文档库 最新最全的文档下载
当前位置:文档库 › 金属材料学(戴起勋版)第4章整理答案

金属材料学(戴起勋版)第4章整理答案

金属材料学(戴起勋版)第4章整理答案
金属材料学(戴起勋版)第4章整理答案

4-1 在使用性能和工艺性能的要求上,工具钢和机器零件用钢有什么不同?

工具钢使用性能:

(1)硬度。工具钢制成工具经热处理后具有足够高的硬度。工具在高的切削速度和加工硬材料所产生高温的受热条件下,仍能保持高的硬度和良好的红硬性。

(2)耐磨性。工具钢具有良好的耐磨性,即抵抗磨损的能力。工具在承受相当大的压力和摩擦力的条件下,仍能保持其形状和尺寸不变。

(3)强度和韧性。工具钢具有一定的强度和韧性,使工具在工作中能够承受负荷、冲击、震动和弯曲等复杂的应力,以保证工具的正常使用。

(4)其他性能。由于各种工具的工作条件不同,工具用钢还具有一些其他性能,如模具用钢还应具有一定的高温力学性能、热疲劳性、导热性和耐磨腐蚀性能等。

工艺性能:

(1)加工性.工具钢应具有良好的热压力加工性能和机械加工性能,才能保证工具的制造和使用。钢的加工性取决于化学成分、组织的质量。

(2)淬火温度范围.工具钢的淬火温度应足够宽,以减少过热的可能性。

(3)淬硬性和淬透性. 淬硬性是钢在淬火后所能达到最高硬度的性能。淬硬性主要与钢的化学成分特别是碳含量有关,碳含量越高,则钢的淬硬性越高。淬透性表示钢在淬火后从表面到内部的硬度分布状况。淬透性的高低与钢的化学成分、纯洁度、晶粒度有关。根据用于制造不同的工具,对这两种性能各有一定的要求。

(4)脱碳敏感性. 工具表面发生脱碳,将使表面层硬度降低,因此要求工具钢的脱碳敏感性低。在相同的加条件下,钢的脱碳敏感性取决于其化学成分。

(5)热处理变形性. 工具在热处理时,要求其尺寸和外形稳定。

(6)耐削性.对很制造刀具和量具用钢。要求具有良好的磨削性。钢的磨削性与其化学成分有关,特别是钒含量,如果钒质量分数不小于0.50%则磨削性变坏。

机器零件用钢使用性能:

(1)较高的疲劳强度和耐久强度。

(2)高的屈服强、抗拉强度以及较高的断裂抗力。

(3)良好的耐磨性和接触疲劳强度。

(4)较高的韧性,以降低缺口敏感性。

工艺性能:

通常机器零件的生产工艺:型材→改锻→毛坯热处理→切削加工→最终热处理→磨削

以切削加工性能和热处理工艺性能为机器零件用钢的主要工艺性能。

4-2工具钢常要做那些力学性能试验?测定哪些性能指标?为什么?

强度、塑性:静弯或扭转试验→弯曲强度、挠度和扭转强度、扭转角;

韧度:一般采用无缺口式样;

硬度:一般硬度60HRC以上,钢中存在的大量碳化物可提高2~3HRC;

淬透性:断口法→碳素工具钢和低合金工具钢;端淬法→合金工具钢,以端淬曲线上60HRC 处距水冷端距离表示。淬透性作用强弱顺序: Si、Mn、Mo、Cr、Ni

热稳定性:(钢在较高温度下保持一定强度的性质)对高速钢,通常是红硬性;

变形开裂倾向:主要原因是热应力组织应力。

4-3试用合金化原理分析说明9SiCr、9Mn2V、CrWMn钢的优缺点。

9SiCr① Si、Cr提高淬透性,油淬临界直径D油<40mm;

② Si、Cr提高回火稳定性,经250℃回火,硬度>60HRC;

③ K细小、均匀→不容易崩刃;

④ 通过分级淬火或等温淬火处理,变形较小;

⑤ Si使钢的脱碳倾向较大。

CrWMn① Cr、W、Mn复合,有较高淬透性,D油=50~70mm;

② 淬火后A R在18~20%,淬火后变形小;

③ 含Cr、W碳化物较多且较稳定,晶粒细小→高硬度、高耐磨性;

④ 回稳性较好,当回火温度>250℃,硬度才<60HRC;

⑤ W使碳化物易形成网状。

9Mn2V

1)Mn↑淬透性,D油 = ~30mm;

2)Mn↓↓ M S,淬火后A R较多,约20~22%,使工件变形较小;

3)V能克服Mn的缺点,↓过热敏感性,且能细化晶粒;

4)含0.9%C左右,K细小均匀,但钢的硬度稍低,回火稳定性较差,宜在200℃以下回火;5)钢中的VC使钢的磨削性能变差。9Mn2V广泛用于各类轻载、中小型冷作模具。

4-4 9SiCr和60Si2Mn都有不同程度的脱C倾向,为什么?

两者均含Si元素,Si是促进石墨化的元素,因此加热时易脱碳。

4-5 分析比较T9和9SiCr:

1)为什么9SiCr钢的热处理加热温度比T9钢高?

2)直径为φ30 ~ 40mm的9SiCr钢在油中能淬透,相同尺寸的T9钢能否淬透? 为什么?

3)T9钢制造的刀具刃部受热到200-250℃,其硬度和耐磨性已迅速下降而失效;9SiCr 钢制造的刀具,其刃部受热至230-250℃,硬度仍不低于60HRC,耐磨性良好,还可正常工作。为什么?

4)为什么9SiCr钢适宜制作要求变形小、硬度较高和耐磨性较高的圆板牙等薄刃工具?

1) 9SiCr中合金元素比T9多,加热奥实体化时,要想使合金元素熔入奥氏体中并且还能成分均匀,需要更高的温度。

2)不能。因为9SiCr中Si、Cr提高了钢的淬透性,比T9的淬透性好,9SiCr的油淬临界直径D油<40mm,所以相同尺寸的T9钢不能淬透。

3)Si、Cr提高回火稳定性,经250℃回火,硬度>60HRC;

4)Cr、Si的加入提高了淬透性并使钢中碳化物细小均匀,使用时刃口部位不易崩刀;Si

抑制低温回火时的组织转变非常有效,所以该钢的低温回火稳定性好,热处理是的变形也很小。缺点是脱碳敏感性比较大。因此,如果采用合适的工艺措施,控制脱碳现象,适合制造圆板牙等薄刃工具。

4-6 简述高速钢铸态组织特征。

高速钢的铸态组织常常由鱼骨状莱氏体(Ld)、黑色组织(δ共析体等)和白亮组织(M+A R)组成。组织不均匀,可能含粗大的共晶碳化物,必须通过锻轧将其破碎,莱氏体网是任何

热处理方法所不能消除的,只有通过热压力加工达到一定的变形量之后才能改善。

4-7在高速钢中,合金元素W、Cr、V的主要作用是什么?

