文档库 最新最全的文档下载
当前位置:文档库 › 晶界位错在超塑性变形中的作用

晶界位错在超塑性变形中的作用

晶界位错在超塑性变形中的作用
晶界位错在超塑性变形中的作用

晶界对性能的影响

晶界对合金性能的影响机理 晶界是固体材料中的一种面缺陷,根据晶界角度的大小可以分为小角晶界(θ<10°)和大角晶界,亚晶界均属小角度晶界,一般小于2°,多晶体中90%以上的晶界属于大角度晶界。根据晶界上原子匹配优劣程度可以分为重位晶界和混乱晶界。在晶界处存在一些特殊的性质:(1)晶界处点阵畸变大,存在晶界能。晶粒的长大和晶界的平直化都能减少晶界面积,从而降低晶界的总能量,这是一个自发过程。晶粒的长大和晶界的平直化均需通过原子的扩散来实现,因此,温度升高和保温时间的增长,均有利于这两过程的进行;(2)晶界处原子排列不规则,在常温下晶界的存在会对位错的运动起阻碍作用,致使塑性变形抗力提高,宏观表现为晶界较晶内具有较高的强度和硬度。晶粒越细,材料的强度越高,这就是细晶强化;高温下则由于晶界存在一定的粘滞性,易使相邻晶粒产生相对滑动;(3)晶界处原子偏离平衡位置,具有较高的动能,并且晶界处存在较多的缺陷如空穴、杂质原子和位错等,故晶界处原子的扩散速度比在晶内快得多;(4)在固态相变过程中,由于晶界能量较高且原子活动能力较大,所以新相易于在晶界处优先形核。原始晶粒越细,晶界越多,则新相形核率也相应越高;(5)由于成分偏析和内吸附现象,特别是晶界富集杂质原子的情况下,往往晶界熔点较低,故在加热过程中,因温度过高将引起晶界熔化和氧化,导致“过热”现象产生;(6)由于晶界能量较高、原子处于不稳定状态,以及晶界富集杂质原子的缘故,与晶内相比晶界的腐蚀速度一般较快。这就是用腐蚀剂显示金相样品组织的依据,也是某些金属材料在使用中发生晶间腐蚀破坏的原因;(7)低温下晶界强度比晶粒内高,高温下晶界强度比晶内低,表现为低温弱化。 基于上述几点晶界的特殊性质,使得多晶材料的塑性变形、强度、断裂、脆性、疲劳和蠕变等性能与单晶材料相比存在很大差异,即晶界不同的特殊性质具体体现在了合金的不同性能。但合金性能与晶界特性间绝不是一一对应的关系,而是几种甚至是所有特性的共同作用而表现出来,不同成分的合金在性能上也表现出各异。 1 晶界与塑性变形 晶界对多晶体的塑性变形的影响起因于下述原因:①晶界对滑移的阻碍作用;②晶界引起多滑移;③晶界滑动;④晶界迁移;⑤晶界偏聚。

材料超塑性及应用

材料超塑性及应用 课程编号: 课程名称:材料超塑性及应用 英文名称:Superplasticty and its Application for Materials 学分:2 先修课程基础:《晶体结构与缺陷》,《工程力学》与《材料力学》二者之一。教材:自编 一、课程简介 本课程的目的在于使学生对于材料超塑性的力学、微观机理、应用等方面具有比较深入的理解,初步掌握超塑性的研究路线及方法。对超塑性力学行为与显微组织及其变化的关系的物理本质具有比较清晰的认识,对超塑性的发展及其应用领域具有比较明确的分析,对超塑性的试验研究手段具有一定的了解,对于超塑性的应用及超塑性成形工艺具有一定的初步知识。通过本课程的学习,使研究生对超塑性实验、理论、应用,及其与常规塑性变形的关系具有比较明确的认识,为其在今后研究和工作中的应用打下基础。 二、基本要求 基础知识:超塑性力学特征,材料超塑性宏观行为与微观结构的关系,几种典型超塑性材料及其成形应用。

实验及技能:超塑性力学性能实验应力、应变、应变速率、m植等的热力模拟试验,数据分析、实验报告;超塑性材料显微组织及其在超塑性变形 中的变化。 三、内容概要 第一章材料超塑性概述(2学时) 1.1、超塑性研究及应用的历史 1.2、超塑性的分类 1.3、对超塑性变形机理的认识和争论 1.4、几位对超塑性学术发展具有重要影响人物研究工作介绍 第二章超塑性力学特征(4学时) 2.1、超塑性本构关系 2.2、超塑性应力—应变关系、应力—应变速率关系 2.2、超塑性力学实验方法 第三章超塑性变形微观机理(6学时) 3.1、常规塑性变形、蠕变、绝热剪切等变形的微观机理 3.2、对超塑性变形微观机理的认识及争论 第四章几种材料超塑性(5学时)

