文档库 最新最全的文档下载
当前位置:文档库 › Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases

Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases

Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases
Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases

Myogenin and Class II HDACs

Control Neurogenic Muscle Atrophy

by Inducing E3Ubiquitin Ligases

Viviana Moresi,1Andrew H.Williams,1Eric Meadows,4Jesse M.Flynn,4Matthew J.Potthoff,1John McAnally,1 John M.Shelton,2Johannes Backs,1,5William H.Klein,4James A.Richardson,1,3Rhonda Bassel-Duby,1

and Eric N.Olson1,*

1Department of Molecular Biology

2Department of Internal Medicine

3Department of Pathology

University of Texas Southwestern Medical Center,Dallas,TX75390,USA

4Department of Biochemistry and Molecular Biology,University of Texas MD Anderson Cancer Center,Houston,TX77030,USA 5Present address:Department of Cardiology,University of Heidelberg,69117Heidelberg,Germany

*Correspondence:eric.olson@https://www.wendangku.net/doc/2b1193670.html,

DOI10.1016/j.cell.2010.09.004

SUMMARY

Maintenance of skeletal muscle structure and func-tion requires innervation by motor neurons,such that denervation causes muscle atrophy.We show that myogenin,an essential regulator of muscle development,controls neurogenic atrophy.Myoge-nin is upregulated in skeletal muscle following dener-vation and regulates expression of the E3ubiquitin ligases MuRF1and atrogin-1,which promote muscle proteolysis and atrophy.Deletion of myogenin from adult mice diminishes expression of MuRF1and atrogin-1in denervated muscle and confers resis-tance to atrophy.Mice lacking histone deacetylases (HDACs)4and5in skeletal muscle fail to upregulate myogenin and also preserve muscle mass following denervation.Conversely,forced expression of myogenin in skeletal muscle of HDAC mutant mice restores muscle atrophy following denervation. Thus,myogenin plays a dual role as both a regulator of muscle development and an inducer of neurogenic atrophy.These?ndings reveal a speci?c pathway for muscle wasting and potential therapeutic targets for this disorder.

INTRODUCTION

Maintenance of muscle mass depends on a balance between protein synthesis and degradation.Innervation of skeletal muscle?bers by motor neurons is essential for maintenance of muscle size,structure,and function.Numerous disorders, including amyotrophic lateral sclerosis(ALS),Guillain-Barre′syndrome,polio,and polyneuropathy,disrupt the nerve supply to muscle,causing debilitating loss of muscle mass(referred to as neurogenic atrophy)and eventual paralysis.

Loss of the nerve supply to muscle?bers results in muscle atrophy mainly through excessive ubiquitin-mediated proteo-lysis via the proteasome pathway(Beehler et al.,2006).Other pathologic states and systemic disorders,including cancer, diabetes,fasting,sepsis,and disuse,also cause muscle atrophy through ubiquitin-dependent proteolysis(Attaix et al.,2008; Attaix et al.,2005;Medina et al.,1995;Tawa et al.,1997).The muscle-speci?c E3ubiquitin ligases MuRF1(also called Trim63)and atrogin-1(also called MAFbx or Fbxo32)are upregulated during muscle atrophy and appear to represent?nal common mediators of this process(Bodine et al.,2001;Clarke et al.,2007;Gomes et al.,2001;Kedar et al.,2004;Lecker et al.,2004;Li et al.,2004;Li et al.,2007;Willis et al.,2009). However,the precise molecular mechanisms and signaling pathways that control the expression of these key regulators of muscle protein turnover have not been fully de?ned and it remains unclear whether all types of atrophic signals control these E3ubiquitin ligase genes through the same or different mechanisms.Further understanding of the molecular pathways that regulate muscle mass is a prerequisite for the development of novel therapeutics to ameliorate muscle-wasting disorders. Myogenin is a bHLH transcription factor essential for skeletal muscle development(Hasty et al.,1993;Nabeshima et al., 1993).After birth,myogenin expression is downregulated in skeletal muscle but is reinduced in response to denervation (Merlie et al.,1994;Tang et al.,2008;Williams et al.,2009). Upregulation of myogenin in denervated skeletal muscle promotes the expression of acetylcholine receptors and other components of the neuromuscular synapse(Merlie et al.,1994; Tang and Goldman,2006;Williams et al.,2009).However,it has not been possible to address the potential involvement of myogenin in neurogenic atrophy because myogenin null mice die at birth due to failure in skeletal muscle differentiation(Hasty et al.,1993;Nabeshima et al.,1993).

Histone acetylation has been implicated in denervation-dependent changes in skeletal muscle gene expression,and histone deacetylase(HDAC)inhibitors block the expression of Cell143,35–45,October1,2010a2010Elsevier Inc.35

myogenin in response to denervation(Tang and Goldman,2006). In this regard,the class IIa HDACs,HDAC4and HDAC5,which act as transcriptional repressors(Haberland et al.,2009;McKin-sey et al.,2000;Potthoff et al.,2007),are upregulated in skeletal muscle upon denervation and repress the expression of Dach2, a negative regulator of myogenin(Cohen et al.,2007;Tang et al., 2008).

To investigate the potential involvement of myogenin,HDAC4, and HDAC5in neurogenic atrophy,we performed denervation experiments in mutant mice in which these transcriptional regulators were deleted in adult skeletal muscle.We show that adult mice lacking myogenin fail to upregulate the E3ubiq-uitin ligases MuRF1and atrogin-1following denervation and are resistant to neurogenic atrophy.We demonstrate that myo-genin binds and activates the promoter regions of the MuRF1 and atrogin-1genes,in vitro and in vivo.Similar to adult mice lacking myogenin,mice lacking Hdac4and Hdac5in skeletal muscle do not upregulate myogenin following denervation and are resistant to muscle atrophy.Conversely,overexpression of myogenin in skeletal muscle is suf?cient to upregulate the expression of MuRF1and atrogin-1and promote neurogenic atrophy in mice lacking Hdac4and Hdac5.These?ndings reveal a key role of myogenin and class IIa HDACs as mediators of neurogenic atrophy and potential therapeutic targets to treat this disorder.

RESULTS

Adult Mice Lacking Myogenin Are Resistant

to Muscle Atrophy upon Denervation

To bypass the requirement of myogenin for skeletal muscle development and investigate its functions in muscle of adult mice,we used a conditional myogenin null allele(Knapp et al., 2006),which could be deleted in adult muscle with a tamox-ifen-regulated Cre recombinase transgene(Hayashi and McMa-hon,2002;Knapp et al.,2006).Tamoxifen was administered to mice at2months of age,and89%deletion of the conditional myogenin allele occurred as measured by PCR genotyping from genomic DNA1week after tamoxifen injection(see Figure S1available online).Hereafter,we refer to these mice with deletion of myogenin during adulthood as Myogà/àmice. To examine the role of myogenin in denervated skeletal muscle,the sciatic nerve was severed one month following tamoxifen administration,and muscle atrophy was assessed 14days later by weighing denervated and contralateral tibialis anterior(TA)muscles.Wild-type(WT)denervated TA showed approximately a40%decrease in weight following denervation in comparison to the contralateral TA(Figure1A).In contrast, denervated TA from Myogà/àmice showed a minimal decrease in muscle weight($20%)compared to the contralateral TA(Figure1A),suggesting that Myogà/àmice were partially resistant to muscle atrophy.Because we deleted myogenin in adult mice,muscle development and growth occurred normally prior to tamoxifen administration.As expected,the muscle weights of the nondenervated contralateral TA in Myogà/àand WT mice were similar(WT TA=37.82±0.87mg;Myogà/àTA=36.27±0.54mg;t test=0.19).Comparable resistance to atrophy was observed in the gastrocnemius and plantaris(GP) weight of Myogà/àmice(Figure1A).

Immunostaining for laminin of TA cross-sections clearly delin-eated a decrease of muscle?ber size in the WT denervated TA in comparison to the contralateral muscle,indicative of muscle atrophy(Figure1B).In contrast,the decrease in?ber size was less evident in the Myogà/àdenervated TA(Figure1B).Morpho-metric analysis of TA cross-sections highlighted a signi?cant difference in myo?ber size between WT and Myogà/àmuscles following denervation,con?rming the latter were resistant to muscle atrophy(Figure1C).

As expected,seven days after denervation,MuRF1and atrogin-1expression was dramatically upregulated in the GP of denervated WT mice(Figure1D).Remarkably,this upregulation was signi?cantly reduced in Myogà/àdenervated GP(Figure1D), suggesting that the lack of upregulation of MuRF1and atrogin-1 in denervated Myogà/àmuscles was responsible for resistance to atrophy.Deletion of myogenin mRNA from adult Myogà/àmuscle was con?rmed by real-time PCR(Figure1D).Of note, expression of MyoD(Myod1),another bHLH myogenic regula-tory factor(Davis et al.,1987),was highly upregulated in both the contralateral and denervated GP of the Myogà/àmice,seven days after denervation(Figure1D).These data show that myoge-nin does not regulate Myod1expression following denervation. The dramatic upregulation of Myod1following denervation of Myogà/àmice,which are resistant to atrophy,also argues against a major role of Myod1in promoting neurogenic atrophy. Accordingly,Myod1null mice are not resistant to muscle atrophy following denervation(Jason O’Rourke and E.Olson,unpub-lished data).

Denervation is known to affect skeletal myo?ber composition (Herbison et al.,1979;Midrio et al.,1992;Nwoye et al.,1982; Patterson et al.,2006;Sandri et al.,2006;Sato et al.,2009). To determine whether the resistance to muscle atrophy ob-served in mice lacking myogenin was due to differences in ?ber type composition,we performed?ber type analysis of soleus muscles2weeks after denervation.Our?ndings re-vealed no difference in?ber type composition between WT and Myogà/àmice(Figure S2).These?ndings suggest that myogenin,which is upregulated following denervation,is required for maximal induction of E3ubiquitin ligase genes and neurogenic atrophy.

We next tested whether myogenin was necessary for medi-ating other forms of atrophy,such as occurs in response to fasting.As shown in Figure1E,the GP muscles of WT and Myogà/àmice displayed comparable loss in mass following a 48hr fast.We observed the upregulation of MuRF1and atrogin-1upon fasting in both WT and Myogà/àmice and vali-dated the deletion of myogenin in Myogà/àmice(Figure1F). These data clearly demonstrate that myogenin is not required for starvation atrophy,but rather is a speci?c mediator of neurogenic atrophy.

Myogenin Activates MuRF1and Atrogin-1Transcription Because upregulation of MuRF1and atrogin-1was impaired in Myogà/àmice,we analyzed the promoter regions of the MuRF1and atrogin-1genes for E boxes(CANNTG)that might confer sensitivity to myogenin.Indeed,three E boxes are located

36Cell143,35–45,October1,2010a2010Elsevier Inc.

in the promoter of the MuRF1gene,E1(à143bp),E2(à66bp),and E3(à44bp),and one conserved E box is located 79bp upstream of the atrogin-1gene (Figure S3A).The E boxes upstream of MuRF1are contained in a genomic region near the binding site for FoxO transcription factors (Waddell et al.,2008),but several kilobases away from a region shown to be regulated by NF k B (Cai et al.,2004).The E box upstream of atro-gin-1is embedded in a region containing multiple FoxO-binding sites (Sandri et al.,2004).

To con?rm the binding of myogenin to the MuRF1and atrogin-1promoters,we performed chromatin immunoprecipitation (ChIP)assays using differentiated C2C12myotubes,as

Myogenin

Figure 1.Adult Mice Lacking Myogenin Are Resistant to Muscle Atrophy upon Denervation

(A)Percentage of TA or GP muscle weight of WT and Myog à/àmice 14days after denervation,expressed relative to contralateral muscle.*p <0.05versus WT.**p <0.005versus WT.n =4for each sample.Data are represented as mean ±standard error of the mean (SEM).

(B)Immunostaining for laminin of contralateral and denervated TA of WT and Myog à/àmice,14days after denervation.Scale bar =20microns.

(C)Morphometric analysis of contralateral and denervated TA of WT and Myog à/àmice,14days after denervation.Values indicate the mean of cross-sectional area of denervated TA ?bers as a percentage of the contralateral ?bers ±SEM.**p <0.005versus WT.n =3cross-sections.