W:钨是钢获得红硬性的主要元素。主要形成M6C型K,回火时析出W2C;W强烈降低热导率→钢导热性差

Cr 加热时全溶于奥氏体,保证钢淬透性,大部分高速钢含4%Cr 。增加耐蚀性,改善抗氧化能力、切削能力。

V 显著提高红硬性、提高硬度和耐磨性,细化晶粒,降低过热敏感性。以VC存在.

4-8 高速钢在淬火加热时,如产生欠热、过热和过烧现象,在金相组织上各有什么特征?欠热:淬火温度较低,大量K未溶, 且晶粒特别细小。

过热:淬火温度过高,晶粒长大,K溶解过多,未溶K发生角状化;奥氏体中合金度过高,冷却时易在晶界上析出网状K。

过烧:如果温度再高,合金元素分布不均匀,晶界熔化,从而出现铸态组织特征,主要为鱼骨状共晶莱氏体及黑色组织。

4-9 高速钢(如W18Cr4V)在淬火后,一般常采用在560摄氏度左右回火3次的工艺,为什么?

高速钢淬火后三次560℃回火主要目的是:促进残余奥氏体转变为马氏体,未回火马氏体转变为回火马氏体;减少残余应力。

高速钢淬火后大部分转变为马氏体,残留奥氏体量是20—25%,甚至更高。第一次回火后,又有15%左右的残留奥氏体转变为马氏体,还有10%左右的残留奥氏体,15%左右新转变未经回火的马氏体,还会产生新的应力,对性能还有一定的影响。为此,要进行二次回火,这时又有5—6%的残留奥氏体转变为马氏体,同样原因为了使剩余的残留奥氏体发生转变,和使淬火马氏体转变为回火马氏体并消除应力,需进行第三次回火。经过三次回火残留奥氏体约剩1—3%左右。

4-10高速钢每次回火为什么一定要冷到室温再进行下一次回火? 为什么不能用较长时间的一次回火来代替多次回火?

这是因为残余奥氏体转变为马氏体是在回火冷却过程中进行的。因此,在每次回火后,都要空冷至室温,再进行下一次回火。否则,容易产生回火不足的现象(回火不足是指钢中残余奥氏体未完全消除)。

不能:因为高速钢合金元素多而导致残余奥氏体多,淬火后的组织是马氏体+残余奥氏体,第一次回火使得马氏体回火变成为回火马氏体,而残余奥氏体转变为马氏体,这部分马氏体却在第一次回火中没有得到回火,因此,高速钢一次回火不能使所有的残余奥氏体转变成为马氏体。由于多次回火可以较完全消除奥氏体以及残余奥氏体转变成为马氏体时产生的应力,必须多次回火,一般3次。

4-11高速钢在退火态、淬火态和回火态各有什么类型的碳化物? 这些不同类型的碳化物对钢的性能起什么作用?

退火态:退火后的显微组织为索氏体基体上分布着均匀、细小的碳化物颗粒,碳化物类型为M6C型、M23C6型及MC型。

淬火态:加热时,K溶解顺序为:M7C3\M23C6型在1000℃左右溶解完→M6C型在1200℃时部分溶解→ MC型比较稳定,在1200℃时开始少量溶解。

回火态:主要为M6C(淬火残留)、MC(回火时析出和淬火残留)、M2C (回火析出)等K.

4-12 高速钢W6Mo5Cr4V2的A1温度在800摄氏度左右,为什么常用的淬火加热温度却高达1200摄氏度以上?

高速钢淬火的目的是获得高合金度的奥氏体,淬火后得到高合金马氏体,具有高的回火稳

定性,在高温回火时弥散出合金碳化物而产生二次硬化,使钢具有高硬度和红硬性。高速

钢的合金碳化物比较稳定,必须在高温下才能将其溶解。所以,虽然高速钢的A1在800摄氏度左右,但其淬火温度必须在A1+400摄氏度以上。

4-13 高速钢在淬火加热时,常需要进行一次或二次预热,为什么?预热有什么作用?

高速钢导热性差,淬火加热温度又高,所以要预热。可根据情况采用一次预热和二次预热。

预热可①减少淬火加热过程中的变形开裂倾向;②缩短高温保温时间,减少氧化脱碳;

③准确地控制炉温稳定性。

4-14高速钢在分级淬火时,为什么不宜在950-675摄氏度温度范围内停留过长时间?

高速钢在高温加热奥氏体化后,奥氏体中合金度比较高,具有较高的稳定性。由于合金度高,所以有碳化物析出的趋势。如果冷却时在760摄氏度以上的范围停留,或缓慢地冷却

到760摄氏度,奥氏体中会析出二次碳化物,在760摄氏度左右会析出特别强烈。在冷却

过程中析出碳化物,降低了奥氏体中的合金度,从而影响了高速钢的红硬性。所以,从工

艺上看,对某些需要做空气预冷或在800摄氏度左右作短时停留的工具,应特别注意控制

预冷时间,停留时间不宜过长。实验表明,在625摄氏度进行10min的停留就会降低红硬性。所以,高速钢为了防止开裂和减少变形,通常采用在600摄氏度左右分级淬火,其停

留时间也应严格控制,一般不超过15min.(书上P104最后一段)

4-15 Cr12MoV钢的主要优缺点是什么?

属于高耐磨微变形冷作模具钢,其特点是具有高的耐磨性、硬度、淬透性、微变形、高热

稳定性、高抗弯强度,仅次于高速钢,是冲模、冷镦模等的重要材料,其消耗量在冷作模

具钢中居首位。该钢虽然强度、硬度高,耐磨性好,但其韧度较差,对热加工工艺和热处

理工艺要求较高,处理工艺不当,很容易造成模具的过早失效。

4-16为减少Cr12MoV钢淬火变形开裂,只淬火到200℃左右就出油,出油后不空冷,立即

低温回火,而且只回火一次。这样做有什么不好? 为什么?