位错-晶体缺陷

位错——晶体缺陷作业 S1105051 张玉珠 2.论述一种强化机制在金属组织设计中的应用,举例说明。 固溶强化是融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加产生强化。包含溶质原子的相就能对材料起到强化作用。一般对固溶强化考虑尺寸效应、模量效应和短程有序(SRO)的作用。 为有效地评价动能穿甲弹材料和提高其性能,以真空处理和锻造退火两种状态下的钨合金动态拉伸性能为判据,采用固溶强化的方法,通过添加稀土元素La,Ce强化93WNiFe合金性能。合金在不同的应变率下,其工程应力—应变曲线随应变率的增加而上升,上屈服点显著上升,延伸率却下降。结果表明在93WNiFe合金中添加稀土元素La,Ce可提高弹用钨合金的动态性能。在高应变率(σs>102)时合金添加La,Ce的真空态强度和塑性高于不添加的,经过锻造后,则合金动态强度比不添加的高出60% ~ 150%,这种性能正好与弹体设计要求的前硬后韧相吻合。添加La,Ce改善性能的途径是:W颗粒和粘结相的固熔强化,W颗粒细化,W—M界面净化W—W界面相对量减少,粘结相W溶解度的减小和游离氢的减少。 3.论述位错与晶界或晶面的交互作用,举例说明。 晶界与位错的交互作用形式分为晶界塞积位错、晶界发出位错和晶界吸收位错。 高纯铝在范性形变初期晶界与位错的交互作用: 在一般情况下,点阵位错以及晶界位错的柏氏矢量并非与晶界面平行,因此点阵位错沿晶界的分解或运动均需要提供一攀移分量,这就是温度对晶界与位错交互作用机制影响的关键。在低温形变中,被晶界捕获的点阵位错很难进行攀移。对于特殊位向的大角晶界,被捕获的点阵位错虽可分解为数个晶界位错,或与预先存在的晶界位错网络发生Suzuki反应但分解产物以及反应产物亦难以通过攀移而松弛,在任意大角晶界中,点阵位错由于得不到充分的热激活很难产生核心宽化,同时也难以沿晶界作整体攀移运动。结果被晶界捕获的位错将对随后而至的位错作用一长程斥力或直接发生短程反应,造成位错在晶界前的塞积。对于小应变范性形变,这种晶界塞积所导致的应力集中将对形变硬化产生重要贡献。随着形变温度的升高,一方面由晶内进人晶界的点阵位错的可动性增加,使得部分位错有可能在热激活及外应力场的作用下,通过分解松弛、核心宽化,以及沿晶界运动而与异号位错相抵消等方式对形变回复产生贡献。另一方面,温度的升高可能有助于激活晶界台阶而向晶内发射位错同时在晶界附近的应力集中区激活更多的次级滑移,结果在松弛一部分应力的同时增加了晶内位错之间交互作用的机会。当形变温度提高到一定程度后,进人晶界的点阵位错借助充分的热激活,通过不同的机制而被晶界迅速吸收。 7.论述如何在强化的同时,提高韧性 对于钢材料,采用细晶强化的方式,提高强度的同时,其塑性韧性也相对提高。这是因为钢晶粒细化后,晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过,即阻碍塑性变形,就实现了高强度。晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶

第14讲单晶体多晶体的塑性变形、纯金属形变强化

第十四讲单晶体多晶体的塑性变形、纯金属形变强化 1.施密特定律 考点再现:这一部分其实不用多说了,几乎是每一年都会考一道施密特定律的题,今年再考这个题的概率在9成以上。 考试要求:首先要记住公式,知道两个角是那两个,不要弄混,另外就是对施密特定律的求解问题的一些细节处理,要完整,能够得到全部的分数才可。 知识点 施密特定律★★★★★ 上式就是施密特定律。当在滑移面的滑移方向上,分切应力达到某一临界值τc时,晶体就开始屈服,σ=σs。cosυcosλ称为取向因子或者施密特因子。cosυcosλ值大者,称为软取向,材料屈服点较低,反之,cosυcosλ值小者,称为硬取向,材料的屈服点较高。 当滑移面垂直于拉力轴或者平行于拉力轴时,滑移面上的分切应力等于0,不能滑移。

注意点:两个角的求取,υ为滑移方向外力的夹角,λ是滑移面法向与外力的夹角。这道题的关键就是 找对角,计算的部分应该没有难度的。 2.单滑移、多滑移与交滑移 考点再现:10年考到了交滑移,在08年之前也涉及到了单滑移和多滑移,所以这一部分还是很有可能在今年的考试中出一道名词解释的。 考试要求:这部分要求不高,主要就是定义的理解和记忆。 知识点 单滑移:当只有一个滑移系统上的分切应力最大并达到了临界分切应力,这是发生单滑移。★★★ 多滑移:当拉力轴在晶体的特定取向上,可能会使几个滑移系上的分切应力相等,在同时达到临界分切应力是,就会发生多滑移。★★★ 交滑移:螺型位错在两个相交的滑移面上运动,当螺型位错在一个滑移面上运动遇有障碍,会转到另一滑移面上继续滑移,滑移方向不变。★★★ 交滑移特征:材料塑性好;纯螺型位错。★★

弹性变形与塑性变形

一、弹性和塑性的概念 可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elasticity)”和“塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面: 1)变形是否可恢复 .......:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性 变形则是不可恢复的,塑性变形过程是一个不可逆的过程。 2)应力和应变之间是否一一对应 .............:在弹性阶段,应力和应变之间存在一一对应的单值函数关 系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型 弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力