(D)Expression of MuRF1,atrogin-1,Myogenin and Myod1in contralateral (à)and denervated (+)GP of WT and Myog à/àmice,7days after denerva-tion,detected by real-time PCR.The values are normalized to WT contralateral GP.Data are rep-resented as mean ±SEM.*p <0.05;**p <0.005versus WT.n =4for each sample.

(E)Weight of GP muscle of WT and Myog à/àmice fed (à)or fasted (+)for 48hr.Data are represented as mean ±SEM.**p <0.005versus fed GP.NS =not signi?cant.n =6for each sample.

(F)Expression of MuRF1,atrogin-1and Myogenin in fed (à)and 48hr fasted (+)GP of WT and Myog à/àmice,detected by real-time PCR.The values are normalized to WT fed GP.Data are represented as mean ±SEM.z p <0.005versus WT.**p <0.005versus fed.NS =not signi?cant.n =6for each sample.

See also Figure S1and Figure S2.

expression correlates with MuRF1and atrogin-1expression during muscle cell differentiation (Figure S3B)(Spencer et al.,2000).After six days of differentia-tion,chromatin from C2C12myotubes was immunoprecipitated with antibodies against myogenin or immunoglobulin G (IgG)as a https://www.wendangku.net/doc/2b1193670.html,ing primers ?anking the E boxes in the MuRF1and atrogin-1promoters,DNA was ampli?ed by PCR (Figure 2A and Figure S3C).Clear enrich-ment of the corresponding promoter sequences in the DNA immunoprecipitated with antibodies against myogenin com-pared to IgG was indicative of myogenin binding to the endoge-nous MuRF1and atrogin-1promoters.

We validated in vivo binding of myogenin to the endogenous MuRF1and atrogin-1promoters by performing ChIP assays using sonicated chromatin extracts from TA muscles harvested from mice at 3days and 7days after denervation (Figure 2B and Figure S3D).Direct binding of myogenin as a heterodimer with E12proteins to the E boxes E2and E3in the MuRF1promoter and to the E box in the atrogin-1promoter was shown by gel mobility shift assays (Figure S3E).

Cell 143,35–45,October 1,2010a2010Elsevier Inc.37

We further tested the ability of myogenin to activate the MuRF1and atrogin-1promoter regions in vitro by constructing luciferase reporter plasmids containing the 600bp genomic DNA fragment upstream of the MuRF1gene (MuRF1-Luc)or 712bp upstream of the atrogin-1gene (atrogin -1-Luc)upstream of a luciferase reporter.Mutant versions of these promoter regions were generated by mutating the myogenin-binding sites in the promoters.By transfecting C2C12cells,activation of lucif-erase was detected in response to myogenin using the wild-type promoters (Figure 2C).This activation was blunted by mutation of the E boxes in the promoters (Figure 2C),indicating that the MuRF1and atrogin-1promoter regions contain responsive myo-genin-binding sites.Similar results were obtained in transfected COS1cells (Figure S3

F).

Figure 2.Myogenin Directly Regulates

MuRF1and Atrogin-1

(A)ChIP assay performed in C2C12myotubes showing myogenin binding to MuRF1and atro-gin-1promoters.Chromatin was immunoprecipi-tated with antibodies against immunogloblulin G (IgG),or myogenin.Primers ?anking the E boxes on the MuRF1and atrogin-1promoters were used for amplifying DNA by real-time PCR.Values indicate the mean of fold enrichment over chro-matin immunoprecipitated with antibodies against IgG ±SEM.n =3.

(B)ChIP assays performed using denervated TA muscle at 3and 7days following denervation show myogenin binding to the MuRF1and atrogin-1promoters.Values indicate the fold enrichment over chromatin immunoprecipitated with antibodies against IgG.

(C)Luciferase assays performed on cell extracts of C2C12myoblasts transfected with luciferase reporter plasmids ligated to the WT (MuRF1-Luc)(atrogin-1-Luc),or the mutant constructs of MuRF1and atrogin-1genes,with myogenin (+)or empty (à)expression plasmid.Data are repre-sented as mean ±SEM.

(D)b -galactosidase staining of contralateral and denervated GP muscles isolated from transgenic mice containing a lacZ transgene under the control of the WT (MuRF1-WT-lacZ)(atrogin-1-WT-lacZ)or the mutant (MuRF1-Emut-lacZ)(atrogin-1-Emut-lacZ)constructs of the MuRF1or atrogin-1promoters.Upper panels show whole muscles.Lower panels show muscle sections.Scale bar =20microns.See also Figure S3.

To test the responsiveness of the E3ligase gene promoters to atrophic signals in vivo,transgenic mice were generated harboring the same upstream regions of the genes ligated to a lacZ reporter (Kothary et al.,1989;Williams et al.,2009).Transgenic mice with the mutated versions of these promoter regions were also generated (MuRF1-Emut-lacZ and atrogin-1-Emut-lacZ).Seven days following denervation,b -galactosidase

expression controlled by the wild-type promoters was upregu-lated in denervated GP muscle ?bers compared to the inner-vated contralateral leg muscles (Figure 2D).The expression of lacZ in only a subset of myo?bers likely re?ects the mosaicism of F0transgenic mice and,perhaps,variable upregulation of the E3ubiquitin ligase genes in different myo?bers in response to denervation (Moriscot et al.,2010).In contrast to the obvious upregulation of the wild-type transgenes following denervation,mutation of the E boxes in these promoters abrogated b -galac-tosidase expression,revealing an essential role for myogenin in denervation-dependent activation of MuRF1and atrogin-1in vivo (Figure 2D).These results show that the MuRF1and atrogin-1genes are targets of myogenin transcriptional activa-tion in response to denervation.

38Cell 143,35–45,October 1,2010a2010Elsevier Inc.

Mice Null for Class II HDACs Are Resistant to Muscle Atrophy upon Denervation

Previous studies showed that the class II HDACs,HDAC4and HDAC5,are upregulated in skeletal muscle in response to dener-vation (Bodine et al.,2001;Cohen et al.,2007;Tang et al.,2008)and are responsible for the repression of Dach2,a negative regu-lator of Myogenin (Cohen et al.,2007;Tang et al.,2008).In light of the role of myogenin in promoting muscle atrophy,we hypothe-sized that mice lacking HDAC4or HDAC5in skeletal muscle would be resistant to atrophy following denervation owing to a block of Myogenin expression via Dach2.Mice with global dele-tion of Hdac4display lethal bone abnormalities (Vega et al.,2004),so we deleted Hdac4speci?cally in skeletal muscle using a condi-tional allele and a myogenin-Cre transgene (Hdac4?/?;myog-Cre;hereafter referred to as Hdac4sk KO)(Potthoff et al.,2007).The absence of HDAC4protein upon Hdac4gene deletion was con?rmed by western blot analysis (Figure S4).Since mice null for Hdac5do not display a phenotype (Chang et al.,2004),we used Hdac5à/àmice (hereafter referred to as Hdac5KO)for these experiments.Fourteen days following denervation,WT dener-vated TA showed approximately a 50%decrease in weight in comparison to the contralateral TA (Figure 3A).In contrast,dener-vated TA muscles from Hdac4sk KO or Hdac5KO mice showed a decrease of about 30%in muscle weight in comparison to the contralateral muscles (Figure 3A),suggesting that these mice were partially resistant to muscle atrophy.The weight of the contralateral TA was similar among the mice (data not shown).HDAC4and HDAC5display functional redundancy in different tissues and in a variety of developmental and pathological settings (Backs et al.,2008;Haberland et al.,2009;Potthoff et al.,2007),so we generated double knockout (dKO)mice by crossing Hdac4sk KO with Hdac5KO mice to further investigate the role of HDAC4and HDAC5in skeletal muscle atrophy.The dKO mice were viable and fertile and showed no obvious phenotype under normal conditions (data not shown).

Strikingly,

Figure 3.HDAC4and HDAC5Redundantly Regulate Skeletal Muscle Atrophy

(A)Percentage of TA muscle weight of mice of the indicated genotype 14days after denervation,expressed relative to the contralateral muscle.Data are represented as mean ±SEM.**p <0.005versus WT.n =5for each sample.(B)Immunostaining for laminin in contralateral and denervated TA of mice of the indicated genotype,14days after denervation.Scale bar =20microns.(C)Morphometric analysis of contralateral and denervated TA of indicated genotype,14days after denervation.Values indicate the mean of cross-sectional area of denervated TA ?bers as a percentage of the contralateral ?bers ±SEM.*p <0.05and **p <0.005versus WT.n =3cross-sections.

See also Figure S4and Figure S5.

fourteen days after denervation,the TA of denervated dKO mice showed a decrease in weight of only $10%compared to the contralateral TA

(Figure 3A),revealing that the dKO mice were more resistant to muscle atrophy compared to Hdac4sk KO or Hdac5KO mice.The weight of the contralateral TA was comparable among the mice (data not shown).Similar differences were also observed among GP muscles between WT and dKO mice (Figure S5).Immunostaining for laminin 14days after denervation clearly demonstrated that the denervated TA ?bers from Hdac4sk KO and Hdac5KO mice were larger than the denervated WT ?bers and that the denervated TA from dKO mice had a minimal decrease in muscle ?ber size compared to the contralateral dKO TA (Figure 3B).Morphometric analysis on TA sections revealed that,although WT mice showed a reduction of $70%in the myo-?ber cross-sectional area between denervated and contralateral TA,Hdac4sk KO denervated TA displayed $30%reduction in myo?ber cross-sectional area.Hdac5KO denervated TA also showed a substantial reduction in myo?ber area ($50%)when compared to the contralateral TA,whereas in dKO mice this reduction was only $25%(Figure 3C).From these results,we conclude that HDAC4and HDAC5redundantly regulate skeletal muscle atrophy and mice lacking these HDACs in skeletal muscle are resistant to muscle atrophy upon denervation.

Aberrant Transcriptional Responses to Denervation in HDAC Mutant Mice

We compared the transcriptional responses to denervation in WT and dKO mice by real-time PCR analysis of denervation-responsive transcripts.As reported previously (Cohen et al.,2007;Tang et al.,2008),Dach2expression was dramatically downregulated upon denervation in WT mice.However,Dach2was only modestly downregulated in the dKO mice (Figure 4).Consistent with the repressive in?uence of Dach2on Myogenin expression,in WT mice,Myogenin and Myod1were strongly upregulated three days after denervation,as were MuRF1and atrogin-1(Figure 4).In contrast,neither Myogenin nor Myod1transcripts were upregulated following denervation of dKO

Cell 143,35–45,October 1,2010a2010Elsevier Inc.39

mice (Figure 4).The upregulation of MuRF1and atrogin-1was also completely abolished in dKO denervated GP (Figure 4),sug-gesting that the lack of upregulation of MuRF1and atrogin-1in denervated dKO muscles was in part responsible for resistance to atrophy.

Myogenin Overexpression in dKO Muscle Restores Neurogenic Atrophy

To examine whether forced expression of myogenin was suf?-cient to overcome the resistance of the dKO TA muscle to dener-vation-induced atrophy,we electroporated the TA of dKO mice with either a myogenin expression plasmid or an empty expres-sion plasmid.Gene delivery ef?ciency was monitored by coelec-troporation with a GFP vector (Dona et al.,2003;Rana et al.,2004).Three days after electroporation,which is suf?cient time for the electroporated plasmids to be expressed in skeletal muscle (Dona et al.,2003),we denervated one leg of the dKO mice by cutting the sciatic nerve;the TA muscles were harvested 10days after denervation.As seen in Figure 5A,laminin immu-nostaining of dKO TA muscles clearly revealed a decrease

in

Figure 4.dKO Mice Show Altered Gene Expression upon Denervation

Expression of the indicated mRNAs was detected by real-time PCR in WT and dKO denervated GP and normalized to the expression in the contralateral muscle.Data are represented as mean ±SEM.**p <0.005versus dKO.n =6for each time

point.

Figure 5.Ectopic Expression of Myogenin Induces Muscle Atrophy in dKO Mice Following Denervation

(A)Immunostaining for laminin (red)of cross-section of contralateral and denervated dKO TA electroporated with GFP expression plasmid and control plasmid (HDAC4/5dKO Control)or GFP plasmid and myogenin (HDAC4/5dKO +Myogenin),10days after denervation.Histology shows that the dKO denervated GFP-positive ?bers coelectroporated with myogenin are smaller than denervated GFP-positive ?bers coelectroporated with control plasmid.Scale bar =20microns.