此题实在不会,能百度到的相关资料如下

Cr12MoV淬火、回火工艺选择

①Cr12MoV分级淬火(减少变形、防止开裂):加热温度采用1020℃,保温后放入260~280℃硝盐炉中分级3~10min,转入温度为Ms-(10~20)℃硝盐炉中停留5~10min后空冷。或者直

接淬入160~180℃的硝盐炉中停留5~10min后空冷。

空冷到120℃左右转入回火工序。

②Cr12MoV等温淬火(增加强韧度):加热温度采用1020℃,保温后放入Ms-(10~20)℃的硝盐炉中均温3~10min,转入260~280℃保温2~3h空冷后到120℃左右转入回火工序。

③Cr12MoV钢降温淬火(减少淬火变形):Cr12MoV钢制造的压胶木粉的成型模,形状复杂、尺寸变形要求严格,要求有一定的韧性,但硬度要求一般为45~50HRC。采用1020℃加热淬火,就必须用高温回火,这样变形难以控制。现在某些工厂采用880℃加热后,油冷到150~200℃立即转入300℃等温3~4h,200℃回火。这样处理的模具变形极小,韧性也好,硬度在45HRC

左右。缺陷是热处理组织中有少量的屈氏体存在。

④Cr12MoV钢回火温度的选择:淬火加热采用1020~1050℃,要求高硬度可用180~200℃回火;为防止线切割开裂可选用400~420℃回火。因淬火冷却发生变形,采用480℃回火可使尺寸有少量的收缩;采用510℃回火可使尺寸有少量的胀大。

⑤模具的深冷处理:提高耐磨性,增加尺寸稳定性。

把淬火后的模具放入液氮中1~2h进行深冷处理,然后进行回火,也可以在回火后进行深冷处理。Cr12MoV模具经深冷处理后硬度有1~2HRC的提高。

4-17简述冷作模具、热作模具的服役条件及对钢性能的要求。

冷作模具服役条件:工作T不高,模具主要承受高压力或冲击力,有强烈的摩擦。

主要技术要求为具有高硬度和耐磨性,有一定韧性。

热作模具服役条件:模具是在反复受热和冷却条件下工作.模具受热时间越长,受热程度就越严重.许多模具还受到较大冲击力。工作条件苛刻。

热作模具钢应具有高抗热塑性变形能力、高韧性、高抗热疲劳、良好的抗热烧蚀性

4-18高速钢和经过二次硬化的Cr12型钢都有很高的红硬性,能否作为热作模具使用? 为什么?

不能。高速钢虽有高的耐磨性、红硬性,但韧性比较差、在较大冲击力下抗热疲劳性能比较差,高速钢没有能满足热锤锻模服役条件所需要高韧性和良好热疲劳性能的要求。

4-19 对热锤锻模的回火硬度要求是:小型模具硬度略高,大型模具硬度略低;模面硬度较高,模尾硬度较低。为什么?

小型锻模由于锻件冷却比较快,硬度相对较高,所以小型锻模应具有较高的耐磨性,硬度要求也应在40-44HRC.如果型腔浅而简单,硬度要求还应再提高。大型锻模由于锻模尺寸很大,淬火是的应力和变形比较大,此外工作时应力分布也不均匀,需要有较高的韧度,并且锻件的温度也相对较高,硬度较低,大型锻模的硬度以35-38HRC为宜.

锻模模面和模尾硬度要求不同,模尾部分应力集中、承受冲击,硬度要求低。

4-20热锤锻模、热挤压模和压铸模的主要性能要求有什么异同点?

同:较高的高温强度与耐磨性,良好的耐热疲劳和导热性,

异:热锻模钢还要有高的淬透性,良好的冲击韧度和低的回火脆性倾向

热挤压钢要求高的热稳定性。

压铸模钢要求耐蚀性。

4-21形状复杂的5Cr06NiMo(5Cr08MnMo)钢制造的热锤锻模,为减少变形、防止开裂,在淬火工艺操作上应该采取哪些措施?

(1)预热。为了减小热应力而造成的变形,热锻模一般均经550一6O0℃预热(箱式炉)保温。

(2)采用油冷。油冷的特点是高温区的冷却能力低,低温区的冷却速度合适,可以大大降低淬火工件的组织应力,减小工件变形和开裂的倾向。适用于过冷A比较稳定的合金钢。

4-22 5CrW2Si钢中的合金元素有什么作用? 该钢常用作什么工具?

W:进一步提高耐磨性和细化晶粒,W还能有效地削弱第二类回火脆性,所以含W钢可在430~470℃回火,可得到更好的韧度。

Si、Cr:提高低温回火稳定性,并推迟低回脆性区,因此可提高回火温度到280℃,而得到较高的韧度,特别是Si元素更为有效;这些元素都提高淬透性、强度和耐磨性。

4-23 常用哪些热处理措施来保证量具的尺寸稳定性?

(1)调质处理。获得回火索氏体,减少淬火变形和提高机械交工的光洁度。

(2)淬火和低温回火。常采用不完全淬火+低温回火,保证硬度的前提下,尽量降低淬火温度并进行预热,以减少加热和冷却过程中的温差和淬火应力。

(3)冷处理。高精度量具淬火后必须进行冷处理,以减少残余奥氏体量,从而增加尺寸稳定性。

(4)时效处理。淬火回火后,在120-150摄氏度进行24-36 h的失效处理,消除残余内应力,大大增加尺寸稳定性而不降低其硬度。

4-24 试总结合金元素Si、Mn、Mo、V、Cr、Ni在合金钢中的作用,并能简述其原理。

Si的作用如下:

1)提高钢强度; Si是铁素体形成元素,有较强的固溶强化作用;

2)提高钢的淬透性;可阻止铁素体形核和长大,使“C”曲线右移;

3)提高低温回火稳定性;因Si可以抑制回火时K的形核、长大及转变;

4)提高淬火加热温度;,Si提高A1温度。

5)提高抗氧化性,因为它可以形成致密稳定的氧化膜,同时可以提高FeO的形成温度。6)加热时易脱碳;Si是促进石墨化的元素。

Mo元素在合金中的主要作用归结如下:

(1)降低回火脆性,一般认为Mo可以抑制有害元素在晶界的偏聚;

(2)提高贝氏体的淬透性,因为Mo大大推迟珠光体的转变而对贝氏体转变影响较小;(3)细化晶粒,提高回火稳定性。Mo是强碳化物形成元素,与碳的结合力较大形成的碳化物稳定,不易长大。

(4)提高热强性,因为Mo可以较强地提高固溶体原子的结合力。

(5)提高防腐性,特别是对于非氧化性介质。因为Mo可以形成致密而稳定的MoO3膜;(6)提高红硬性,因Mo与C原子结合力强,故回火稳定性比较好并且形成的在高温下碳化物稳定。

Ni元素在合金钢中的作用:

1)↑基体韧度→ Ni↓位错运动阻力,使应力松弛;

2)稳定A,→ Ni↓A1,扩大γ区,量大时,室温为A组织;

3)↑淬透性→↓ΔG,使“C”线右移,Cr-Ni复合效果更好;

4)↑回火脆性→ Ni促进有害元素偏聚;

5)↓Ms ,↑Ar →↓马氏体相变驱动力。

Mn:强化F 提高淬透性促进晶粒长大提高残余A含量,降低Ms点提高回火稳定性降低热脆性-脱硫

V:提高热强性细化晶粒提高红硬性、耐磨性降低过热倾向降低磨削性

Cr:提高淬透性提高回火稳定性提高抗氧化性,热强性提高耐蚀性细化晶粒降低Ms 点

(合金元素作用归纳:

Cr:提高淬透性提高回火稳定性提高抗氧化性,热强性提高耐蚀性细化晶粒降低Ms 点

Mn:强化F 提高淬透性促进晶粒长大提高残余A含量,降低Ms点提高回火稳定性降低热脆性-脱硫

Si:提高δ,降低可切削性提高低温回火稳定性提高抗氧化性提高淬透性提高淬火温度提高脱C,石墨化倾向

Mo:提高淬透性提高热强性降低回火脆性提高回火稳定性细化晶粒提高非氧化性酸的耐蚀性,防止点蚀

Ni:提高基体韧度稳定A组织提高淬透性提高回火脆性降低Ms点-提高残余A含量

V:提高热强性细化晶粒提高红硬性、耐磨性降低过热倾向降低磨削性

Pb:提高切削性能)

4-25 在工具钢中,讨论合金元素起淬透性作用时,应注意什么问题?