习题3超塑性参考答案.docx

一、基本概念 应变速率敏感性指数、超册性 1.材料在变形过程中,应力-应变速率成幕律关系,那个指数就是应变速率敏感性因子m. 1964年美国人Backofen提出应力。与应变速率的关系式为(y=Kg'" 式屮:。为真应力,K为常数,e为真应变速率,m为应变速率敏感性指数,其值等于应力(。)一应变速率(e)对数Illi线的斜率。一般超塑性材料的m值在0.3至0.9 Z间,多数在0.4至0.8 Z间。 2.超塑性没有严格的界限,有些文献将延伸率超过100%的材料归类于超幫性,典空的情况是将百分之儿百的延伸率看作超塑性。分为组织、相变、具他超塑性三类 二、问答 1.超塑性变形应力应变对数关系的S曲线三个区域特征及其对应的变形机理。 対于超塑性材料,其拉伸的应力一应变速率对数曲线呈S形,通常可以根据应变速率的大小分成I、II、III三个区域。当应变速率非常低时,也会出现图中所示的0区域。图中同时给出了每个区域的典型变形机制、纽织特征、m、P和Q的典型值人小,Qgb和QI分别为品界滑移和品格扩散对应的激活能。在II区域内,应力随应变速率变化表现的最为剧烈, 正是在此应变速率敏感区内发生超塑性,此区域内的m值大于0.3,而低于或高于这个应变速率范围内的区域其m值均小于0.3,不会表现出超鴉性。对于应变速率较慢的0区和I区内的变形机制存在争议,有些学者认为该区域的主要变形机制为位错滑移,另-?些学者认为该区域的变形特点是由于材料中的杂质颗粒使塑性流动存在一个临界应力引起的,但关于临界应力的木质含义、人小及影响因素尚不明确,还有些学者认为该区域的变形机制仍为晶界滑移,只是晶粒尺寸的氏大降低了蠕变速率。(9章,3.1处) 2?请至少列举超塑性变形m值测定的3种方法。 ①等应变速率拉伸法。②等速度法③速度突变法(9章。5处) 3.请简述超塑性变形激活能Q的测定方法。 ° =处宀"(磊) 当”=0时?则上式成为 a = K?-exp?2/KT) 或/Ci<7lz-exp(—Q/RTy(2. 139) 式中: 对式(2?139》两边取对数?则 I" = IgK I + 占—磊炮。 因为拉伸时?如夹头速度u不变?试件性度丫较长?则可视6 为常数?则 却”-磊1" +常数<2. 140) 所以■在某一温度丁及某一应变速率£下拉伸?测得。?再以速 度突变法测彳9皿值?代入式C2. !40)t可得1/T-^lgcr坐标上的一 个点?再在另一温度和同一应变速率下测得另一ofiV如此反复进 行?就可得图2. 38所示的散点?然后用线性回归法绘成一直线?直 线的斜率就足等从中就町以求御Q(ft. re N? 3H M A M 测定磁活Hfe.呵以惟Mh空形机理.如洌铝K仲材*4的rtfcWiftU与北材料的H 瘁扩敬來枷能和近?则可徘姊空书以从存扩敵为主. bi 上?如槓MBftO 澈油rWU 1? W?l 町打輸肠空, 以内住形为主. 4.请阐述组织超塑性变形所需要的3个条件。 一般提到超删性,就是指这一类超鴉性。实现组织超鴉性应具备三个条件,即:晶粒度细小;

大塑性变形制备块体超细晶材料的概述

大塑性变形技术(SPD)制备块体 超细晶/纳米晶材料的概述 摘要:从制备块体超细晶/纳米晶角度引出了大塑性变形技术,重点概述了等径角挤压、高压扭转、累积叠轧焊等技术;同时分析了SPD材料的强度与超塑性等性能特征,并对其未来发展做出了展望。 关键词:超细晶;大塑性变形;等径角挤压;高压扭转;超塑性 1 前言 根据晶粒尺度的不同,通常将材料分为:粗晶材料(晶粒大于1μm);超细晶材料(晶粒大小在0.1μm到1μm之间);纳米晶材料(晶粒小于100nm)[1]。晶粒大小是影响多晶金属材料性能的重要因素,由亚微米级晶粒组成的超细晶/纳米晶金属材料由于具有很小的晶粒尺寸和独特的缺陷结构,在室温下不仅具有高的强度、硬度和耐磨性,而且还具有良好的塑性和韧性,在一定的温度范围内还具备超塑性,在磁性材料、催化剂、半导体等方面具有广阔的应用前景。因此,制备大尺寸、无污染、无微孔隙且晶粒尺寸细小均匀的块体超细晶/纳米晶材料一直是人们研究的热点。机械化合金加压成块法、电沉积法、非晶晶化法和剧烈塑性变形(Severe Plastic Deformation, SPD)等都可以制备块体超细晶/纳米晶材料,其中SPD被认为是最有希望实现工业化生产的有效途径之一[2]。 SPD具有强烈的晶粒细化能力,可以直接将材料的内部组织细化到亚微米乃至纳米级,其主要的变形方式是剪切变形。组织细化的主要目的在于[3]:1)充分挖掘材料的潜能,获得满足军事和日益发展的航空航天等领域对高强高韧材料的需求;2)在较高温度下提高材料的超塑性能力,以提高零件的生产效率和开拓难变形材料如镁合金等的加工制备新途径。Valiev教授认为,采用SPD方法制备超细晶/纳米结构金属应该满足多项条件[4]:1)大塑性变形量;2)相对低的变形温度;3)变形材料内部承受高压。在这些原则的指导下,大塑性变形工艺得到了迅猛发展,出现了一系列的制备工艺:等通道转角挤压(ECAE)、高压扭转(HPT)、往复挤压(CEC)、累积轧制(ARB)、大挤压比挤压(HRE)、超音喷丸(USSP)等。 2 大塑性变形技术

第四章 塑性变形(含答案)