(B)Morphometric analysis performed on GFP-positive ?bers of contralateral (à)and denervated (+)dKO TA muscles electroporated with GFP expression plasmid and control plasmid (Control)or GFP plasmid and myogenin (Myogenin),10days after denervation.Values indicate the mean of cross-sectional area of GFP-positive muscle ?bers as a percentage of the contralateral control ?bers ±SEM.*p <0.05versus control.n =7for each condition.

(C)Expression of Myogenin ,MuRF1,and atrogin-1in contralateral (à)and denervated (+)dKO TA muscles electroporated with GFP plasmid and a control plasmid (Control)or GFP plasmid and myogenin (Myogenin),10days after denervation.Values are normalized to the expression in the contralateral control muscles.Data are represented as mean ±SEM.*p <0.05versus control.n =3for each sample.See also Figure S6.

40Cell 143,35–45,October 1,2010a2010Elsevier Inc.

myo?ber size in the denervated TA of dKO mice overexpressing myogenin compared to the denervated dKO TA electroporated with the control vector.Morphometric analysis performed on GFP-positive myo?bers showed a signi?cant decrease in the size of myo?bers of the denervated dKO TA electroporated with myogenin versus control vector (Figure 5B).Real-time PCR analysis validated the overexpression of Myogenin in elec-troporated TA muscle of dKO mice and showed an upregulation of the expression of MuRF1and atrogin-1(Figure 5C),con?rming the myogenin-dependent regulation of the E3ubiquitin ligases.The potential role of myogenin in driving muscle atrophy was further investigated by overexpressing myogenin in the TA muscle of WT mice.Morphometric analysis performed on GFP-positive myo?bers showed no signi?cant size difference between myo?bers electroporated with control or myogenin expression plasmid (Figures S6A and S6B).Real-time PCR anal-ysis validated the overexpression of myogenin in electroporated TA muscle of WT mice and showed an upregulation of the expression of MuRF1and atrogin-1(Figure S6C).Taken together,these ?ndings demonstrate that overexpression of myo-genin is necessary but not suf?cient to induce muscle atrophy.DISCUSSION

The results of this study demonstrate a key role of myogenin,well known for its function as an essential regulator of myogenesis,in controlling neurogenic atrophy.Myogenin promotes muscle atrophy upon denervation by directly activating the expression of MuRF1and atrogin-1,which encode E3ubiquitin ligases responsible for muscle proteolysis.Upregulation of Myogenin in response to denervation is controlled by a transcriptional pathway in which HDAC4and 5are initially induced and,in turn,repress the expression of Dach2(Tang and Goldman,2006),a negative regulator of Myogenin (Figure 6).

It is generally accepted that muscle atrophy occurs when proteolysis exceeds protein synthesis (Eley and Tisdale,2007;Glass,2003;Mammucari et al.,2008;Sandri et al.,2004).Up-regulation of myogenin in response to denervation has been proposed as an adaptive mechanism to prevent muscle

atrophy

Figure 6.Model for Neurogenic Atrophy

Denervation of skeletal muscle results in the upregulation of HDAC4and HDAC5,which represses Dach2,a negative regulator of myogenin,resulting in Myogenin expression.Myogenin activates the expression of MuRF1and atro-gin-1,two E3ubiquitin ligases that participate in the proteolytic pathway resulting in muscle atrophy.Myoge-nin also regulates miR-206,which establishes a negative feedback loop to repress HDAC4expression and promote reinnervation.

(Hyatt et al.,2003;Ishido et al.,2004).On the contrary,we demonstrate here that myogenin directly regulates MuRF1and atrogin-1,which promote the loss of muscle mass in response to denervation,revealing a mechanistic basis for neurogenic muscle atrophy and a previously unrecognized function for myogenin in this pathological process.

Recently,we showed that microRNA (miR)206is also upregu-lated in denervated skeletal muscle via a series of conserved E boxes that bind myogenin (Williams et al.,2009).miR-206,in turn,represses expression of HDAC4and controls a retrograde signaling pathway that promotes reinnervation of denervated myo?bers (Figure 6).Thus,skeletal muscle responds to denerva-tion by activating an elaborate network of transcriptional and epigenetic pathways,involving positive and negative feedback loops,which modulate nerve-muscle interactions and muscle growth and function (Figure 6).

Dual Roles of Myogenin in Muscle Development and Atrophy

Our ?ndings reveal the gene regulatory circuitry for muscle development is redeployed in adulthood to control aspects of muscle disease and stress responsiveness.Thus,myogenin can exert opposing effects on skeletal muscle—either promoting differentiation or degradation—depending on the developmental or pathological setting.These contrasting activities of myogenin likely re?ect differential modulation by signaling pathways and cofactors that enable myogenin to regulate distinct sets of target genes.

Similar to myogenin,Dach2is a transcription factor involved in both muscle development and muscle atrophy.Dach2is expressed in the developing somites prior to the onset of myogenesis and has been shown to regulate myogenic speci?-cation by interacting with the Eya2and Six1transcription factors (Heanue et al.,1999;Kardon et al.,2002).Indeed,Dach proteins are required for activation of Six1targets (Li et al.,2003),sug-gesting a possible role of Dach proteins in the Six1-mediated regulation of muscle development (Laclef et al.,2003)or ?ber type speci?cation (Grifone et al.,2004).Following denervation,Dach2plays a role in connecting neuronal activity with myogenin expression (Cohen et al.,2007;Tang and Goldman,2006;Tang et al.,2008).

The ?nding that forced expression of myogenin in HDAC4/5mutant mice is suf?cient to restore muscle atrophy following denervation indicates that myogenin is a key downstream mediator of the proatrophic functions of these HDACs.It is

Cell 143,35–45,October 1,2010a2010Elsevier Inc.41

noteworthy,however,that the blockade to muscle atrophy and E3ligase expression imposed by the combined deletion of HDACs4and5is more pronounced than in Myogà/àmice. This suggests the existence of additional downstream targets of these HDACs that promote neurogenic atrophy.We also note that forced overexpression of myogenin in innervated skel-etal muscle was not suf?cient to induce muscle atrophy (Figure S6)(Hughes et al.,1999).These?ndings indicate that myogenin is necessary,but not suf?cient,to regulate the genetic program for muscle atrophy and imply the existence of additional denervation-dependent signals that potentiate the ability of myogenin to promote atrophy.

MyoD,like myogenin,is upregulated in response to denerva-tion(Figure4and(Charge et al.,2008;Hyatt et al.,2003;Ishido et al.,2004).In Myogà/àmice,Myod1expression is dramatically elevated compared to WT muscles and is super-induced in response to denervation(Figure1D).The observation that Myod1null mice are not resistant to muscle atrophy following denervation(Jason O’Rourke and E.Olson,unpublished data) demonstrates a negligible role for Myod1in neurogenic atrophy and points to myogenin as the major myogenic bHLH factor involved in this process.This is consistent with the?nding that, although MyoD and myogenin bind the same DNA consensus sequences,they regulate distinct sets of target genes(Blais et al.,2005;Cao et al.,2006).

A Myogenin-Dependent Transcriptional Pathway

for Muscle Atrophy

We show,both in vivo using denervated muscles and in vitro using differentiated C2C12cells,that myogenin binds the endogenous MuRF1and atrogin-1promoters.We observed a decrease in myogenin expression and binding to these E3 ubiquitin ligase promoters between days3and day7after dener-vation(Figure2B and Figure4),suggesting an especially impor-tant role of myogenin in triggering the transcriptional cascade leading to atrophy.Consistent with our?nding that myogenin regulates MuRF1and atrogin-1expression,these E3ubiquitin ligases are upregulated upon C2C12differentiation(Figure S3B) (Spencer et al.,2000),a process known to be regulated by myogenin.Although it is well established that MuRF1and atro-gin-1function in driving skeletal muscle atrophy(Bodine et al., 2001;Clarke et al.,2007;Gomes et al.,2001;Kedar et al., 2004;Lecker et al.,2004;Li et al.,2004;Li et al.,2007;Willis et al.,2009),their potential roles in myogenesis have not been explored.Considering the important role of ubiquitination in regulating proteolysis,endocytosis,signal transduction(Hicke, 2001),and transcription(Salghetti et al.,2001),it will be inter-esting to investigate the potential involvement of MuRF1and atrogin-1in muscle development and regeneration. Therapeutic Implications

Numerous disorders,including motor neuron disease,fasting, cancer cachexia,and sarcopenia,cause muscle atrophy and the E3ubiquitin ligase genes are thought to function as?nal common mediators of different atrophic stimuli.Myogenin is upregulated upon denervation and spinal cord isolation(Hyatt et al.,2003),but is not induced in response to other forms of atrophy,such as fasting,cancer cachexia,or diabetes(Lecker et al.,2004;Sacheck et al.,2007).In this regard,we have found that Myogà/àmice display a normal loss of skeletal muscle mass in response to fasting,further demonstrating that myogenin is dedicated to neurogenic atrophy and sensing the state of motor innervation.The fact that MuRF1and atrogin-1are upregulated in other atrophy conditions in the absence of myogenin upregu-lation(Lecker et al.,2004;Sacheck et al.,2007)strongly suggests that other transcription factors known to regulate the expression of these ubiquitin ligases,such as the FoxO family or NF k B(Bodine et al.,2001;Sandri et al.,2004;Waddell et al.,2008),play a role in driving muscle atrophy in a myoge-nin-independent manner.

Our?nding that myogenin,in addition to HDAC4and HDAC5, acts as a regulator of neurogenic muscle atrophy through the activation of E3ubiquitin ligases provides a new perspective on potential therapies for muscle wasting disorders.Class II HDACs are regulated by a variety of calcium-dependent signaling pathways that control their nuclear export through signal-dependent phosphorylation(Backs et al.,2008;McKinsey et al.,2000).In a pathological condition such as muscle denerva-tion,HDAC4and HDAC5are upregulated,shuttle into the myonuclei adjacent to neuromuscular junctions(Cohen et al., 2007),and are critical regulators of muscle atrophy.Modulation of the activity of class II HDACs,through pharmacologic inhibi-tion compatible with the maintenance of steady-state transcrip-tion of genes regulated by class II HDACs,may represent a new strategy for ameliorating muscle atrophy following denervation. EXPERIMENTAL PROCEDURES

Mouse Lines

Mice used in this study are described in the Extended Experimental Proce-dures.

Denervation

In anaesthetized adult mice,the sciatic nerve of the left leg was cut and a3mm piece was excised.The right leg remained innervated and was used as control. Mice were sacri?ced after3,7,10,or14days.

DNA Delivery by Electroporation

For gene delivery by electroporation,adult dKO mice were anesthetized;TA muscles exposed,injected with30m g of DNA in a solution of5%mannitol, and immediately subjected to electroporation.Electroporation was performed by delivering10electric pulses of20V each(?ve with one polarity followed by ?ve with inverted polarity).A pair of335mm Genepaddle electrodes(BTX, San Diego,CA)placed on opposite sides of the muscle was used to deliver the electric pulses.pCMV-Snap25-GFP(provided by Tullio Pozzan,University of Padua,Padua,Italy)was used in a1:1ratio with pcDNA3.1(Invitrogen)or EMSV-myogenin plasmid(Rana et al.,2004).

Immunohistochemistry

Cryosections of TA or soleus were?xed in4%paraformaldehyde in PBS for 10min at4 C and washed in PBS.After incubating30min with0.1% Triton X-100in PBS,the samples were?xed for1hr in15%goat serum in PBS supplemented with M.O.M.Mouse IgG blocking reagent(Vector Labora-tories)(BB)at room temperature.Primary antibodies were incubated overnight at4 C(1:100dilution of rabbit polyclonal anti-laminin antibody;1:16000 anti-type I myosin heavy chain(MHC)(Sigma).Primary antibodies were detected by Alexa Fluor-488or-555goat anti-rabbit antibody(Invitrogen) diluted1:800in BB.DAB staining(Vector Laboratories)was used on soleus muscle for detecting type I MHC.Soleus muscles were used for metachro-matic ATPase staining as described elsewhere(Ogilvie and Feeback,1990).

42Cell143,35–45,October1,2010a2010Elsevier Inc.

Staining of transgenic lines positive for b-galactosidase was performed on GP muscles,as previously described(Williams et al.,2009).