Me提高淬透性,只有溶入A中,才起作用;

Me的作用随钢中含碳量而变化,如Si。

工具钢淬透性随热处理条件而变化,如V

(完整版)金属材料学(第二版)课后答案主编戴启勋

第一章钢的合金化原理 1.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。 3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V,Nb, Ti 等。 5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr: ε-FexC→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。如V,Nb, Ti等都属于此类型。 2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在a-Fe中形成无限固溶体?哪些能在g-Fe 中形成无限固溶体? 答:铁素体形成元素:V、Cr、W、Mo、Ti、Al; 奥氏体形成元素:Mn、Co、Ni、Cu 能在a-Fe中形成无限固溶体:V、Cr; 能在g-Fe 中形成无限固溶体:Mn、Co、Ni 3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义? 答:(1)扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素 分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶. b.扩大γ相区:有C,N,Cu等。如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。 (2)缩小γ相区:使A3升高,A4降低。一般为铁素体形成元素 分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb。 b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等 (3)生产中的意义:可以利用M扩大和缩小γ相区作用,获得单相组织,具有特殊性能,在耐蚀钢和耐热钢中应用广泛。 4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。 答:答:1)改变了奥氏体区的位置 2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3下降; (2)缩小γ相区的元素使A1,A3升高。当Mo>8.2%, W>12%,Ti>1.0%,V>4.5%,Si>8.5%,γ

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

《金属材料学》课程教学大纲

《金属材料学》课程教学大纲 以下是为大家整理的《金属材料学》课程教学大纲的相关范文,本文关键词为金属材料学,课程,教学大纲,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教师教学中查看更多范文。 《金属材料学》课程教学大纲 一、课程说明 (一)课程名称:金属材料学所属专业:材料物理专业课程性质:专业基础课学分:3 (二)课程简介:《金属材料学》是一门综合性和应用性较强的专业必修课。根据材料物理专业先修课程和教学内容,本课程包括金属学和金属材料两大部分,其中金属学的内容作为《材料科学基础》课程的补充和深入,金属材料部分在《材料科学基础》、《材料力学性能》等课程的基础上,系统介绍金属材料合金化的一般规律及金属材料的成分、工艺、组织、性能及应用的关系。课程的学习,使学生系

统掌握有关金属材料学方面的知识,培养学生研究开发和合理应用金属材料的初步能力。 目标与任务;通过本课程的学习主要掌握:1.金属材料的成份、组织结构及性能三者间的关系,金属的基本理论和知识。2.合金元素在钢中的作用、原理和规律;3.钢的热处理原理以及其与合金化的配合;4.掌握各类铸铁的成分组织和性能特点;5.常用有色金属及其合金的成分、性能和热处理特点. (三)先修课程:《材料科学基础》、《材料力学性能》等。 (四)教材与主要参考书。 教材:《金属学与热处理》第二版,崔忠圻主编,哈尔滨工业大学出版社。参考书: 《金属材料学》第二版,吴承建陈国良强文江等编著,冶金工业出版社。《金属材料学》第二版,戴起勋主编程晓农主审,化学工业出版社。《材料科学基础》,胡赓祥、蔡荀主编,上海交通大学出版《材料科学基础》,潘金生等编,清华大学出版社 二、课程内容与安排绪论 (一)讲授,2学时(二)内容及基本要求1.金属材料的发展概况。 2.了解金属材料在国民经济中的地位与作用。 3.本课程的性质、

2008级金属材料学习题

金属材料学习题集 ※<习题一> 第一章复习思考题-1 1.描述下列元素在普通碳素钢的作用:(a)锰、(b)硫、(c)磷、(d)硅。 2.为什么钢中的硫化锰夹杂要比硫化亚铁夹杂好? 3.为什么要向普通碳素钢中添加合金元素以制造合金钢? ※<习题二> 复习思考题-2 8.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在 γ-Fe 中形成无限固溶体? 9.钢中常见的碳化物类型主要有几种?哪一种碳化物最不稳定? 10.分析合金元素对Fe-Fe3C相图影响规律对热处理工艺实施有哪些指导意义? 11.钢在加热转变时,为什么含有强碳化物形成元素的钢奥氏体晶粒不易长大?12.简述合金元素对钢过冷奥氏体等温分解C曲线的影响规律? 13.合金元素提高钢的回火稳定性的原因何在? 15.叙述低合金钢的第二类回火脆性? ※<习题三> 复习思考题-3 16.防止钢铁材料腐蚀途径有哪些? 17.钢材的强度随温度的变化将发生变化,从合金化的角度考虑如何提高钢的热强性? 18略述沉淀强化Al-4%Cu合金所必需的三个主要步骤。 ※<习题四> Ch2 复习思考题 1.对工程应用来说,普通碳素钢的主要局限性是哪些?工程构件用合金结构钢的成分和性能要求是什么? 2. 合金元素在低合金高强度结构钢中的作用是什么?为什么考虑低C?具体分析Mn、Si,Al、Nb、V、Ti,Cu、P、Cr、Ni对低合金高强钢性能的影响? 3.什么是微合金化钢?什么是生产微合金化钢的主要添加元素?微合金化元素 在微合金化钢中的作用是什么? 4.根据合金元素在钢中的作用规律,结合低合金高强度结构钢的性能要求,分析讨论低合金高强度结构钢中合金元素的作用 复习思考题-1 1.结合渗碳钢20CrMnTi和20Cr2Ni4A的热处理工艺规范,分析其热处理特点。2.合金元素在机器零件用钢中的作用是什么?就下列合金元素(Cr、Mn、Si、Ni、Mo、Al、Ti、W、V、B)各举一例钢种指出其作用是什么?