第四章塑性变形(含答案) 一、填空题(在空白处填上正确的内容) 1、晶体中能够产生滑移的晶面与晶向分别称为________和________,若晶体中这种晶面与晶向越多,则金属的塑性变形能力越________。 答案:滑移面、滑移方向、好(强) 2、金属的再结晶温度不仅与金属本身的________有关,还与变形度有关,这种变形度越大,则再结晶温度越________。 答案:熔点、低 3、晶体的一部分沿一定晶面和晶向相对于另一部分发生滑动位移的现象称为________。答案:滑移 4、由于________和________的影响,多晶体有比单晶体更高的塑性变形抗力。 答案:晶界、晶粒位向(晶粒取向各异) 5、生产中消除加工硬化的方法是________。 答案:再结晶退火 6、在生产实践中,经冷变形的金属进行再结晶退火后继续升高温度会发生________现象。答案:晶粒长大 7、金属塑性变形后其内部存在着残留内应力,其中________内应力是产生加工硬化的主要原因。 答案:第三类(超微观) 8、纯铜经几次冷拔后,若继续冷拔会容易断裂,为便于继续拉拔必须进行________。 答案:再结晶退火 9、金属热加工时产生的________现象随时被再结晶过程产生的软化所抵消,因而热加工带来的强化效果不显著。 答案:加工硬化 10、纯铜的熔点是1083℃,根据再结晶温度的计算方法,它的最低再结晶温度是________。答案: 269℃ 11、常温下,金属单晶体塑性变形方式有________和________两种。 答案:滑移、孪生 12、金属产生加工硬化后会使强度________,硬度________;塑性________,韧性________。答案:提高、提高、降低、降低 13、为了合理地利用纤维组织,正应力应________纤维方向,切应力应________纤维方向。答案:平行(于)、垂直(于) 14、金属单晶体塑性变形有________和________两种不同形式。 答案:滑移、孪生 15、经过塑性变形的金属,在随后的加热过程中,其组织、性能和内应力将发生一系列变化。大致可将这些变化分为________、________和________。 答案:回复、再结晶、晶粒长大 16、所谓冷加工是指金属在________以下进行的塑性变形。 答案:再结晶温度

板料超塑性变形时表面粗糙度演化

板料超塑性变形时表面粗糙度演化! 傅增祥"吴诗惇 #西北工业大学材料科学与工程学院"陕西西安$%&&$’( 摘要)应用超塑性变形*扩散连接#+,-*./(组合工艺时"欲连接的表面粗糙度是影响连接所需时间和连接质量的主要因素之一0通过实验研究123456781269%#:;<;=49(钛合金和>?%’:@铝合金超塑性变形时表面粗糙度演化规律"表明了超塑性变形可引起明显的表面粗化A粗化速率和表面粗糙增量均不受初始粗糙度的影响0因此对扩散连接工艺和接头质量预测时使用连接前表面瞬时粗糙度"而不再使用变形前初始表面粗糙度0 关键词)超塑性变形*扩散连接#+,-*./("粗糙度"钛合金"铝合金 中图分类号)1B69$文献标识码)4文章编号)%&&&C’$9D#’&&&(&E C&6F3C&E 由于超塑性成形*扩散连接组合工艺很好地结 合了两者的优点"已取得了广泛的应用0进一步深入研究该工艺的理论和技术问题很有意义0 当某材料在其最佳超塑性温度8载荷和变形速率条件下扩散连接时"影响连接时间和质量的最主要因素便是表面粗糙度G%H E I0+,-*./组合工艺在连接前往往已进行了超塑性成形"很容易想到"超塑性变形会引起表面粗化0所以"预测连接时间和质量应该用连接前#也是超塑性变形后(表面粗糙度"而不应该是目前流行地使用变形前初始粗糙度值0本文实验研究了超塑性变形过程中表面粗糙度的变化规律0 J板料表面的描述及对扩散连接的影响 由于金属材料的表面通常是经过轧制8车和磨等机械加工过的"所以其表面往往形成如图%所示的表面特征"即在表面轮廓起伏的长波浪#高K L"周期M L( 上叠加着表面粗糙凸凹起伏的小波浪#高K N"周期M N(0B/OE9&9中表面粗糙度值P Q便是 一定标距内K N 的算术平均值0 当两个这样的表面互相接触" 如果按接触最恶 图%表面描述简图 化的情况"两边完全对称地接触"即凸对凸8凹对凹"这种接触状况使扩散连接所需时间比其它接触状况都要长"所以"扩散连接时间预测往往以这种极限状况为例0那么"两个这样表面从接触到完全扩散连接过程便如图’所示0首先是两边凸台互相接触"同时两边凹对凹形成大孔隙和小孔隙"如图’#R(所示0然后在变形和扩散作用下"大孔隙尺寸逐渐减小到形成小孔隙"如图’#S(所示"最后直到小孔隙全部消失0 由以上界面孔隙闭合过程可以看出"当界面有长波空隙时"影响扩散连接时间的主要因素是大孔隙的闭合时间0当界面没有长波大空隙时"扩散时间以小孔隙闭合时间为主0例如"文献G’I模拟计算表明"对1234567钛合金"如外载为3T D U,R"当K L ’&&&年D月第%D卷第E期 西北工业大学学报 V W X Y Z R5W[=W Y\]^_‘\_Y Z,W5a\_b]Z2b R5c Z2d_Y‘2\a 4X e T’&&& 7W5T%D=W T E !收稿日期)%F F F O&%O%’基金项目)航空科学基金资助项目#F3f9E%%&(作者简介)傅增祥#%F3’O("男"陕西省岐山县人"西北工业大学副教授"主要从事+,-*./的研究0万方数据