Morphometric Analysis

Myo?ber area was assessed on TA cryosections using ImageJ software (https://www.wendangku.net/doc/2b1193670.html,/ij/)(NIH).Three H&E-stained cross-sections from three different mice for each genotype were analyzed.Between100and350GFP-positive?bers were analyzed for each electroporated TA muscle.The values are calculated as the percentage of the average of the cross-sectional area of each TA over the average cross-sectional area of the contralateral TA?bers.

RNA Isolation and RT-PCR

Total RNA was isolated from GP muscles using Trizol reagent(Invitrogen) following the manufacturer’s instructions.Three micrograms of RNA was con-verted to cDNA using random primers and Superscript III reverse transcriptase (Invitrogen).Gene expression was assessed using real-time PCR with the ABI PRISM7000sequence detection system and TaqMan or with SYBR green Master Mix reagents(Applied Biosystems).Real-time PCR values were normalized with glyceraldehyde-3-phosphate dehydrogenase(GAPDH).

A list of Taqman probes and Sybr Green primers are available in the Extended Experimental Procedures.

Plasmid Constructs

A list of the plasmids used in this study is available in the Extended Experi-mental Procedures.

Cell Culture

COS cells were grown in DMEM supplemented with10%fetal bovine serum (FBS)and antibiotics(100U/ml penicillin and100m g/ml streptomycin). C2C12myoblasts were grown in DMEM supplemented with20%FBS and antibiotics and differentiated in DMEM supplemented with2%horse serum and antibiotics.

Chromatin Immunoprecipitation Assay

ChIP assays were performed using C2C12myotubes at day six of differentia-tion or using TA muscles three and seven days after denervation with the ChIP assay kit(Upstate)following the manufacturer’s instructions.Chromatin was immunoprecipitated with antibodies against immunogloblulin G(Sigma)or my-ogenin(M-225;Santa Cruz).The sequences of the ChIP primers are available in the Extended Experimental Procedures.

Luciferase assay

C2C12transfections were performed using Lipofectamine2000(Invitrogen)as previously described(Mercer et al.,2005).COS cells were plated and trans-fected12hr later using FuGENE(Roche Applied Science)following the manu-facturer’s instructions.The MuRF1and atrogin-1reporter plasmid cloning strategy is described in the Extended Experimental Procedures.Luciferase assays were performed with the Luciferase Assay kit(Promega)according to the manufacturer’s instructions.

Site-Directed Mutagenesis

Mutations were introduced into E boxes E2and E3of the MuRF1promoter region and in the E box of the atrogin-1promoter by using the QuikChange II Site-Directed Mutagenesis Kit(Stratagene).The same E box mutations as those used in electrophoretic mobility shift assays were introduced within each E box site in the promoters.

Statistical Analysis

Data are presented as mean±standard error of the mean(SEM).Statistical signi?cance was determined using two-tailed t test with a signi?cance level minor of0.05.SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and six?gures and can be found with this article online at doi:10.1016/j.cell. 2010.09.004.

ACKNOWLEDGMENTS

We thank Marco Sandri for scienti?c input,Cheryl Nolen and Svetlana Bezprozvannaya for technical assistance,Jose Cabrera for graphics,and Jennifer Brown for editorial assistance.Work in the laboratory of E.N.O.was supported by grants from the National Institutes of Health and the Robert A.Welch Foundation(grant number I-0025).W.H.K.was supported by a grant from the Muscular Dystrophy Association and the Robert A.Welch Foundation.J.B.was supported by the Deutsche Forschungsgemeinschaft (BA2258/1-1).

Received:April20,2010

Revised:June1,2010

Accepted:August20,2010

Published:September30,2010

REFERENCES

Attaix,D.,Combaret,L.,Bechet,D.,and Taillandier,D.(2008).Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia.Curr.Opin. Support.Palliat.Care2,262–266.

Attaix, D.,Ventadour,S.,Codran, A.,Bechet, D.,Taillandier, D.,and Combaret,L.(2005).The ubiquitin-proteasome system and skeletal muscle wasting.Essays Biochem.41,173–186.

Backs,J.,Backs,T.,Bezprozvannaya,S.,McKinsey,T.A.,and Olson,E.N. (2008).Histone deacetylase5acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase4.Mol.Cell. Biol.28,3437–3445.

Beehler, B.C.,Sleph,P.G.,Benmassaoud,L.,and Grover,G.J.(2006). Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation.Exp.Biol.Med.(Maywood)231,335–341.

Blais,A.,Tsikitis,M.,Acosta-Alvear,D.,Sharan,R.,Kluger,Y.,and Dynlacht, B.D.(2005).An initial blueprint for myogenic differentiation.Genes Dev.19, 553–569.

Bodine,S.C.,Latres,E.,Baumhueter,S.,Lai,V.K.,Nunez,L.,Clarke,B.A., Poueymirou,W.T.,Panaro,F.J.,Na,E.,Dharmarajan,K.,et al.(2001).Identi?-cation of ubiquitin ligases required for skeletal muscle atrophy.Science294, 1704–1708.

Cai,D.,Frantz,J.D.,Tawa,N.E.,Jr.,Melendez,P.A.,Oh,B.C.,Lidov,H.G., Hasselgren,P.O.,Frontera,W.R.,Lee,J.,Glass,D.J.,et al.(2004).IKKbeta/ NF-kappaB activation causes severe muscle wasting in mice.Cell119, 285–298.

Cao,Y.,Kumar,R.M.,Penn,B.H.,Berkes,C.A.,Kooperberg,C.,Boyer,L.A., Young,R.A.,and Tapscott,S.J.(2006).Global and gene-speci?c analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J.25,502–511.

Chang,S.,McKinsey,T.A.,Zhang,C.L.,Richardson,J.A.,Hill,J.A.,and Olson, E.N.(2004).Histone deacetylases5and9govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol.Cell.Biol.24,8467–8476.

Charge,S.B.,Brack,A.S.,Bayol,S.A.,and Hughes,S.M.(2008).MyoD-and nerve-dependent maintenance of MyoD expression in mature muscle?bres acts through the DRR/PRR element.BMC Dev.Biol.8,5–18.

Clarke,B.A.,Drujan,D.,Willis,M.S.,Murphy,L.O.,Corpina,R.A.,Burova,E., Rakhilin,S.V.,Stitt,T.N.,Patterson,C.,Latres,E.,et al.(2007).The E3Ligase MuRF1degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle.Cell Metab.6,376–385.

Cell143,35–45,October1,2010a2010Elsevier Inc.43

Cohen,T.J.,Waddell,D.S.,Barrientos,T.,Lu,Z.,Feng,G.,Cox,G.A.,Bodine, S.C.,and Yao,T.P.(2007).The histone deacetylase HDAC4connects neural activity to muscle transcriptional reprogramming.J.Biol.Chem.282,33752–33759.

Davis,R.L.,Weintraub,H.,and Lassar,A.B.(1987).Expression of a single transfected cDNA converts?broblasts to myoblasts.Cell51,987–1000.

Dona,M.,Sandri,M.,Rossini,K.,Dell’Aica,I.,Podhorska-Okolow,M.,and Carraro,U.(2003).Functional in vivo gene transfer into the myo?bers of adult skeletal https://www.wendangku.net/doc/2b1193670.html,mun.312,1132–1138.

Eley,H.L.,and Tisdale,M.J.(2007).Skeletal muscle atrophy,a link between depression of protein synthesis and increase in degradation.J.Biol.Chem. 282,7087–7097.

Glass,D.J.(2003).Molecular mechanisms modulating muscle mass.Trends Mol.Med.9,344–350.

Gomes,M.D.,Lecker,S.H.,Jagoe,R.T.,Navon,A.,and Goldberg,A.L.(2001). Atrogin-1,a muscle-speci?c F-box protein highly expressed during muscle https://www.wendangku.net/doc/2b1193670.html,A98,14440–14445.

Grifone,R.,Laclef,C.,Spitz,F.,Lopez,S.,Demignon,J.,Guidotti,J.E., Kawakami,K.,Xu,P.X.,Kelly,R.,Petrof,B.J.,et al.(2004).Six1and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype.Mol.Cell.Biol.24,6253–6267.

Haberland,M.,Montgomery,R.L.,and Olson,E.N.(2009).The many roles of histone deacetylases in development and physiology:implications for disease and therapy.Nat.Rev.Genet.10,32–42.

Hasty,P.,Bradley,A.,Morris,J.H.,Edmondson,D.G.,Venuti,J.M.,Olson, E.N.,and Klein,W.H.(1993).Muscle de?ciency and neonatal death in mice with a targeted mutation in the myogenin gene.Nature364,501–506.

Hayashi,S.,and McMahon,A.P.(2002).Ef?cient recombination in diverse tissues by a tamoxifen-inducible form of Cre:a tool for temporally regulated gene activation/inactivation in the mouse.Dev.Biol.244,305–318.

Heanue,T.A.,Reshef,R.,Davis,R.J.,Mardon,G.,Oliver,G.,Tomarev,S., Lassar, A.B.,and Tabin, C.J.(1999).Synergistic regulation of vertebrate muscle development by Dach2,Eya2,and Six1,homologs of genes required for Drosophila eye formation.Genes Dev.13,3231–3243.

Herbison,G.J.,Jaweed,M.M.,and Ditunno,J.F.(1979).Muscle atrophy in rats following denervation,casting,in?ammation,and tenotomy.Arch.Phys.Med. Rehabil.60,401–404.

Hicke,L.(2001).A new ticket for entry into budding vesicles-ubiquitin.Cell106, 527–530.

Hughes,S.M.,Chi,M.M.,Lowry,O.H.,and Gundersen,K.(1999).Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice.J.Cell Biol.145,633–642.

Hyatt,J.P.,Roy,R.R.,Baldwin,K.M.,and Edgerton,V.R.(2003).Nerve activity-independent regulation of skeletal muscle atrophy:role of MyoD and myogenin in satellite cells and myonuclei.Am.J.Physiol.Cell Physiol.285, C1161–C1173.

Ishido,M.,Kami,K.,and Masuhara,M.(2004).In vivo expression patterns of MyoD,p21,and Rb proteins in myonuclei and satellite cells of denervated rat skeletal muscle.Am.J.Physiol.Cell Physiol.287,C484–C493.

Kardon,G.,Heanue,T.A.,and Tabin,C.J.(2002).Pax3and Dach2positive regulation in the developing somite.Dev.Dyn.224,350–355.

Kedar,V.,McDonough,H.,Arya,R.,Li,H.H.,Rockman,H.A.,and Patterson, C.(2004).Muscle-speci?c RING?nger1is a bona?de ubiquitin ligase that degrades cardiac troponin https://www.wendangku.net/doc/2b1193670.html,A101,18135–18140.

Knapp,J.R.,Davie,J.K.,Myer,A.,Meadows,E.,Olson,E.N.,and Klein,W.H. (2006).Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size.Development133,601–610.

Kothary,R.,Clapoff,S.,Darling,S.,Perry,M.D.,Moran,L.A.,and Rossant,J. (1989).Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development105,707–https://www.wendangku.net/doc/2b1193670.html,clef,C.,Hamard,G.,Demignon,J.,Souil,E.,Houbron,C.,and Maire,P. (2003).Altered myogenesis in Six1-de?cient mice.Development130,2239–2252.

Lecker,S.H.,Jagoe,R.T.,Gilbert,A.,Gomes,M.,Baracos,V.,Bailey,J.,Price, S.R.,Mitch,W.E.,and Goldberg,A.L.(2004).Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression.FASEB J. 18,39–51.

Li,H.H.,Kedar,V.,Zhang,C.,McDonough,H.,Arya,R.,Wang,D.Z.,and Patterson,C.(2004).Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex.J.Clin.Invest.114,1058–1071.

Li,H.H.,Willis,M.S.,Lockyer,P.,Miller,N.,McDonough,H.,Glass,D.J.,and Patterson,C.(2007).Atrogin-1inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins.J.Clin.Invest. 117,3211–3223.

Li,X.,Oghi,K.A.,Zhang,J.,Krones,A.,Bush,K.T.,Glass,C.K.,Nigam,S.K., Aggarwal,A.K.,Maas,R.,Rose,D.W.,et al.(2003).Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis.Nature426,247–254.