最新金属材料学课后习题总结

习题 第一章 1、何时不能直接淬火呢?本质粗晶粒钢为什么渗碳后不直接淬火?重结晶为什么可以细化晶粒?那么渗碳时为什么不选择重结晶温度进行A化? 答:本质粗晶粒钢,必须缓冷后再加热进行重结晶,细化晶粒后再淬火。晶粒粗大。A 形核、长大过程。影响渗碳效果。 2、C是扩大还是缩小奥氏体相区元素? 答:扩大。 3、Me对S、E点的影响? 答:A形成元素均使S、E点向左下方移动。F形成元素使S、E点向左上方移动。 S点左移—共析C量减小;E点左移—出现莱氏体的C量降低。 4、合金钢加热均匀化与碳钢相比有什么区别? 答:由于合金元素阻碍碳原子扩散以及碳化物的分解,因此奥氏体化温度高、保温时间长。 5、对一般结构钢的成分设计时,要考虑其M S点不能太低,为什么? 答:M量少,Ar量多,影响强度。 6、W、Mo等元素对贝氏体转变影响不大,而对珠光体转变的推迟作用大,如何理解? 答:对于珠光体转变:Ti, V:主要是通过推迟(P转变时)K形核与长大来提高过冷γ的稳定性。 W,Mo: 1)推迟K形核与长大。 2)增加固溶体原子间的结合力,降低Fe的自扩散系数,增加Fe的扩散激活能。 3)减缓C的扩散。 对于贝氏体转变:W,Mo,V,Ti:增加C在γ相中的扩散激活能,降低扩散系数,推迟贝氏体转变,但作用比Cr,Mn,Ni小。 7、淬硬性和淬透性 答:淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。 淬透性:指由钢的表面量到钢的半马氏体区组织处的深度。 8、C在γ-Fe与α-Fe中溶解度不同,那个大? 答:γ-Fe中,为八面体空隙,比α-Fe的四面体空隙大。 9、C、N原子在α-Fe中溶解度不同,那个大? 答:N大,因为N的半径比C小。 10、合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。 答:V:MC型;Cr:M7C3、M23C6型;Mo:M6C、M2C、M7C3型;Mn:M3C型。 复杂点阵:M23C6、M7C3、M3C、稳定性较差;简单点阵:M2C、MC、M6C稳定性好。 11、如何理解二次硬化与二次淬火? 答:二次硬化:含高W、Mo、Cr、V钢淬火后回火时,由于析出细小弥散的特殊碳化物及回火冷却时A’转变为M回,使硬度不仅不下降,反而升高的现象称二次硬化。 二次淬火:在高合金钢中回火冷却时残余奥氏体转变为马氏体的现象称为二次淬火。

金属材料学(戴起勋版)第4章整理答案

4-1 在使用性能和工艺性能的要求上,工具钢和机器零件用钢有什么不同? 工具钢使用性能: (1)硬度。工具钢制成工具经热处理后具有足够高的硬度。工具在高的切削速度和加工硬材料所产生高温的受热条件下,仍能保持高的硬度和良好的红硬性。 (2)耐磨性。工具钢具有良好的耐磨性,即抵抗磨损的能力。工具在承受相当大的压力和摩擦力的条件下,仍能保持其形状和尺寸不变。 (3)强度和韧性。工具钢具有一定的强度和韧性,使工具在工作中能够承受负荷、冲击、震动和弯曲等复杂的应力,以保证工具的正常使用。 (4)其他性能。由于各种工具的工作条件不同,工具用钢还具有一些其他性能,如模具用钢还应具有一定的高温力学性能、热疲劳性、导热性和耐磨腐蚀性能等。 工艺性能: (1)加工性.工具钢应具有良好的热压力加工性能和机械加工性能,才能保证工具的制造和使用。钢的加工性取决于化学成分、组织的质量。 (2)淬火温度范围.工具钢的淬火温度应足够宽,以减少过热的可能性。 (3)淬硬性和淬透性. 淬硬性是钢在淬火后所能达到最高硬度的性能。淬硬性主要与钢的化学成分特别是碳含量有关,碳含量越高,则钢的淬硬性越高。淬透性表示钢在淬火后从表面到内部的硬度分布状况。淬透性的高低与钢的化学成分、纯洁度、晶粒度有关。根据用于制造不同的工具,对这两种性能各有一定的要求。 (4)脱碳敏感性. 工具表面发生脱碳,将使表面层硬度降低,因此要求工具钢的脱碳敏感性低。在相同的加条件下,钢的脱碳敏感性取决于其化学成分。 (5)热处理变形性. 工具在热处理时,要求其尺寸和外形稳定。 (6)耐削性.对很制造刀具和量具用钢。要求具有良好的磨削性。钢的磨削性与其化学成分有关,特别是钒含量,如果钒质量分数不小于0.50%则磨削性变坏。 机器零件用钢使用性能: (1)较高的疲劳强度和耐久强度。 (2)高的屈服强、抗拉强度以及较高的断裂抗力。 (3)良好的耐磨性和接触疲劳强度。 (4)较高的韧性,以降低缺口敏感性。 工艺性能: 通常机器零件的生产工艺:型材→改锻→毛坯热处理→切削加工→最终热处理→磨削 以切削加工性能和热处理工艺性能为机器零件用钢的主要工艺性能。 4-2工具钢常要做那些力学性能试验?测定哪些性能指标?为什么? 强度、塑性:静弯或扭转试验→弯曲强度、挠度和扭转强度、扭转角; 韧度:一般采用无缺口式样; 硬度:一般硬度60HRC以上,钢中存在的大量碳化物可提高2~3HRC; 淬透性:断口法→碳素工具钢和低合金工具钢;端淬法→合金工具钢,以端淬曲线上60HRC 处距水冷端距离表示。淬透性作用强弱顺序: Si、Mn、Mo、Cr、Ni 热稳定性:(钢在较高温度下保持一定强度的性质)对高速钢,通常是红硬性;

金属材料学总结

第一章 1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些? 答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。 硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。 2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化) b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化) c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化) d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化) 淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。淬火和回火结合使用提高钢的综合性能。 3、按照合金化思路,如何改善钢的韧性? 答:a、加入可细化晶粒的元素Mo、W、Cr; b、改善基体韧性,加Ni元素;

c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量; g、加入合金元素提高耐回火性,以提高韧性。 4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。 答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。 5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。 答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。 6、合金钢中碳化物形成规律①②③④⑤⑥⑦ 答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。 第二章 1、简述工程钢一般服役条件、加工特点和性能要求。 答:服役条件:静载、无相对运动、受大气腐蚀。 加工特点:简单构件是热轧或正火状态,空气冷却,有焊接、剪切、