位错及界面部分第三次习题答案

1、见习题集P86 题3-28 2、写出位错反应a[ 01-1 ]/2+a[ 2-11]/2 的反应结果,这个反应能否进行?形成的位错能不能滑动?为什么? 解:a[ 01-1 ]/2+a[ 2-11]/2→a[100],根据位错反应的Frank 判据,反应式左端的柏氏矢量 平方和为a2/ 2 + 3a2/2 = 2a2,而右端的柏氏矢量平方为a2,因2a2> a2 ,所以反应可以 进行。a[ 01-1 ]/2 位错的滑移面是(111) ,a[ 2-11]/2 位错的滑移面是(11-1) ,所以反应生成的位错线在(111) 与(11-1) 的交线[-110] 上,这个位错的滑移面是(001),它不是面心立方 容易滑移的滑移面,所以不易滑动。 3、某面心立方点阵晶体的(1-11)面上有一螺型单位位错,其位错线为直线,柏氏矢量为 a/2[110], (1)在晶胞中标明该位错的柏氏矢量,该位错滑移产生的切变量是多少? (2)该位错能否自动分解成两根肖克莱不全位错,为什么?并在晶胞中标明两根肖克莱不全位错的柏氏矢量; (3)在(1-11)面上由上述两不全位错中间夹一层错带形成扩展位错。若作用在该滑移面上的切应力方向为[1-1-2],该扩展位错如何运动?若切应力方向为[110],该扩展位错又如何运动? (4)该扩展位错可能交滑移到哪个晶面,并图示之,指出产生交滑移的先决条件是什么?答:(1)√2a/2(hu+kv+lw=0) (2)能(满足几何能量条件) a/6[121]+a/6[21-1]= a/2[110] (几何条件) ∣a/6[121]∣2+∣a/6[21-1]∣2 <∣a/2[110]∣2 a2/6+ a2/6

位错总结

位错总结 一. 位错概念 1.晶体的滑移与位错 2. 位错模型 ● 刃型位错: 正负刃型位错, ※位错是已滑移区与未滑移区的边界 ※位错线必须是连续的-位错线不能中止在晶体内部。 ∴ 起止与晶体表面(或晶界)或在晶体内形成封闭回路或三维网络 ● 螺型位错: 左螺旋位错,右螺旋位错 ● 混合位错 3.位错密度 单位元体积位错线总长度,3/m m 或单位面积位位错露头数,2 m

4. 位错的柏氏矢量 (Burgers Vector ) ● 确定方法: 柏氏回路 ●意义: 1) 柏氏矢量代表晶体滑移方向(平行或反平行)和大小 2) 位错引起的晶格畸变的大小 3)决定位错的性质(类型) 刃型位错 b ┴位错线 螺型位错 b //位错线 混合位错 位错线与b 斜交 s e b b b +→ ,sin θb b e = θcos b b s = 4)柏氏矢量的表示 ]110[2 a b = 或 ]110[21 =b ● 柏氏矢量的性质 1)柏氏矢量的守恒性-流入节点的柏氏矢量之和等于流出节点的 柏氏矢量之和 2)一条为错只有一个柏氏矢量

二.位错的运动 1.位错的运动方式 ●刃型位错 滑移―――滑移面: b l ?,唯一确定的滑移面 滑移方向:l v b v ⊥, // 滑移应力: 滑移面上的切应力-沿b 或b - 攀移――攀移面: 附加半原子面 攀移方向:)(b l v ?⊥ 攀移应力:攀移面上的正应力; 拉应力-负攀移 压应力-正攀移 攀移伴随原子扩散,是非守恒运动,在高温下才能发生 ● 螺型位错 滑移―――滑移面:包含位错线的任何平面 滑移方向:l v b v ⊥⊥, 滑移应力 滑移面上的切应力-沿b 或b - 交滑移―――同上 ●混合位错 滑移(守恒运动)――同刃型位错 非守恒运动 ――在非滑移面上运动- 刃型分量的攀移和螺型分量的滑移的合成运动

金属的塑性变形

二、金属的塑性变形 材料受力后要发生变形,变形可分为三个阶段:弹性变形;弹-塑性变形;断裂。外力较小时产生弹性变形,外力较大时产生塑性变形,而当外力过大时就会发生断裂。在整个变形过程中,对材料组织、性能影响最大的是弹-塑性阶段的塑性变形部分。如:锻造、轧制、拉拔、挤压、冲压等生产上的许多加工方法,都要求使金属产生变形,一方面获得所要求的形状及尺寸,另一方面可引起金属内部组织和结构的变化,从而获得所要求的性能。因此研究塑性变形特征与组织结构之间相互关系的规律性,具有重要的理论和实际意义。 弹性变形(Elastic Deformation) 1.1 弹性变形特征(Character of Elastic Deformation) 1.变形是可逆的; 2.应力与应变保持单值线性函数关系,符合Hooke定律:σ=Eε,τ=Gγ,G=E/2(1-ν) 3.弹性变形量随材料的不同而异。 1.2 弹性的不完整性(Imperfection of Elastane) 工程上应用的材料为多晶体,内部存在各种类型的缺陷,弹性变形时,可能出现加载线与卸载线不重合、应变的发展跟不上应力的变化等现象,称为弹性的不完整性,包括包申格效应、弹性后效、弹性滞后等。 1.包申格效应(Bauschinger effect) 现象:下图为退火轧制黄铜在不同载荷条件下弹性极限的变化情况。 曲线A:初次拉伸曲线,σe=240Pa 曲线B:初次压缩曲线,σe=178Pa 曲线C:B再压缩曲线,σe↑,σe=278Pa 曲线D:第二次拉伸曲线,σe↓,σe=85Pa 可见:B、C为同向加载,σe↑;C、D为反向加载,σe↓。 定义:材料经预先加载产生少量塑性变形,然后同向加载则σe升高,反向加载则σe降低的现象,称为包申格效应。对承受应变疲劳的工件是很重要的。 2.弹性后效(Anelasticity) 理想晶体(Perfect crystals):