Lu,J.,Webb,R.,Richardson,J.A.,and Olson,E.N.(1999).MyoR:a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of https://www.wendangku.net/doc/2b1193670.html,A19,552–557.

Mammucari,C.,Schiaf?no,S.,and Sandri,M.(2008).Downstream of Akt: FoxO3and mTOR in the regulation of autophagy in skeletal muscle.Autophagy 4,524–526.

McKinsey,T.A.,Zhang,C.L.,Lu,J.,and Olson,E.N.(2000).Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature408,106–111.

Medina,R.,Wing,S.S.,and Goldberg,A.L.(1995).Increase in levels of polyu-biquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy.Biochem.J.307,631–637.

Mercer,S.E.,Ewton,D.Z.,Deng,X.,Lim,S.,Mazur,T.R.,and Friedman,E. (2005).Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts.J.Biol.Chem.280,25788–25801.

Merlie,J.P.,Mudd,J.,Cheng,T.C.,and Olson,E.N.(1994).Myogenin and acetylcholine receptor alpha gene promoters mediate transcriptional regula-tion in response to motor innervation.J.Biol.Chem.269,2461–2467.

Midrio,M.,Danieli-Betto, D.,Megighian, A.,Velussi,C.,Catani,C.,and Carraro,U.(1992).Slow-to-fast transformation of denervated soleus muscle of the rat,in the presence of an anti?brillatory drug.P?ugers Arch.420, 446–450.

Moriscot,A.S.,Baptista,I.L.,Bogomolovas,J.,Witt,C.,Hirner,S.,Granzier, H.,and Labeit,S.(2010).MuRF1is a muscle?ber-type II associated factor and together with MuRF2regulates type-II?ber trophicity and maintenance. J.Struct.Biol.170,344–353.

Nabeshima,Y.,Hanaoka,K.,Hayasaka,M.,Esumi,E.,Li,S.,and Nonaka,I. (1993).Myogenin gene disruption results in perinatal lethality because of severe muscle defect.Nature364,532–535.

Nwoye,L.,Mommaerts,W.F.,Simpson,D.R.,Seraydarian,K.,and Marusich, M.(1982).Evidence for a direct action of thyroid hormone in specifying muscle properties.Am.J.Physiol.242,R401–R408.

Ogilvie,R.W.,and Feeback, D.L.(1990).A metachromatic dye-ATPase method for the simultaneous identi?cation of skeletal muscle?ber types I, IIA,IIB and IIC.Stain Technol.65,231–241.

Patterson,M.F.,Stephenson,G.M.,and Stephenson,D.G.(2006).Denervation produces different single?ber phenotypes in fast-and slow-twitch hindlimb muscles of the rat.Am.J.Physiol.Cell Physiol.291,C518–C528.

Potthoff,M.J.,Wu,H.,Arnold,M.A.,Shelton,J.M.,Backs,J.,McAnally,J., Richardson,J.A.,Bassel-Duby,R.,and Olson,E.N.(2007).Histone deacety-lase degradation and MEF2activation promote the formation of slow-twitch myo?bers.J.Clin.Invest.117,2459–2467.

44Cell143,35–45,October1,2010a2010Elsevier Inc.

Rana,Z.A.,Ekmark,M.,and Gundersen,K.(2004).Coexpression after electro-poration of plasmid mixtures into muscle in vivo.Acta Physiol.Scand.181, 233–238.

Sacheck,J.M.,Hyatt,J.P.,Raffaello,A.,Jagoe,R.T.,Roy,R.R.,Edgerton, V.R.,Lecker,S.H.,and Goldberg,A.L.(2007).Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases.FASEB J.21,140–155.

Salghetti,S.E.,Caudy, A.A.,Chenoweth,J.G.,and Tansey,W.P.(2001). Regulation of transcriptional activation domain function by ubiquitin.Science 293,1651–1653.

Sandri,M.,Lin,J.,Handschin, C.,Yang,W.,Arany,Z.P.,Lecker,S.H., Goldberg,A.L.,and Spiegelman,B.M.(2006).PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3action and atrophy-speci?c gene https://www.wendangku.net/doc/2b1193670.html,A103,16260–16265.

Sandri,M.,Sandri,C.,Gilbert,A.,Skurk,C.,Calabria,E.,Picard,A.,Walsh,K., Schiaf?no,S.,Lecker,S.H.,and Goldberg,A.L.(2004).Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1and cause skeletal muscle atrophy.Cell117,399–412.

Sato,Y.,Shimizu,M.,Mizunoya,W.,Wariishi,H.,Tatsumi,R.,Buchman,V.L., and Ikeuchi,Y.(2009).Differential expression of sarcoplasmic and myo?brillar proteins of rat soleus muscle during denervation atrophy.Biosci.Biotechnol. Biochem.73,1748–1756.

Spencer,J.A.,Eliazer,S.,Ilaria,R.L.,Jr.,Richardson,J.A.,and Olson,E.N. (2000).Regulation of microtubule dynamics and myogenic differentiation by MURF,a striated muscle RING-?nger protein.J.Cell Biol.150,771–784.Tang,H.,and Goldman,D.(2006).Activity-dependent gene regulation in skel-etal muscle is mediated by a histone deacetylase(HDAC)-Dach2-myogenin signal transduction https://www.wendangku.net/doc/2b1193670.html,A103,16977–16982.

Tang,H.,Macpherson,P.,Marvin,M.,Meadows,E.,Klein,W.H.,Yang,X.J., and Goldman,D.(2008).A histone deacetylase4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression. Mol.Biol.Cell20,1120–1131.

Tawa,N.E.,Jr.,Odessey,R.,and Goldberg,A.L.(1997).Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.J.Clin.Invest.100,197–203.

Vega,R.B.,Matsuda,K.,Oh,J.,Barbosa,A.C.,Yang,X.,Meadows,E., McAnally,J.,Pomajzl,C.,Shelton,J.M.,Richardson,J.A.,et al.(2004).Histone deacetylase4controls chondrocyte hypertrophy during skeletogenesis.Cell 119,555–566.

Waddell,D.S.,Baehr,L.M.,van den Brandt,J.,Johnsen,S.A.,Reichardt,H.M., Furlow,J.D.,and Bodine,S.C.(2008).The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1gene. Am.J.Physiol.Endocrinol.Metab.295,E785–E797.

Williams,A.H.,Valdez,G.,Moresi,V.,Qi,X.,McAnally,J.,Elliott,J.L.,Bassel-Duby,R.,Sanes,J.R.,and Olson,E.N.(2009).MicroRNA-206delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science326,1549–1554.

Willis,M.S.,Rojas,M.,Li,L.,Selzman,C.H.,Tang,R.H.,Stans?eld,W.E., Rodriguez,J.E.,Glass,D.J.,and Patterson,C.(2009).Muscle ring?nger1 mediates cardiac atrophy in vivo.Am.J.Physiol.Heart Circ.Physiol.296, H997–H1006.

Cell143,35–45,October1,2010a2010Elsevier Inc.45

【科教版】小升初科学试题含答案

科教版毕业年级小升初 科学模拟测试卷 (时间:xx分钟总分: xx分) 学校________ 班级________ 姓名________ 座号 ________ 一、填空题(共8小题,每空1分,满分26分) 1.放大镜是我们在科学探究中经常用到的观察工具,也叫,它的镜片特点是、中间、边缘。 2.建立自然保护区是保护生物的有效方法。我国四川卧龙自然保护区的建立主要是为了保护我国特有的珍惜动物(填动物名)。 3.被人们称为“白色污染”的是制品。除此我们面临的污染还有、等。4.太阳系中,太阳是一颗会发光发热的星,与太阳的平均距离最近的行星是,与地球自转周期最接近的行星是,月球是地球的。 5.当地球运行到太阳和月球之间,三个天体处于同一直线或接近同一直线时,便发生了现象,这种现象一般发生在农历左右。有和两种类型。 6.科学研究发现昆虫头上的就是它们的“鼻子”,能分辨各种气味:蟋蟀的“耳朵” 在。 7.垃圾是放错了位置的资源。要有效的回收,必须改变垃圾混装的旧习惯,对生活垃圾进行和。 8.物质的变化可以分为和两类。物质的变化常伴随着各种现象的发生,如小苏打和白醋混合后会产生气体,这种变化属于变化;水加热至沸腾时也会产生气体,这种变化属于变化。因此,要准确判断物质发生的变化属于哪种类型,需明确它们的本质区别:是否有产生。 二、判断.(每小题2分,共20分) 9.石头、水、空气是物质,声音、光、电也是物质。(判断对错) 10.有些物质会发生变化,而且变化速度也有快有慢,有些物质永远不会发生变化。 (判断对错) 11.往水中滴了一滴红墨水,颜色变淡了,肯定发生了化学变化。(判断对错)

人文医学试题及答案

精选考试类应用文档,如果您需要本文档,请点击下载@_@ 人文医学试题及答案 一、单选题 1/30心身疾病的预防原则是(1分) A 培养良好行为方式 B 药物治疗 C 心理治疗 D 心理治疗与药物治疗相结合 E 病情变化与社会心理因素密切相关 答案:A 2/30A型行为性格与何疾病有关(1分) A 癌症 B 癔症 C 冠心病 D 关节炎

E 溃疡病 答案:C 3/30心身障碍是心理社会因素引起的(1分) A 持久的生理功能变化并伴有器质性变化 B 持久的生理功能变化但不伴有器质性变化 C 短暂的生理功能变化并伴有器质性变化 D 短暂的生理功能变化但不伴有器质性变化 E 应激反应 答案:B 4/30患糖尿病的某人,想好好治疗疾病,但又工作繁忙,属(1分) A 角色行为异常 B 角色行为减退 C 角色行为缺如 D 角色行为强化 E 角色冲突 答案:B 5/30消极安乐死是指医生停止使用抢救措施而仅给适当的维持治疗或者撤除所有的治疗和抢救措施,任其自然死去的(1分) A 自然死亡 B 他人干预死亡 C 无痛苦死亡

D 脑死亡 E 自己结束生命 答案:C 6/30以下哪点不是病人的义务(1分) A 如实提供病情和有关信息 B 避免将疾病传播他人 C 尊重医师和他们的劳动 D 必须接受相关医学科研试验 E 在医师指导下对治疗作出负责的决定并与医师合作执行 答案:D 7/30根据《传染病防治法》规定,新闻媒体在开展传染病防治和公共卫生教育公益宣传时应是(1分) A 有偿 B 无偿 C 免费 D 自愿 E 义务 答案:B 8/30认识和改造客观世界的心理活动过程指(1分) A 意志过程 B 情感过程 C 认知过程

《家之脉》阅读答案家之脉阅读答案

《家之脉》阅读答案家之脉阅读答案 家之脉 陈忠实 ⑴1950年春节过后的一天晚上,在那盏祖传的清油灯之下,父亲把一 支毛笔和一沓黄色仿纸交到我手里:“你明日早起去上学。”我拔掉竹 筒笔帽儿,是一撮黑里透黄的动物毛做成的笔头。父亲又说:“你跟 你哥合用一只砚台。” ⑵我的三个孩子的上学日,是我们家的庆典日。在我看来,孩子走 进学校的第一步,认识的第一个字,用铅笔写成的汉字第一画,才 是孩子生命中光明的开启。他们从这一刻开始告别黑暗,走向智慧 人类的途程。 ⑶我们家木楼上有一只破旧的大木箱,乱扔着一堆书。我看着那些 发黄的纸和一行行栗子大的字问父亲:“是你读过的书吗?”父亲说 是他读过的,随之加重语气解释说:“那是你爷爷用毛笔抄写的。” 甲,原以为是石印的,毛笔字怎么会写到和我的课本上的字一样规 矩呢?父亲说:“你爷爷是先生,当先生先得写好字,字是人的门脸儿。”在我出生之前已谢世的爷爷会写一手好字,乙。 ⑷父亲的毛笔字显然比不得爷爷,然而父亲会写字。大年三十的后晌,村人夹着一卷红纸走进院来,父亲磨墨、裁纸,为乡亲写好新 春对联,摊在明厅里的地上晾干。我瞅着那些大字不识一个的村人 围观父亲舞笔弄墨的情景,丙。 ⑸多年以后,我从城市躲回祖居的老屋,在准备和写作《白鹿原》 的六年时间里,每到春节前一天后晌,为村人继续写迎春对联。每 当造房上大梁或办婚丧大事,村人也来找我写对联。这当儿我就想 起父亲写春联的情景,也想到爷爷手抄给父亲的那一厚册课本。 ⑹我的儿女都读过大学,学历比我高了,更比我的父亲和爷爷高了。然而儿女唯一不及父辈和爷辈的便是写字,他们一律提不起毛笔来。村人们再不会夹着红纸走进我家屋院了。 ⑺我小时候有回晚上下了一场大雪,足足有一尺厚。第二天上课心 里都在发慌,怎么回家去背馍呢?50余里路程,全凭步行,我1 3岁。最后一节课上完,我走出教室门时就愣住了,父亲披一身一 头的雪迎着我走过来,肩头扛着一口袋馍馍,笑吟吟地说:“我给你 把干粮送来了,这个星期你不要回家了,你走不动,雪太厚了……”