金属材料学第二版戴起勋课后题答案

第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的? 答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。 S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆; P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。 2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点? 答:简单点阵结构和复杂点阵结构 简单点阵结构的特点:硬度较高、熔点较高、稳定性较好; 复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。 3.简述合金钢中碳化物形成规律。 答:①当r C/r M>0.59时,形成复杂点阵结构;当r C/r M<0.59时,形成简单点阵结构; ②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K 都能溶解其它元素,形成复合碳化物。 ③N M/N C比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。 4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么? 答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。S点左移意味着_____减小,E点左移意味着出现_______降低。

(左下方;左上方)(共析碳量;莱氏体的C量) 5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C 和本身量多少而定。优先形成碳化物,余量溶入基体。 淬火态:合金元素的分布与淬火工艺有关。溶入A体的因素淬火后存在于M、B 中或残余A中,未溶者仍在K中。 回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。 6.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处? 答:Ti、Nb、V等强碳化物形成元素(好处):能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。 7.哪些合金元素能显著提高钢的淬透性?提高钢的淬透性有何作用? 答:在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni等。 作用:一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。 8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用? 答:提高回火稳定性的合金元素:Cr、Mn 、Ni、Mo、W、V、Si 作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样

金属材料学思考题标准答案2

金属材料学思考题答案2 绪论、第一章、第二章 1.钢中的碳化物按点阵结构分为哪两大类,各有什么特点? 答:分为简单点阵结构和复杂点阵结构,前者熔点高、硬度高、稳定性好,后者硬度低、熔点低、稳定性差。 2.何为回火稳定性、回火脆性、热硬性?合金元素对回火转变有哪些影响? 答: 回火稳定性:淬火钢对回火过程中发生的各种软化倾向(如马氏体的分解、残余奥氏体的分解、碳化物的析出与铁素体的再结晶)的抵抗能力 回火脆性:在200-350℃之间和450-650℃之间回火,冲击吸收能量不但没有升高反而显著下降的现象 热硬性:钢在较高温度下,仍能保持较高硬度的性能 合金元素对回火转变的影响:①Ni、Mn影响很小,②碳化物形成元素阻止马氏体分解,提高回火稳定性,产生二次硬化,抑制C和合金元素扩散。③Si比较特殊:小于300℃时强烈延缓马氏体分解, 3.合金元素对Fe-Fe3C相图S、E点有什么影响?这种影响意味着什么? 答:凡是扩大奥氏体相区的元素均使S、E点向左下方移动,如Mn、Ni等; 凡是封闭奥氏体相区的元素均使S、E点向左上方移动,如Cr、Si、Mo等? E点左移:出现莱氏体组织的含碳量降低,这样钢中碳的质量分数不足2%时就可以出现共晶莱氏体。S点左移:钢中含碳量小于0.77%时,就会变为过共析钢而析出二次渗碳体。 4.根据合金元素在钢中的作用,从淬透性、回火稳定性、奥氏体晶粒长大倾向、韧性和回火脆性等方面比较下列钢号的性能:40Cr、40CrNi、40CrMn、40CrNiMo。 1)淬透性:40CrNiMo 〉40CrMn 〉 40CrNi 〉 40Cr 2)回火稳定性:40CrNiMo 〉40CrNi 〉 40CrMn 〉 40Cr 3)奥氏体晶粒长大倾向:40CrMn 〉 40Cr 〉 40CrNi 〉 40CrNiMo 4)韧性:40CrNiMo 〉40CrNi 〉40Cr〉40CrMn (Mn少量时细化组织) 5)回火脆性: 40CrMn 〉40CrNi> 40Cr 〉40CrNiMo 5.怎样理解“合金钢与碳钢的强度性能差异,主要不在于合金元素本身的强化作用,而在于合金元素对钢相变过程的影响。并且合金元素的良好作用,只有在进行适当的热处理条件下才能表现出来”?从强化机理和相变过程来分析(不是单一的合金元素作用) 合金元素除了通过强化铁素体,从而提高退火态钢的强度外,还通过合金化降低共析点,相对提高珠光体的数量使其强度提高。其次合金元素还使过冷奥氏体稳定性提高,C曲线右移,在相同冷却条件下使铁素体和碳化物的分散度增加,从而提高强度。 然而,尽管合金元素可以改善退火态钢的性能但效果远没有淬火回火后的性能改变大。 除钴外,所有合金元素均提高钢的淬透性,可以使较大尺寸的零件淬火后沿整个截面得到均匀的马氏体组织。大多数合金元素都有阻止奥氏体晶粒长大的倾向(Mn除外),从而细化晶粒,使淬火后的马氏体组织均匀细小。

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

金属材料学 简要总结

《金属材料学》复习总结 第1章:钢的合金化概论 一、名词解释: 合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。 过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。 回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。 回火脆性:淬火钢回火后出现韧性下降的现象。 二、填空题: 1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、 性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。 2.扩大A相区的元素有:Ni、Mn、Co(与Fe -γ无限互溶);C、N、Cu(有限互溶); α无限互溶);Mo、W、Ti(有限互溶); 扩大F相区的元素有:Cr、V(与Fe - 缩小F相区的元素有:B、Nb、Zr(锆)。 3.强C化物形成元素有:Ti、Zr、Nb、V; 弱C化物形成元素有:Mn、Fe; 4.强N化物形成元素有:Ti、Zr、Nb、V; 弱N化物形成元素有:Cr、Mn、Fe; 三、简答题: 1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何? ●按照合金含量分类:低合金钢:合金元素总量<5%; 中合金钢:合金元素总量在5%~10%; 高合金钢:合金元素总量>10%; ●按照含碳量的分类:低碳钢:w c≤0.25%; 中碳钢:w c=0.25%~0.6%; 高碳钢:w c>0.6%; 2.加入合金元素的作用? ①:与Fe、C作用,产生新相,组成新的组织与结构; ②:使性能改善。 3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么? (1)A形成元素均使S、E点向左下方移动,如Mn、Ni等; F形成元素均是S、E点向左上方移动,如Cr、V等 (2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织; E点向左上方移动,意味着出现Ld的碳含量会减小。 4.请简述合金元素对奥氏体形成的影响。 (1)碳化物形成元素可以提高碳在A中的扩散激活能,对A形成有一定阻碍作用; (2)非碳化物形成元素Ni、Co可以降低碳的扩散激活能,对A形成有一定加速作用。 (3)钢的A转化过程中存在合金元素和碳的均匀化过程,可以采用淬火加热来达到成 分均匀化。 5.有哪些合金元素强烈阻止奥氏体晶粒的长大?组织奥氏体晶粒长大有什么好处? (1)Ti、Nb、V等强碳化物形成元素会强烈阻止奥氏体晶粒长大,因为:Ti、Nb、V等