超塑性

金属超塑性成形工艺及其发展超塑性是指材料在一定的内部(组织)条件(如晶粒形状及尺寸,相变等)和外部(环境)条件下(如温度、应变速率等),呈现出异常低的流变抗力、异常高的流变性能(例如大的延伸率)的现象。 超塑性现象最早的报道是在1920年,ROSENHAIN等发现Zn-4Cu-7Al合金在低速弯曲时,可以弯曲近180º。1934年,C.P.PEARSON发现Pb-Sn共晶合金在室温低速拉伸时可以得到2000%的延伸率。但是由于第二次世界大战,这方面的研究设有进行下去。1945年A.A.BOCHV AR等发现Zn-Al共析合金具有异常高的延伸率并提出“超塑性”这一名词。 1964年,W.A.BACKOFEN对Zn-Al合金进行了系统的研究,并提出了应变速率敏感性指数m值这个新概念,为超塑性研究奠定了基础。金属超塑性可以分为几类,主要是以下两种:①细晶超塑性(又称组织超塑性或恒温超塑性),其内在条件是具有稳定的等轴细晶组织,外在条件是每种超塑性材料应在特定的温度及速率下变形;②相变超塑性(又称环境超塑性),是指在材料相变点上下进行温度循环的同时对试样加载,事次循环中试样得到累积的大变形。目前研究和应用最事的超塑性现象属于前者。 从60年代起,各国学者在超塑性材料学、力学、机理、成形学等方面进行了大量的研究并初步形成了比较完整的理论体系。超塑性既是一门科学,一又是一种工艺技术。利用它可以在小吨位设备上实现形状复杂、其他塑性加工工艺难以或不能进行的零件的精密成形。

在超塑性材料学方面,上述经典的超塑性理论对于“超塑性材料”规定的“均匀、稳定、等轴、细晶”的苛刻条件对超塑性的应用有很大的限制。人们从为数甚少的“天然”超塑性材料(例如Pb-Sn及Zn-Al合金等)开始,进而研制“专门”的超塑性材料(例如Al-Cu-Zr合金等),其应用范围很小。70年代起人们注意开发工业牌号合金的超塑性、基于上述组织条件,在超塑性变形或成形前要对材料进行细化晶粒的预处理,包括热处理和形变热处理,有些处理工艺相当繁杂,消耗了能源、人力和材料。在研究中发现。许多工业合金在供货态件下,虽然不能完全满足均匀等轴细晶的组织条件,但是也具有良好的超塑性(Ti-6Al-4V就是其中的一个典型)。这样不用或少用细化处理工艺,可以大大提高起塑性技术的经济性。然而,供货态工业合金往往不能完全满足超塑性材料的组织条件,或是晶粒较粗大,或是不等轴、或是分布不均匀,因此其在超塑性变形中会产生一系列的问题(例如变形不均匀、各向异性等)。这样,研究非理想超塑性材料的超塑性变形特征,掌握缺陷形成的机理并通过控制变形参数抑制缺陷的产生,用低成本的材料超塑性成形出高质量的零件,形成了一个重要的研究方向。这方面的研究是符合中国国情的。此外,从社会生产的角度出发,以往材料生产厂、零件成形制造厂、机械装配厂、设备使用厂彼此脱节的现象比较严重。应该形成一个完整的体系-从材料冶炼制造起就统筹考虑到零件的成形、装配和使用,各个环节之间彼此呼应相互调节。这样对于提高整个生产的社会经济效益会产生难以估量的效果。在超塑性技术的应用中,已经有了这样一些先例,超塑性状态已

实体膨胀管大塑性变形数值分析方法

实体膨胀管大塑性变形数值分析方法 摘要:实体膨胀套管技术广泛用于石油钻井行业,其原理是采用刚性膨胀锥膨 胀厚壁圆筒,属于大塑性变形过程,而文中所提到的分析解法和数值解法有助于该过程中厚圆柱体的结构变化。运用平衡方程,体积不变条件,和莱维—米泽斯本构方程建立膨胀管膨胀分析模型,该模型包含膨胀率,膨胀管膨胀锥系统推力大小以及膨胀长度及壁,管厚变化的相对关系。另外,运用特雷斯卡屈服准则判断管状材料的是否塑性阶段。建立的模型可以预测膨胀管膨胀过程的推力大小,膨胀管长度以及厚度变化。膨胀管膨胀过程的数值模拟也以用于商业化有限元ABAQUS中软件。在卡布斯苏丹大学工程研究实验室的一个全面的测试钻机的实验研究用于验证分析解法和数值解法的可靠性。该研究中采用外径为7 ? 英尺(193.68 mm),内径? 英尺(9.525 mm)的标准套管,膨胀率分别为16%,20%,24%。膨胀后厚度变化分别为6. 67%, 10.3%, 和13.16%,膨胀过程所需要的推力为940 kN, 1092 kN, 和1213 kN。 关键词:实体膨胀管,厚壁圆筒,分析模型,有限元软件 前沿 厚壁圆筒的膨胀实验,数值解法和分析解法已经吸引了许多理论科学与运用科学的研究者。由于其高强度和几何对称形状在许多技术和工业应用中发挥了重要作用。它们广泛应用于在航空航天,航海,军工,汽车,石油和天然气行业,以及其他工业领域。在石油和天然气行业中,不同类型的套管的主要的应用之一是钻井。由于经济和可持续发展的要求,日益减少的油气资源和能源需求的增加,以及油井结构的许多条件增强,超过了传统技术的限制,这就需要些超过早期技术能力的良好设计,够造和修复方案。许多现代化的建井技术已走向井眼钻孔更深更长,和更具效益的延伸钻井(ERD)。固体膨胀管技术就专门开发的允许运用额外的套管串来掩盖问题区域的一门技术,以便钻井达到延伸钻井的目的。膨胀管技术也有助于减少建井和井况复杂的经济不合理的油田所需的整体资金,努力构建等径井,并维持老井产量。钻机、钻杆、钻头、水泥、和套管的尺寸或体积和成本的显著减少,最终导致整体成本的降低。膨胀管技术的原理非常简单:通过采用液压力和/或机械力使膨胀锥通过基管,导致基管塑性变形内径增大。 我们能够发现在许多文章中,作者尝试着研究厚壁圆筒在不同类型载荷下的弹塑性行为[1-4]。然而,只有较少的一些文章涉及厚壁圆筒在膨胀锥作用下的塑性变形,而其大塑性变形的就更少。近年来,塑性力学理论被用来研究、建立厚壁圆筒在一个圆锥工具下膨胀的分析模型[5-6]。该模型表明,膨胀过程所需要的力跟膨胀率、摩擦系数、膨胀锥的几何形状和管材的屈服强度有关。Karrech 等人[7]建立了一个模型,用于预测膨胀过程中变形区的应力范围和能量损失。然而,当圆柱体的半径与厚度的比小于10时,由于从膨胀区的内表面到外表面,应力变化剧烈,和横截面上的剪应力不能忽视,所以薄壁圆筒的微分方程很难得到。因此当前工作的重点是研究厚壁圆筒实体膨胀管的大塑性变形(其塑性变形可以达到30%)。将封闭形式结果与通过有限元以及可以利用的实验方法所获得的分析结果相比较。

