滑动时,得m G g=Tctgθ,m G=0.6kg。 (3)前已证明φ为直角。 例4]如图1所示,质量为m=5kg的物体放在水平面上,物体与水平面间的动摩擦因数求当物体做匀速直线运动时,牵引力F的最小值和方向角θ。 [分析]本题考察物体受力分 析:由于求摩擦力f时,N受F制约, 而求F最小值,即转化为在物理问 题中应用数学方法解决的实际问 题。我们可以先通过物体受力分析。 据平衡条件,找出F与θ关系。进 一步应用数学知识求解极值。 [解]作出物体m受力分析如图2,由平衡条件。 ∑F x=Fcosθ-μN=0(1) ∑F y=Fsinθ+N-G=0(2) 由cos(θ-Ф)=1即θ—Ф=0时

相关文档
相关文档 最新文档