《金属材料学》考试真题及答案

一、选择题 1、细化晶粒对钢性能的贡献是强化同时韧化;提高钢淬透性的主要作用是使零件整个断面性能 趋于一致,能采用比较缓和的方式冷却。 2、滚动轴承钢GCr15的Cr质量分数含量为 1.5% 。滚动轴承钢中碳化物不均匀性主要是指碳化物液析、带状碳化物、网状碳化物。 3、选择零件材料的一般原则是使用性能要求、工艺性要求和经济性要求等。 4、凡是扩大丫区的元素均使Fe-C相图中S、E点向左下方移动,例Ni、Mn等元素;凡封闭Y区的元素使S、E点向左上方移动,例Cr、Si、Mo等元素。S点左移意味着共析碳含量减少,E点左移 意味着出现莱氏体的碳含量减少。 5、铝合金可分铸造铝合金和变形铝,变形铝又可分硬铝、超硬铝、锻铝和 防锈铝。 6、H62是表示压力加工黄铜的一个牌号,主要成份及名义含量是Cu62% Zn38% 。 7、在非调质钢中常用微合金化元素有Ti、V Nb N等,这些元素的主要作用是____________ 细化组织和相间沉淀析出强化。 8、球铁的力学性能高于灰铁是因为球铁中石墨的断面切割效应、石墨应力集中效应要比灰铁小 得多。 9、铝合金热处理包括固溶处理和时效硬化两过程,和钢的热处理最大区别是铝合金没有同 素异构相变。 1、钢的合金化基本原则是多元适量、复合加入。在钢中细化晶粒作用较大的合金元素有Ti、V Nb 等,细化晶粒对钢性能的作用是既强化又韧化。 2、在钢中,常见碳化物形成元素有Ti、Nb V Mo W Cr、(按强弱顺序排列,列举5个以上)。钢中二元碳化物分为两类:r c/r M < 0.59为简单点阵结构,有MC和M2C 型;r°/r M > 0.59为复杂点阵结构,有M23C6 、 M7C和M3C型。 3、选择零件材料的一般原则是使用性能要求、工艺性要求和经济性要求等。汽车变速箱齿轮常用20CrMnTi 钢制造,经渗碳和淬回火热处理。 4、奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大,产生晶界腐蚀的主要原因是晶界析出Cr 23C6,导致晶界区贫Cr ,为防止或减轻晶界腐蚀,在合金化方面主要措施有降低碳量、加入Ti、V Nb强 碳化物元素。 5、影响铸铁石墨化的主要因素有碳当量、冷却速度。球墨铸铁在浇注时 要经过孕育处理和球化处理。 6、铁基固溶体的形成有一定规律,影响组元在置换固溶体中溶解情况的因素有:溶剂与溶质原子的点 阵结构、原子尺寸因素、电子结构。 7、对耐热钢最基本的性能要求是良好的高温强度和塑性、良好的化学稳定性。常用的抗氧化合金 元素是Cr 、Al 、Si 。 1、钢中二元碳化物分为二类:r c/ r M< 0.59,为简单点阵结构,有MC和 ______________ 型;r c/ 5> 0.59,为复杂点阵结构,有MC M7C3和M23C6 型。两者相比,前者的性能特点是硬度高、熔点高和 稳定性好。 2、凡能扩大丫区的元素使铁碳相图中S、E点向左下方移动,例Mn Ni_等元素(列岀2个);使丫区缩小的元素使S、E点向左上方移动, 例Cr 、Mo W 等元素(列出3个)。 3、提高钢淬透性的作用是获得均匀的组织,满足力学性能要求_________ 、 能采取比较缓慢的冷却方式以减少变形、开裂倾向_______ 。 4、高锰耐磨钢(如ZGMn13经水韧处理后得到奥氏体组织。在高应力磨损条件下,硬度提高而耐 磨,其原因是加工硬化___________ 及________ 。

金属材料学复习题整理(戴起勋)

1、细化晶粒对钢性能的贡献是强化同时韧化;提高钢淬透性的主要作用是使零件整个断面性能趋于一致,能采用比较缓和的方式冷却。 2、滚动轴承钢GCr15的Cr质量分数含量为 1.5%。滚动轴承钢中碳化物不均匀性主要是指碳化物液析、带状碳化物、网状碳化物。 4、凡是扩大γ区的元素均使Fe-C相图中S、E点向左下方移动,例Ni、Mn等元素;凡封闭γ区的元素使S、E点向左上方移动,例Cr、Si、Mo等元素。S点左移意味着共析碳含量减少,E点左移意味着出现莱氏体的碳含量减少。 7、在非调质钢中常用微合金化元素有 Ti、V、Nb、N等,这些元素的主要作用是细化组织和相间沉淀析出强化。 8、球铁的力学性能高于灰铁是因为球铁中石墨的断面切割效应、石墨应力集中效应要比灰铁小得多。 1、钢的合金化基本原则是多元适量、复合加入。在钢中细化晶粒作用较大的合金元素有 Ti、V、Nb等,细化晶粒对钢性能的作用是既强化又韧化。 2、在钢中,常见碳化物形成元素有Ti、Nb、V、Mo、W、Cr、(按强弱顺序排列,列举5个以上)。钢中二元碳化物分为两类:r c/r M≤ 0.59为简单点阵结构,有MC和M2C 型;r c/r M > 0.59为复杂点阵结构,有M23C6、M7C3和 M3C 型。 3、选择零件材料的一般原则是使用性能要求、工艺性要求和经济性要求等。汽车变速箱齿轮常用20CrMnTi钢制造,经渗碳和淬回火热处理。 4、奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大,产生晶界腐蚀的主要原因是晶界析出Cr23C6,导致晶界区贫Cr ,为防止或减轻晶界腐蚀,在合金化方面主要措施有降低碳量、加入Ti、V、Nb强碳化物元素。 5、影响铸铁石墨化的主要因素有碳当量、冷却速度。球墨铸铁在浇注时 要经过孕育处理和球化处理。 6、铁基固溶体的形成有一定规律,影响组元在置换固溶体中溶解情况的因素有:溶剂与溶质原子的点阵结构、原子尺寸因素、电子结构。 7、对耐热钢最基本的性能要求是良好的高温强度和塑性、良好的化学稳定性。常用的抗氧化合金元素是Cr 、 Al 、 Si 。 1、钢中二元碳化物分为二类:r C/ r M< 0.59,为简单点阵结构,有MC和型;r C / r M > 0.59,为复杂点阵结构,有M3C、M7C3和M23C6型。两者相比,前者的性能特点是硬度高、熔点高和稳定性好。 3、提高钢淬透性的作用是获得均匀的组织,满足力学性能要求、能采取比较缓慢的冷却方式以减少变形、开裂倾向。 4、高锰耐磨钢(如ZGMn13)经水韧处理后得到奥氏体组织。在高应力磨损条件下,硬度提高而耐磨,其原因是加工硬化及奥氏体中析出K和应力诱发马氏体相 变。 5、对热锻模钢的主要性能要求有高热强性、良好的热疲劳抗力、良好的冲击韧性和良好的淬透性及耐磨性。常用钢号有5CrNiMo (写出一个)。 6、QT600-3是球墨铸铁,“600”表示抗拉强度≥600MPa,“3”表示延伸率≥3% 。 7、在非调质钢中常用微合金化元素有Ti、V等(写出2个),这些元素的主要作用是细化晶粒组织和弥散沉淀强化。 二、解释题(30分) 1、高速钢有很好的红硬性,但不宜制造热锤锻模。