全国企业员工质量知识竞赛试题及参考答案-精选版整理版

全国企业员工质量知识竞赛试题 (满分100分,共30题) 一、单项选择题(每题只有一个最佳答案,每题3分,共计60分。) 1.企业应确定产品或服务自身的各种质量特性,质量特性有很多类,某电信营业厅提出“保持干净整洁的环境”,这属于质量特性中的(D )。 A.时间性 B.安全性 C.经济性 D.舒适性 2. 国际标准化组织(ISO)已于2015年9月23日正式颁布2015版ISO9001标准,并规定新旧标准间的转换期为( C)年。 A.一年 B.两年 C.三年 D.四年 3.某项目小组拟按照六西格玛改进的路径实施项目改进,以下安排正确的顺序是( D )。 ①改进②界定③测量④分析⑤控制* A. ①–②–③–④–⑤ B. ②–⑤–①–④–③ C. ②–④–③–①–⑤ D. ②–③–④–①–⑤ 4.全国质量奖的评审标准是(B )。 A.GB/T19001《质量管理体系要求》标准 B.GB/T19580《卓越绩效评价准则》标准 C.GB/T19004《追求组织的持续成功质量管理方法》标准 D.《国家质量发展纲要(2011-2020)》 5.过程质量的影响因素,通常被简称为“5M1E”,其中的“E”是指(B)。 A.方法 B.工作环境

D.原材料 6.在质量控制方面,企业员工耳熟能详的“三不”政策,是指每个岗位的员工“不接收不合格品、(C)和不流转不合格品”。 A.不设计不合格品 B.不采购不合格品 C.不生产不合格品 D.不报废不合格品 7.平衡记分卡(BSC)是将公司愿景、战略转化为部门和个人目标的一种方法,它从财务、(D)、内部过程和学习成长等四个方面来制订相关指标。 A.员工 B.股东 C.供方 D.顾客 8. QC小组活动程序通常包含四个阶段,这“四个阶段”是指(D)。 A. SWOT(优势-劣势-机会-挑战)四个阶段 B. DMAI(定义-测量-分析-改进)四个阶段 C. ADLI(方法-展开-学习-整合)四个阶段 D. PDCA(策划-实施-检查—处置)四个阶段 9.无论是企业、车间和班组的文化,还是质量、安全、保密等文化,均由精神层、制度层和物质层三个层次所构成。企业的愿景、使命和核心价值观,所体现的是(A) A.精神层 B.制度层 C.物质层 D.啥也不是 10.企业开展全面生产维护(TPM)的两大基础活动,包括5S活动和(A)。 A. 目视管理 B.标准作业 C. 防错法 D.全员参与 11. 某实验室对要使用的物品依规定进行合理摆放,并做好标识,这属于5S活动中的(B)。 A.整理 B.整顿 C.清扫

六年级科学试题及答案

六年级科学试题及答案 第一单元显微镜下的世界 一;填空题: 1;细菌;霉;病毒是不同种类的《微生物》。 2;第一个揭开微生物秘密的是荷兰生物学家《列文虎克》。 3;绝大多数的微生物只有在《显微镜》下才能看到。 4;细菌;霉及病毒,要用显微镜才能看清楚,所以通常把它们称作《微生物》。 5;在适宜的温度下,《乳酸菌》会使牛奶发酵变成酸奶。 6;利用细菌可以《加工食品》;《生产药品》;《净化环境》;《生产燃料》。 7;危害人类健康的病毒和细菌叫做《病菌》。 8;许多传染病是由《病菌》引起的。用《捂住鼻子打喷嚏》;《用热水冲洗筷子》;《勤用肥皂洗手》等方法可以减少致病细菌的传播。 9;青霉菌分泌出的某种物质能杀死细菌,这种物质叫做《青霉素》。 10;物体在《温暖》和《潮湿》的环境条件下,容易发霉。 11;《细胞》是构成生物体的基本单位。 12;细胞有不同的《形状》;《大小》和《功能》。 二;问答题: 1;使用显微镜时要注意什么? 答:《1》反光镜不能直接对着太阳,否则会伤害眼睛。 《2》使用时要小心,镜头不要碰着玻片。《3》不能用手触摸目镜和物镜。 2;怎样防止食物和物品发霉? 答:《1》真空包装;《2》放干燥剂《3》低温保存;《4》太阳暴晒。 3;你知道伤口化脓是怎么回事? 答:当人体遇到病菌入侵时,白细胞便会与病菌展开激战。在消灭这些入侵者时,白细胞也会有很大的伤亡。“脓”就是死亡的白细胞和病菌的尸体。 4;请你设计如何自制酸奶? 答:材料:牛奶;玻璃瓶;酸奶;小勺;杯子;温度计;锅;高压锅等。 步骤:《1》在鲜牛奶里加入1~2勺白糖,煮开几分钟。《2》待牛奶冷却到35~40℃,加入两勺酸奶,仔细搅匀。《3》再倒进消毒过的保温容器里,盖上盖子。《4》保温5~6小时后,酸奶就做 成了。 现象:牛奶变成了粘稠的酸奶。 结论:乳酸菌会使牛奶发酵成酸奶。 5;请你设计馒头发霉的实验。 答:材料:湿馒头;干馒头;塑料袋等。 步骤:《1》把装有湿馒头的塑料袋放在暖气片上。《2》把装有干馒头的塑料袋放在暖气片上。5天后观察它们。 现象:湿馒头发霉了,干馒头没有发霉。 结论:温暖;潮湿的馒头容易发霉。 第二单元我们的地球 一;填空题: 1;按照火山活动的历史,可分为:《活火山》;《死火山》;《休眠火山》。 2;古代的人们凭直觉来认识地球,提出了《天圆地方》的猜想。 3;麦哲伦的航行是人类第一次成功的《环球航行》。

医学基本知识试题及答案

一、单选题 1.两侧声带之间的裂隙称为( ) A.咽腔 B.腭腔 C.前庭裂 D.声门 2.气管软骨,具有弹性,使管腔保持开放,这种作用主要表现为( ) A.呼吸作用 B.弹性作用 C.支架作用 D.固定作用 3.支气管、血管、淋巴管、神经出入于肺的地方称为( ) A.纵隔 B.肺门 C.肺尖 D.肺底 4.在组织学上,肺内支气管的各级分支及其终端的大量肺泡又称为( ) A.肺间质 B.肺实质 C.两者都对 D.两者都不对 5.人的呼吸系统包括呼吸道和( ) A.心 B.肝 C.肺 D.脾 6.呼吸系统的功能主要是( ) A.进行气体交换 B.进行水液代谢 C.呼出氧气,吸入二氧化碳 D.进行血液循环 7.气管在4、5 胸椎处分成( ) A.上下主支气管 B.左右主支气管 C.前后主支气管 D.大小主支气管 8.喉不仅是呼吸的通道,也是( ) A.消化器官 B.循环通道 C.发音器官 D.分泌器官 9.鼻腔附近含有空气的骨腔叫做( ) A.鼻道 B.鼻旁窦 C.鼻甲 D.鼻前庭 10.肺表面具有活性物质,可以保持肺泡表面张力,保证肺泡结构稳定性,主要由( ) A.肺间质细胞分泌 B.巨噬细胞分泌 C.Ⅰ型肺泡细胞分泌 D.Ⅱ型肺泡细胞分泌 11.肺叶由于叶间裂的存在而被分割,一般是:( ) A.左二右三 B.左三右二 C.左三右三 D.左二右二 12.肺的功能血管是( ) A.肺动脉和肺静脉 B.支气管动脉和静脉 C.冠状动脉 D.腹主动脉

13.肺动脉发出的部位是( ) A.左心房 B.左心室 C.右心房 D.右心室 14.机体与外界环境之间的气体交换过程叫( ) A.呼吸 B.吐纳 C.换气 D.新陈代谢 15.肺与外界环境之间的气体交换叫( ) A.呼吸 B.吐纳 C.肺通气 D.新陈代谢 16.肺泡与肺毛细血管血液之间的气体交换叫( ) A.呼吸 B.肺换气 C.肺通气 D.新陈代谢 17.组织毛细血管血液与组织细胞之间的气体交换叫( ) A.呼吸 B.肺换气 C.组织换气 D.新陈代谢 18.呼吸的基本中枢位于( ) A.间脑 B.中脑 C.小脑 D.延髓 19.调节呼吸的最重要的生理性化学因素是( ) A. CO2. B. CO C.NO2. D.NO 20.当CO2 浓度轻度升高时,可以导致( ) A.暂停呼吸 B.呼吸抑制 C.呼吸兴奋 D.以上均不对 21.轻度低氧可以导致( ) A.暂停呼吸 B.呼吸抑制 C.呼吸兴奋 D.以上均不对 22.心脏在人体位于( ) A.前纵隔 B.中纵隔 C.后纵隔 D.上纵隔 23.心脏一共有多少个腔?( ) A.1 B.2 C.3 D.4 24.左房室瓣膜又叫( ) A.一尖瓣 B.二尖瓣 C.三尖瓣 D.四尖瓣 25.右房室瓣膜又叫( ) A.一尖瓣 B.二尖瓣 C.三尖瓣 D.四尖瓣 26.心脏瓣膜的主要功能是( ) A.防止血液循环 B.防止血液流过 C.防止血液倒流 D.防止血流过快 27.心脏本身的营养血管是( ) A.微血管 B.冠状血管 C.肺动脉 D.主动脉 28.心传导系由特殊分化的心肌细胞构成,主要( )

新中考 语文 记叙文阅读专题训练阅读训练含答案

新中考语文记叙文阅读专题训练阅读训练含答案 一、中考语文记叙文阅读专题训练 1.记叙文阅读 家之脉 陈忠实 ①1950年春节过后的一天晚上,在那盏祖传的清油灯下,父亲把一只毛笔和一沓黄色仿纸交到我手里:“你明日早起去上学。”我拔掉竹筒笔帽儿,看见一撮黑里透黄的动物毛做成的笔头。父亲又说:“你跟你哥合用一只砚台。” ②我的3个孩子的上学日,是我们家的庆典日。在我看来,孩子走进学校的第一步,认识的第一个字,用铅笔写成的汉字第一画,才是孩子生命中光明的开启。他们从这一刻开始告别黑暗,踏上智慧人生的征程。 ③我们家木楼上有一只破旧的大木箱,乱扔着一堆书。我看着那些发黄的纸和一行行栗子大的字问父亲:“是你读过的书吗?”父亲说是他读过的,随之加重语气解释说:“那是你爷爷用毛笔抄写的。”我大为惊讶,原以为是石印的,毛笔字怎么写到和我的课本上的字一样规矩呢?父亲说:“你爷爷是先生,当先生先得写好字,字是人的门脸。”在我出生之前已谢世的爷爷会写一手好字,我最初的崇拜产生了。 ④父亲的毛笔字显然比不得爷爷,然而父亲会写字。大年三十的后晌,村人夹着一卷红纸走进院来,父亲磨墨、裁纸,为乡亲写好新春对联,摊在明厅里的地上晾干。我瞅着那些大字不识一个的村人围观父亲舞笔弄墨的情景,隐隐感到了一种难以言说的自豪。 ⑤多年以后,我从城市躲回祖居的老屋,在准备和写作《白鹿原》的6年时间里,每到春节前一天后晌,为村人继续写迎春对联。每当造房上大梁或婚丧大事时,村人就来找我写对联。这当儿我就想起父亲写春联的情景,也想到爷爷手抄给父亲的那一厚册课本。 ⑥我的儿女都读进大学,学历比我高了,更比我的父亲和爷爷高了(他们都没有任何文凭,我只是高中毕业)。然而儿女唯一不及父辈和爷辈的便是写字,他们一律提不起毛笔来。村人们再不会夹着红纸走进我家屋院了。 ⑦13岁那年,礼拜五晚上一场大雪,足足下了一尺厚。第二天上课心里都在发慌,50余里路程步行,怎么回家去背馍呢?最后一节课上完,我走出教室门时就愣住了,父亲披一身一头的雪迎着我走过来,肩头扛着一口袋馍馍,笑吟吟地说:“我给你把干粮送来了,这个星期你不要回家了,你走不动,雪太厚了……” ⑧二女儿因为读俄语,只好赶到高陵县一所开设俄语班的中学去补习。每到周日的下午,我用自行车带着女儿走七八里土路赶到汽车站,一同乘坐公共汽车到西安东郊的纺织城,再换乘通往高陵县的公共汽车,看着女儿坐好位子随车而去,我再原路返回蒋村——正在写作《白鹿原》的祖屋。我没有劳累的感觉,反而感觉到了时代的进步和生活的幸福,比我父亲冒雪步行50里为我送干粮方便多了。 ⑨父亲是一位地道的农民,比村子里的农民多了会写字打算盘的本事,在下雨天不能下地劳作的空闲里,躺在祖屋的炕上读古典小说和秦腔戏本。他注重孩子念书学文化,他卖粮卖树卖柴,供给我和哥哥读中学,至今依然在家乡传为佳话。 ⑩我供给3个孩子上学的过程虽然颇不轻松,然而比父亲当年的艰难却相去甚远。从做私塾先生的爷爷到我的孙儿这五代人中,父亲是最艰难的。他已经没有了做私塾先生的爷