什么叫晶界

材物0802 陆寅 12 题目:晶界对材料性质的影响 摘要: 简述晶界的定义以及其来源与分类,引入晶界对材料性质的各种作用原理与原因,通过列举各种材料性质与其晶界间的关系来说明晶界对材料性质的影响,并对晶界的研究作出展望。 关键词: 晶界面缺陷晶界的分类晶界腐蚀多晶材料金属材料无机非金属材料材料 论述: 什么叫晶界 grain boundary 晶界是结构相同而取向不同晶体之间的界面。在晶界面上,原子排列从一个取向过渡到另一个取向,故晶界处原子排列处于过渡状态。 晶界的分类 晶粒与晶粒之间的接触界面叫做晶界有二种不同的分类方法,一种简单地按两个晶粒之间夹角的大小来分类。分成小角度晶界和大角度晶界。小角度晶界是相邻两个晶粒的原子排列铝合的角度很小,约2`~3`。两个晶粒间晶界由完全配合部分与失配部分组成。,界面处质点排列着一系列棱位图。当一颗晶粒绕垂直晶粒界面的轴旋转微小角度,也能形成由螺旋位错构成的扭转小角度晶界。大角度晶界在多晶体中占多数,这时晶界上质点的排列已接近无序状态。另一种分类是根据晶界两边原子排列的连贯性来划分的。当界面两侧的晶体具有非常相似的结构和类似的取向,越过界面原子面是连续的。这样的界面称为共格晶界。例如,氢氧化镁加热分解成氧化镁,Mg(OH)2--》MgO+H2O,就形成这样的间界。这种氧化物的氧离子密堆平面通过类似堆积的氢氧化物的平面脱氢而直接得到。因此当Mg(OH)。结构内有转变为MgO结构的畴出现时,则阴离子面是连续的。然而,两种结构的晶面间距彼此不同,分别为C1和C2,(C2-C1)/C1=Q被定义为品面间距的失配度。为了保个相或二个相发生弹性应变,或通过引入位错来达到。失配度Q是弹性应变的一个量弹性应变的存在,使系统的能量增大,系统能量与cQ2成正比,C为常数。另一种类型的晶界称做半共格晶界。在这种结构中,最简单的看只有晶面间距C1比较小的一个相发生应变。弹性应变可以成引入半个原子晶面进入应变相下降,这样就生成所谓界面位错。位错的引入、使在位错线附近发生局部的晶格畸变。显然晶体的能量也增加。 晶界的特性 由于晶界上两个晶粒的质点排列取向有一定的差异,两者都力图使晶界上的质点排列符合于自己的取向。当达到平衡时,晶界上的原子就形成某种过渡的排列。显然,晶界上由于原子排列不规则而造成结构比较疏松,因而也使晶界具有一些不同于晶粒的特性。晶界上原子排列较晶粒内疏松,因而晶界易受腐蚀(热侵蚀、化学腐蚀)后,很易显露出来;由于晶界上结构疏松,在多晶体中,晶界是原子(离子)快速扩散的通道,并容易引起杂质原子(离子)偏聚,同时也使晶界处熔点低于晶粒;晶界上原子排列混乱,存在着许多空位、位错和键变形等缺陷,使之处于应力畸变状态。故能阶较高,使得晶界成为富态相变时代先成核的区域。利用晶界的一系列特性,通过控制晶界组成、结构和相态等来制造新型无机材料是材料科学工作者很感兴趣的研究领域。但是多晶体晶界尺度仅在0.lum以下,并非一般显微工能研究的。而要采用俄歇谱仪及离子探针等。由于晶界上成分复杂,因此对晶界的研究还有待深入。晶界对无机非金属材料的影响 无机非金属材料是由微细粉料烧结而成的。在烧结时,众多的的微细颗粒形成大量的结晶中心。当它们发育成晶粒并逐渐长大到相遇时就形成晶界。因而无机非金属材料是由形状不规

塑性变形力学计算

杆件的塑性变形 15.1 概 述 工程问题中绝大部分构件必须在弹性范围内工作,不允许出现塑性变形。但有些问题确须考虑塑性变形。 15.2 金属材料的塑性性质 图15.1是低碳钢拉伸的应力-应变曲线。过屈服极限后,应力和应变的关系是非线性的有 p e εεε+= (15.1) 弹性范围内,应力和应变之间是单值对应的。塑性阶段却并非如此,应力和应变不再是单值对应的关系(如图15.2)。 下面是几种常见的塑性材料模型。 图 15.1 低碳钢拉伸的应力-应变曲线 图15.2 弹塑性应力-应变