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面 是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,, 晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四面体间隙数为 。 3. 纯铁冷却时在912ε 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平 面上的方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ; (2) ;(3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,导电性 。 6)间隙固溶体是 ,间隙化合物是 。 二、 问答 1、 分析氢,氮,碳,硼在?-Fe 和?-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼:0.091nm ,?-Fe :0.124nm ,?-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空 1. 在液态纯金属中进行均质形核时,需要 起伏和 起伏。 2 液态金属均质形核时,体系自由能的变化包括两部分,其中 自由能

金属材料学课后习题答案

金属材料学习题与思考题 第七章铸铁 1、铸铁与碳钢相比,在成分、组织和性能上有什么区别? (1)白口铸铁:含碳量约2.5%,硅在1%以下白口铸铁中的碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色。故称白口铸铁,由于有大量硬而脆的Fe3c,白口铸铁硬度高、脆性大、很难加工。因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。大多用作炼钢和可锻铸铁的坯料 (2)灰口铸铁;含碳量大于4.3%,铸铁中的碳大部或全部以自由状态片状石墨存在。断口呈灰色。它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。(3)钢的成分要复杂的多,而且性能也是各不相同钢是含碳量在0.04%-2.3%之间的铁碳合金。我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过1.7%。钢的主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤0.045%,S≤0.050%)②优质钢(P、S均≤0.035%)③高级优质钢(P≤0.035%,S≤0.030%)按照化学成分又分①碳素钢:.低碳钢(C≤0.25%).中碳钢(C≤0.25~0.60%).高碳钢(C≤0.60%)。 ②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%)。 2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响?为什么三低(C、Si、Mn低)一高(S高)的铸铁易出现白口? (1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为: Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等。其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强。C和Si是铸铁中主要的强烈促进石墨化元素,为综合考虑它们的影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点。S是强烈阻碍石墨化元素,降低铸铁的铸造和力学性能,控制其含量。 (2)铸铁的含碳量高,脆性大,焊接性很差,在焊接过程中易产生白口组织和裂纹。 白口组织是由于在铸铁补焊时,碳、硅等促进石墨化元素大量烧损,且补焊区冷速快,在焊缝区石墨化过程来不及进行而产生的。白口铸铁硬而脆,切削加工性能很差。采用含碳、硅量高的铸铁焊接材料或镍基合金、铜镍合金、高钒钢等非铸铁焊接材料,或补焊时进行预热缓冷使石墨充分析出,或采用钎焊,可避免出现白口组织,。 3、铸铁壁厚对石墨化有什么影响?冷速越快,不利于铸铁的石墨化,这主要取决于浇注温度、铸型材料的导热能力及铸件壁厚等因素。冷速过快,第二阶段石墨化难以充分进行。 4、石墨形态是铸铁性能特点的主要矛盾因素,试分别比较说明石墨形态对灰铸铁和球墨铸铁力学性能及热处理工艺的影响。墨的数量、大小和分布对铸铁的性能有显著影响。如片状石墨,数量越多对基体的削弱作用和应力集中程度越大。 石墨形状影响铸铁性能:片状、团絮状、球状。对于灰铸铁,热处理仅能改变基体组织,改变不了石墨形态,热处理不能明显改善灰铸铁的力学性能。 球墨铸铁是石墨呈球体的灰铸铁,简称球铁。由于球墨铸铁中的石墨呈球状,对基体的割裂作用大为减少,球铁比灰铸铁及可锻铸铁具有高得多的强度、塑性和韧性。 5、球墨铸铁的性能特点及用途是什么? 球墨铸铁。将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。比普通灰口铸铁有较高强度、较好韧性和塑性。用于制造内燃机、汽车零部件及农机具等.。 珠光体型球墨铸铁——柴油机的曲轴、连杆、齿轮;机床主轴、蜗轮、蜗杆;轧钢机的轧辊;水压机的工作缸、缸套、活塞等。铁素体型球墨铸铁——受压阀门、机器底座、汽车后桥壳等。 6、和刚相比,球墨铸铁的热处理原理有什么异同? 球墨铸铁的热处理主要有退火、正火、淬火加回火、等温淬火等。 7、HT200、HT350、KTH300-06、QT400、QT600各是什么铸铁?数字代表什么意义?各具有什么样的基体和石墨形态?说明他们的力学性能特点及用途。 (1)灰铸铁常用型号为HT100/HT150/HT200/HT250/HT300/HT350 球墨铸铁常用型号为QT400-18/QT400-15/QT450-10/QT500-7/QT600-3/QT700-2/QT800-2/QT900-2 黑心可锻铸铁常用牌号为KTH300-06/KTH350-10/KTZ450-06/KTZ550-04/KTZ650-02/KTZ700-02,其中KTH300-06适用于气密性零件,KTH380-08适用于水暖件,KTH350-10适用于阀门、汽车底盘。

金属材料学答案戴起勋(复试)

第一章 1.为什么说钢中的S、P杂质元素在一般情况下总是有害的? 答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。 S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆; P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。 2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点? 答:简单点阵结构和复杂点阵结构 简单点阵结构的特点:硬度较高、熔点较高、稳定性较好; 复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。 3.简述合金钢中碳化物形成规律。 答:①当r C/r M>0.59时,形成复杂点阵结构;当r C/r M<0.59时,形成简单点阵结构; ②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。 ③N M/N C比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。 4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么? 答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。 S点左移意味着_____减小,E点左移意味着出现_______降低。 (左下方;左上方)(共析碳量;莱氏体的C量) 5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。 答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。优先形成碳化物,余量溶入基体。 淬火态:合金元素的分布与淬火工艺有关。溶入A体的因素淬火后存在于M、B中或残余A 中,未溶者仍在K中。 回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。 6.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处? 答:Ti、Nb、V等强碳化物形成元素(好处):能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。 7.哪些合金元素能显著提高钢的淬透性?提高钢的淬透性有何作用? 答:在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni 等。 作用:一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。 8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用? 答:提高回火稳定性的合金元素:Cr、Mn 、Ni、Mo、W、V、Si 作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。 9.第一类回火脆性和第二类回火脆性是在什么条件下产生的?如何减轻和消除? 答:第一类回火脆性: 脆性特征:①不可逆;②与回火后冷速无关;③断口为晶界脆断。

相关文档
相关文档 最新文档