三年级科学试卷及答案

2017—2018学年度第二学期期末考试 三年级期末科学试卷 一、填空题(共10分) 1、声音能在()()、()中传播。 2、每个磁铁都有两极。()磁极相互排斥,()磁极相互吸引。 3、光是沿()传播的。 4、一株完整的开花植物一般都有()、()、()、()、()()()六个部分。 5、液态的水温度降到()时就开始凝固成冰。 6、植物在它们的生命过程中都要经历出生、()、繁殖、衰老直至死亡的过程。 7、水变成()的过程叫蒸发,雨过天晴,地面上的积水由于()现象变干的。 8、人们常用金属做水壶、锅等炊具,是因为它的()好。 9、蜗牛是用()爬行的,金鱼是用()呼吸的。 10、25摄氏度可以写作()。 二、选择题(共10分) 1、钢琴发出的声音由()产生的。 2、A、琴弦的振动B、空气的振动 3、、雷雨天的闪电可以击坏物体,潮湿的空气是() 4、A、绝缘体B、导体 5、世界上最早的指南仪器叫() 6、A、司南B、指南鱼C、指南针D、软盘

7、在太阳下晒衣服,要是还有一点风,衣服干得更() 8、A.快 B.慢 9、下列物质中________能溶解在水中。( ) 10、A土壤B面粉C盐 11、“举伞步行艰”所指的风级是。() 12、A、5级B、6级C、7级D、8级 8、堤坝上种防护林的作用是() A、保持水土 B、吸烟滞尘 C、减少噪音 9、夏天,在冰棍周围常常可以看到“白气”,这是() A 冰棍周围的水蒸气 B冰棍里水气变成水蒸汽 C 冰棍周围的水蒸气冷却形成的雾状小水滴 10. 植物自己制造“食物”的器官是________。 11. A.根 B .茎 C .叶 D .根、茎、叶 三、判断题(共5分) 1、沙土、粘土、壤土中壤土的渗水性最强。() 2、蚯蚓被称作是“改良土壤的能手”。() 3、3、“蜻蜓低飞要下雨”是没有道理的。() 4、4、液体和固体在水里的沉浮情况不一样。() 5、植物能通过多种途径进行传粉,常见的是借助昆虫和风力。()

临床医学考试题目及答案汇总

一、A l/A2型题(单选题):每道考试题下面有 A、B、C、D、E五个备选答案。请从中选 择一个最佳答案。 1、典型苯丙酮尿症最主要的治疗方法是给予 A.低苯丙氨酸饮食 B.酪氨酸 C.四氢生物蝶吟 D.5-羟色胺 E.左旋多巴 2. 下列关于难免流产的叙述中,哪个不正确 A.阴道流血增多 B.出现阴道流水 C.阵发性腹痛加重 D.有部分胎盘嵌顿于宫颈口,部分胎盘排出 E.子宫大小与停经月份相符或略小 3.下列关于酶的叙述正确的是 A.活化的酶均具有活性中心 B.能提高反应系统的活化能 C.所有的酶都具有绝对特异性 D.随反应进行酶量逐渐减少 E.所有的酶均具有辅基或辅酶 4. 下列那一项提示小气道梗阻 A.吸气时出现喘鸣音伴吸气相延长 B.呼气时出现喘鸣音伴吸气相延长 C.呼气时出现喘鸣音伴呼气相延长 D.吸气时肺部是否有固定的湿哕音 E.吸气时肺部是否有不固定的中、粗湿啰音5. 下列肾脏病中哪种为抗肾小球基底膜抗体性肾炎 A.链球菌感染后急性肾炎 B.膜性病变为主的肾炎 C.肾小球病变为主的肾炎 D.肺出血肾炎综合征 E.狼疮性肾炎 6. 新生儿败血症主要的感染途径是 A胎内 B产道 C肠道D脐部 E口腔黏膜 7. 初孕妇,28岁,孕32周因全身浮肿及头痛来诊,妊娠前即有面部及下肢浮肿,查血压160/110mmHg,尿蛋白(+++),可见颗粒管型,经治疗孕37周自然分娩,产后6周,血压降至128/75mmHg,尿蛋白(++),浮肿(+)。下列诊断以哪项可能性大: A.先兆子痫 B.妊娠合并原发性高血压 C.妊娠合并肾炎 D.慢性肾炎基础上并发先兆子痫 E.原发性高血压基础上并发先兆子痫 8. 24小时尿最少于多少为少尿 A. 100m1 B. 200m1 C. 300ml D. 400m1 E. 500m1 9. 营养不良测定腹壁皮下脂肪厚度的部位 A、脐上 B、脐下 C、脐旁 D、肋下 E、锁中线上平脐处10. 下列组合哪项正确 A.急性淋巴细胞白血病-儿童病例绿色瘤常见 B.急粒白血病-特异性皮肤损害多见 C.M3-多伴DIC D.慢淋白血病-多见急变 E.慢粒白血病-多伴中枢神经系统白血病 11. 下列哪条血管闭塞最易导致偏瘫? A.小脑下后动脉 B.大脑中动脉 C.脊髓前动脉 D.小脑下前动脉 E.大脑前动脉 12. 生后24小时内出现黄疸者。应首先考虑 A.新生儿肝炎 B.胆道闭锁 C.新生儿溶血病 D.败血症 E.母乳性黄疸 13、下列哪些项目诊断肋骨骨折是不可靠的 A.间接疼痛 B.胸壁反常呼吸运动 C.骨擦感 D.局部疼痛 E.受伤后胸部变形 14、下列哪些症状不是营养性巨幼细胞性贫血的表现 A.面色苍黄。疲乏无力 B.虚胖,毛发稀疏发黄 C.肝脾轻度肿大 D.异食癖 E.舌炎,腹泻 15、下列哪些疾病属性传播疾病 A.阴茎结核疹 B.阴部疱疹 C.口腔皮肤结核 D.假性湿疣 E.鲍文样丘疹病 16、麻疹疫苗的初种年龄为 A.4个月 B.5个月 C.6个月 D.7个月 E..8个月 17、下列哪项不是内脏性腹痛的特点 A.疼痛部位含混 B.疼痛部位接近腹中线 C.常伴自主神经兴奋症状 D.腹痛可因体位变化加重 E.疼痛感觉模糊 18、下列哪项不是风湿活动的指标 A.不规则发热、乏力 B.面色苍白,心率增快 C.血ASO大于500单位 D.血沉增快,粘蛋白增加 E.心电图示P-R间期延长 19、下列哪项不是孕激素的作用 A.促进乳腺腺管发育成熟 B.促进宫颈口闭合,减少黏液分泌 C.抑制输卵管肌节律性收缩的振幅 D.增强子宫平滑肌对宫缩剂的敏感性 E.负反馈作用于下丘脑--垂体引起促性腺激素

“山光悦鸟性,潭影空人心”的意思

“山光悦鸟性,潭影空人心”的意思 篇一:空的读音 “空”有 kōng、kǒng、kòng 三个读音,《生于忧患,死于安乐》中的“饿其体肤,空乏其身” 的“空”字教材没注音,照常规,人们大多读“kōng”。是吗? 《辞源》、《辞海》、《汉语大字典》等比较权威的工具书均未见附此例。 《中国百科 网· 新华字典”》注: 【空乏】kōngfá 〖destitute〗缺少财物,指贫穷;又注: 【空】kòng 动词, 使之困穷,附例“不宜空我师。”据此,人们似乎可以理解为:“空乏”一词既可以读为 kōngfá 又 可以读为 kòngfá,而在“饿其体肤,空乏其身。”中是应读为 kòngfá 的。 资寿林主编的《学生文言文字典》 (湖北辞书出版社,1998 年 5 月版)167 页的解释是: 【空】kòng,动词,使受到贫困。附例“饿其体肤,~乏其身。” 陈复华主编的《古代汉语词典》(商务印书馆 2002 年 8 月版)的解释是: 【空乏】kòngfá,穷困缺乏。附例“饿其体肤,空乏其身。” 其他工具书的解释不再罗列。 查收录《生于忧患,死于安乐》这篇文章且有注释的书籍 十一二本,只发现有一本书对这个字注了音。这本书是宁鸿彬主编的《初中文言文详解》(北 京理工大学出版社,1994 年 7 月版),文中的解释是:“空(kòng)乏:空缺贫乏。此处形容 词用为动词,使动用法,‘使??资财缺乏,经受贫困’。” 探究学问其乐无穷。在查询考证 “空” 一字的读音问题时,还有一个意外的收获令我欣慰不已,同时还有几分羞愧,那就是义务教育 课程标准实验教科书《语文》七年级上册常建的《题破山寺后禅院》中的“山光悦鸟性,潭影 空人心”这句话的“空”也应读 kòng,是动词,意思是“荡涤;清洗”。此前我教学生读了 10 来年 的“kōng”,真是不学不知道,一知吓一跳啊! 上述这些问题使我想到了教材中的类似注音应该明确却没有明确的诸多例子,如《世说 新语》两则中的《咏雪》一文的“撒盐空中差可拟”一句的“差”应读 chā,是“大致,差不多”的 意思;《智子疑邻》中的“邻人之父”句中的“父” 应读 fǔ,意思是“老人”;《口技》中的“便有 妇人惊觉欠伸”句中的“觉”应读 jiào,意思是“睡醒”;《庄子》故事两则中的“今子欲以子之梁 国 而吓我邪?”句中的“吓”应读 xià,意思是“吓唬”等等。这些字的读音我都考究过,并且拿 这些字的读音来考过许多中学语文教师,结果是无一人能全部答对。这些问题我平时十分注意 探究,但这个“空”字还是给了我很大的打击,由此我不禁扪心自问:近 30 年的教学生涯,到 目前为止还有多少像“山光悦鸟性,潭影空人心”的问题存在呢?我的心中真是没底! (本文 刊发于《语文报· 教师版· 初中》2009 年 2 月 5 日总第 147 期,并在中华语文网、语文网等网站 推荐阅读,反响很大,许多人来电来函发帖探讨教材上的有关字的读音问题。作者:武宏伟) 篇二:闸北区 2015 年初三语文一模试题(附答案) 闸北区 2015 年初三语文一模试题 (满分:150 分,时间:100 分钟) 1 / 15

大学数学竞赛试题参考答案

第七届 北京市大学生数学竞赛本科甲乙组试题 一、(10分)已知函数()f x 在0x =的某个临域内有连续导数,且20sin ()lim()2x x f x x x →+=,试求(0)f 及(0)f ' 二、(10分)已知函数(,)z z x y =满足222z z x y z x y ??+=??, 设1111u x v y x z x ???=??=-???=-?? 对函数(,)u v ??=,求证0u ??=? 三、(10分)计算D dxdy xy ??,其中222224:24x x y D y x y ?≤≤?+???≤≤?+?