有时也把应力-应变关系近似地表为幂函数,幂强化材料的应力-应变关系曲线如图15.7所示。 n εσc = 15.3 拉伸和压缩杆系的塑性分析 现以图15.8所示两端固定的杆件为例来说明静不定拉压杆系的塑性分析,当载荷P 逐渐增加时,杆件两端的反力是 b a Pa R b a Pb R += ' += 21 (a) P 力作用点的位移是 ()b a EA Pab EA a R += =1δ (b) 如a b >则21R R >。随着P 的增加, AC 段 图 图图 图 图 图

的应力将首先达到屈服极限。若相应的载荷 为1P ,载荷作用点的位移为1δ,由(a )、(b ) 两式求得 () b b a A P A b a b P R += =+= s 1, S 111σσ E a s 1σδ= 由平衡方程可知 S 2σA P R -= (c) 载荷作用点c 的位移为 ()EA b P P 11-+ =δδ (d) CB 段也进入塑性阶段时,S 2σA R =,由(c )式求出相应的载荷为 S 22σA P = 载荷达到2P 后,整个杆件都已进入塑性变形。 例18.1 在图15.9a 所示静不定结构中,设三杆的材料相同,横截面面积同 为A 。试求使结构开始出现塑性变形的载荷1P 、极限载荷p P 。 解:以1N 和2N 分别表AC 和AD 杆的轴力,3N 表AB 杆的轴力。令s 1E E =, s 1A A =,得 图

材基第三章习题及答案

第三章 作业与习题的解答 一、作业: 2、纯铁的空位形成能为105 kJ/mol 。将纯铁加热到850℃后激冷至室温(20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。(e 31.8=6.8X1013) 6、如图2-56,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。 (1)分析该位错环各段位错的结构类型。 (2)求各段位错线所受的力的大小及方向。 (3)在τ的作用下,该位错环将如何运动? (4)在τ的作用下,若使此位错环在晶体中稳定 不动,其最小半径应为多大? 解: (2)位错线受力方向如图,位于位错线所在平面,且于位错垂 直。 (3)右手法则(P95):(注意:大拇指向下,P90图3.8中位错环ABCD 的箭头应是向内,即 是位错环压缩)向外扩展(环扩大)。 如果上下分切应力方向转动180度,则位错环压缩。

(4) P103-104: 2sin 2d ?τd T s b = θRd s =d ; 2/sin 2 θ?d d = ∴ τ ττkGb b kGb b T R ===2 注:k 取0.5时,为P104中式3.19得出的结果。 7、在面心立方晶体中,把两个平行且同号的单位螺型位错从相距100nm 推进到3nm 时需要用多少功(已知晶体点阵常数a=0.3nm,G=7﹡1010Pa )? (3100210032ln 22ππGb dr w r Gb == ?; 1.8X10-9J ) 8、在简单立方晶体的(100)面上有一个b=a[001]的螺位错。如果它(a)被(001)面上b=a[010]的刃位错交割。(b)被(001)面上b=a[100]的螺位错交割,试问在这两种情形下每个位错上会形成割阶还是弯折? ((a ):见P98图3.21, NN ′在(100)面内,为扭折,刃型位错;(b)图3.22,NN ′垂直(100)面,为割阶,刃型位错) 9、一个]101[2-=a b 的螺位错在(111)面上运动。若在运动过程中遇到障碍物而发生交滑移,请指出交滑移系统。 对FCC 结构:(1 1 -1)或写为(-1 -1 1) 10、面心立方晶体中,在(111)面上的单位位错]101[2-=a b ,在(111) 面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出:

塑性变形知识点总结

塑性变形(3) 1.冷变形金属在退火过程中显微组织的变化: 在回复阶段,由于不发生大角度晶界的迁移,所以晶粒的形状和大小与变形态的相同,仍保持着纤维状或扁平状,从光学显微组织上几乎看不出变化。 在再结晶阶段,首先是在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到形变组织完全改组为新的、无畸变的细等轴晶粒为止。 最后,在晶界表面能的驱动下,新晶粒互相吞食而长大,从而得到一个在该条件下较为稳定的尺寸,这称为晶粒长大阶段。 2.回复:是指冷变形后金属在加热温度较低时,原子活动能力不在,金属中的一些点缺陷和位错的迁移,使得晶格畸变逐渐减少,内应力逐渐降低的过程。 回复的驱动力:弹性畸变能 (特征:1.金属的晶粒大小和形状尚无明显的变化,因而其强度,硬度和塑性等机械性能变化不大;2.内应力及电阻率等物理性能显著不为降低。(宏观内应力)) 3.回复机制: a.低温回复:回复主要与点缺陷的迁移有关。 b.中温回复:温度稍高时,会发生位错运动和重新分布。机制主要与位错滑移和位错密度降低有关。 c.高温回复(~0.3Tm),刃型位错可获得足够能量产生攀移,位错密度下降,位错重排成较稳定的组态----亚晶结构。 4.再结晶:将冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状况,这个过程称之为再结晶。 再结晶的驱动力:是变形金属经回复后未被释放的储存能(相当于变形总储能的90%) 5.储存能:塑性变形中外力所作的功除去大部分转化为热之外,还有一小部分以畸变能的形式储存在形变材料内部,这部分能量叫做储存能。 6.残余应力:一种内应力。它在工件中处于自相平衡状态,其产生是由于工件

相关文档