四、(10分)计算曲面积分3 2222()S xdydz ydzdx zdxdy I x y z +++=++??,其中S +是 22 (2)(1)1(0)72516 z x y z ---=+≥的上侧。 五、(10分)设函数对于任意x 的及a 满足1()()(0)2x a x a f t dt f x a a +-=≠?,证明()f x 是线性函数。 六、(10分)求微分方程2(ln )0x x y xy y '''-+=的通解。 七、(10分)设函数()f x 在实轴R 上可微,且满足(0)0,|()||f f x p f x '=≤,其中01p <<,证明:()0()f x x R ≡∈

八、(10分)判断级数1sin (3n n π∞ =∑的收敛性。 九、(10分)设()f x 在区间[,]a b 上是非负的连续函数,且严格单调增加,由积分中值定理知,对于任意的正整数n ,存在唯一的 (,)n x a b ∈,使1[()][()]b n n n a f x f x dx b a =?-,试求极限lim n n x →∞,并证明你的结论。 十、(10分)已知12111,1,(2,3,)n n n a a a a a n +-===+= ,试求级数1n n n a x ∞=∑的收敛半径与和函数

科学试卷和答案

五年级下册科学期末检测试题 一.我会填:(每格2分,共30分) 1.地球自转与地球公转的方向都就是,即时针。 2.我国古代把一昼夜分为个时辰,每个时辰相当于现在的个小时。 3.我国采用的统一时间叫。 4.把泡沫塑料块往水中压,手能感受到泡沫塑料块有一个向____的力,我们把这个力称为_。 5.摆的快慢与摆长有关,摆长长,摆得,摆长短,摆得。 6.就是历史上证明地球自转的关键性证据。 7.热总就是从的一端向的一端传递。 8.随着时间的变化,物体在阳光下的影子的与也会慢慢地发生变化。 9.物体在水中排开水的体积叫做。 二.我会辨:(正确的打√,错误的打×。每题2分,共20分) 1.货船从长江进入大海,船身会上浮一些。() 2.乒乓球凹进去了,放在热水里泡一泡会重新鼓起来,就是由于塑料具有热胀冷缩的性质。 3.物体在水中排开的水量越少,受到的浮力越小。( ) 4.同一时间北半球与南半球的季节就是一样的。( ) 5.坐在向前行驶的汽车里,会瞧到两边的树木、房屋在向后移动。( ) 6.地球仪做成倾斜的样子就是为了好瞧。( ) 7.北极星就就是我们地轴北极的上空,所以在我们瞧来就是一直不动的,永远在北方。 8.羽绒服能产生热量,所以冬天大家都穿着它。( ) 9.传热性能好的材料,保温性能也一定好。( ) 10.如果在一瓶矿泉水的盖子上戳一个洞,让水慢慢地滴下来,水滴下来的速度就是不变的,直至瓶中的水滴完,所以古代有滴漏可以计时。( ) 三.我会选:(每题2分,共20分) 1.下面最先迎来黎明的城市就是( )。 A.重庆 B.杭州 C.乌鲁木齐 2.()的出现,大大地提高了时钟的精确度。 A.日晷 B.水钟 C.摆钟 3.在金属的大家庭里,有两种金属就是热缩冷胀的,它们就是( )。 A.银与水银 B.铁与铝 C.锑与铋 4.有经验的电工拉电线时,应该就是( )。 A.冬天的时候拉得松一些,夏天的时候拉得紧一些 B.冬天的时候拉得紧一些,夏天的时候拉得松一些 C.夏天与冬天拉得一样紧 5.测得某物体在空气中的重量为50克,浸没在水中时的重量为35克,那么这个物体放在水中会( )。 A.下沉 B.上浮 C.停在水中的任何深度的地方 6.在世界时区图中,每相邻的两个时区的时间就相差( )。 A.24小时 B.12小时 C.1小时 7.“地心说”理论认为( )就是宇宙的中心。 A.太阳 B.地球 C.月球 8.潜水艇就是通过改变自身的( )来达到上浮与下沉。 A.轻重 B.大小 C.体积 9.下列物体中传热能力最强的就是( )。 A.塑料 B.木条 C.铝片 10.古代人们制作的利用太阳来计量时间的工具就是( )。 A.日晷 B.浑天仪 C.滴漏 四. 我会认。(7分)如图,箭头表示太阳光,请在图中用阴影画出就是晚上的地区。图中A、B代表北京与纽约,北京就是中午12点,纽约就是晚上12点,请在( )中填上北京或纽约。

临床医学试题及答案

福和卫生院急救医学测试题 选择题:(每题 2分,共 40 分) 1. 慢 性进 展型 头痛 是 下列 哪一 项 临床 特征 A 慢性 颅内压 增高 B 急性 颅内 压增 高 C 急性 血压增 高 D 神经 衰 弱 2. 全 心衰 属于 哪一 类 型紫 绀 A 中心性 紫绀 B 周 围性 紫 绀 C 混合性 紫绀 D 以 上都 不 是 3. 劳 动后 呼吸 困难 是 下列 哪种 疾 病的 早期 表 现 A 肺 炎 B 胸 腔积液 C 心功能 衰竭 D 肺 梗 死 4. 下 列哪 项是 喉头 水 肿的 临床 表 现 5. 钻 顶样 腹痛 是哪 种 疾病 特点 A 阑尾炎 B 胰 腺炎 C 胆道蛔 虫病 D 溃 疡 病 6. 频 繁剧 烈呕 吐后 呕 血见 于 A Mallory-Weiss syndrome B 胃 溃 疡 C 食道静 脉曲 张破 裂 出血 D 胃 癌 A 37 C B 38.2 C C C D 41 C 9. 发 热 4 日出 现皮 疹 见于 A 水痘 B 猩红热 C 天 花 D 麻 疹 A 吸气性 呼吸 困难 B 呼气 性呼 吸困 难 C 混合性 呼吸 困难 D 以上 都不 是 7. 幽 门梗 阻的 特点 A 呕吐胆 汁伴 胃型 C 呕吐蛔 虫伴 肠型 8. 高 热是 指体 温超 过 B 呕 吐 宿食 伴胃 型 D 呕 吐 物恶 臭伴 肠 型

10. 传染性非典型性肺炎的病原体是 A肺炎支原体B肺炎衣原体 C军团菌D新型冠状病毒 11. 抢救过敏性休克时, 应首先选用 A多巴胺B地塞米松C异丙嗪 D肾上腺素E钙剂 12. 院前处理突发昏迷首先选择 A呼叫120急送医院B行心肺复苏术 C测量血压D检查瞳孔 E保持呼吸道通畅 13. 一个体重60kg 的人, 全身总血量约为 A4000ml B4500ml C4800ml D5500ml E6000ml 14. 关于结扎止血带, 下列哪项是错误的 A结扎止血带前,应先加衬垫 B手断离后,止血带应结扎在上臂的中段 C 每隔40~50, 放松2~3 次 D结扎不要过紧或过松,远端动脉搏动消失即可 E标明结扎止血带的时间 15. 对下列哪种胸部损伤的伤员, 应优先抢救A胸部挫伤B肋骨骨折C开放性气胸 D张力性气胸E闭合性气胸 16. 判断心脏骤停最可靠的指征为 A心电图B血压C神志和呼吸 D瞳孔 E 口唇紫绀 17. 开放性骨折的正确处理方法为 A必须先将骨的断端还纳后,再止血、包扎、固定 B先止血、再固定、最后包扎。 C立即复位后,再止血、固定、包扎。 D止血、包扎后、不固定也可以。

部编版八年级上期末专题复习之现代文阅读

八年级期末专题复习之现代文阅读 【一】四合院里的拜年 四合院始建于清道光年间,木墙木柱木梯子,每一件木质都透出风的皱褶,雨的潮湿。 在这栋四合院里,我住了将近十年,一直认为每年的春节最热闹。在外的人全回来,提一个包兜,绽放一脸的笑容,然后张灯结彩,左邻右舍团聚在一起吃年夜饭。 我的祖父在这个四合院住的时间比我长,谈起他那些年的拜年,就抑制不住内心的留恋,似乎遗憾地说我们年轻人走着走着,丟了祖宗的一个宝贝。 那时,分了家的祖父到了大年初一,吃过早饭,穿上整洁的衣服,就要去给自己的父母拜年。给父母拜年少不了三样:一块三斤以上的熏干腊肉,一包白糖,十几个糍粑。祖父家境较好,往往比别人多一条两斤重的盐鲤鱼。 走进曾祖父的四合院,推开一扇木质的对开院门,屋里笑语喧哗,点燃一挂三百响的鞭炮,叭叭地闹得喜庆。曾祖父听到鞭炮声,打开了雕花窗子,喊:?快进来!快进来,外面雪大!?便起身迎出来。进了堂屋,神龛上亮着两盏红烛,烧着一束香火。神龛下两张并排的雕花椅,近前还有几个拜年用的草团垫子。后辈们必须恭恭敬敬地跪在草团垫子上三叩头三作揖,然后曾祖父再给后辈们发红包。 这些礼节完了,才在厢房火塘边落座聊天,抿一杯温暖的甜米酒,吃着自家种的花生薯片。煨糍粑更是不可少的,在火塘里支个铁网架子,把糍粑放在上面,煨得两面焦黄,有的会起大气泡,掀开了焦黄的糍粑表面。掰开熟糍粑,一拉,白丝儿像一根线,拉了好长。 吃饭的时候,曾祖父家的菜比较丰盛,炖大块腊肉、炒鸡块、红烧牛肉,一条鲤鱼不可少,也是祖父的最爱。祖父十几岁时给一家亲戚去拜年,头戴一顶小圆布帽,穿一身土布长袍,脚蹬一双千层布鞋。吃饭时他看到桌上一条三斤重大的鲤鱼,红烧得鳞儿卷起,尾巴焦脆,浇上葱花红椒,看着就垂涎欲滴,便一筷子过去,劲稍大了些,鲤鱼在盘子里硬挺挺地翻了边,顺势一溜,咔!滚到了桌子底下。祖父十分尴尬,好在亲戚通情达理,拿起鲤鱼,说:?洗洗,浇上葱花再吃。?此时,祖父才知道这是一条木鲤鱼,家穷的,用木鲤鱼来撑桌面。 新的生活有新的方式,人们对拜年也有了新的诠释。到上个世纪80年代,我所在的四合院,每到春节就不像祖父说的那样拜年了,礼节慢慢少了。 那一年,父亲搬出了雕花的四合院,在不远处竖了自的砖房。大年初一,父亲领着我们去拜年,祖父在厢房喝茶,他听到外面的鞭炮声和我们小孩的笑声,就倚在门口笑眯眯道:?还信初一崽初二郎初三初四走亲忙啊??父亲紧走几步,握住祖父的手说:?爸,拜年拜年,下跪作揖不兴了,这份亲情还是要延续的啊!?便搀扶着祖父进了厢房,俩人在火塘边相互感触着幸福的火热。 这些年,祖父越来越老了,九十二岁的眼睛总眺望着我们,像这四合院漏风漏雨、破败不堪的样子。可我们不管走到哪里,四合院的精气神还在影响着我们,渗进骨里,不能远离,也不可能远离。如今,一年一度的春节又到了,我站在城里听见了四合院拜年的脚步,父亲在电话里问:?回家过年不??我踌躇着,窗外雪花飞舞,街道上的车好多搁浅了,火车站人潮汹涌,扁担和大布袋乱钻。我胆怯地长叹了口气。父亲紧追着说:?回吧,今年雪大,说不定明年拜年时看不到我了,也看不见这四合院了。? 我听了,心突突地急切起来。 在四合院里拜年,是我美好的回忆,也是我对时间的敬畏,对先祖的感恩,更是对亲情的礼赞。 1.联系上下文,说说“丢了祖宗的一个宝贝”中的“宝贝”指什么? 2.文中画线句中“眺望”一词用得恰当吗?请说明理由。 3.“我”为什么先“胆怯地长叹了口气”,后又“心突突地急切起来”? 4.选文中的“曾祖父”在后辈们三叩头三作揖后发红包,而如今“电子红包”作为一类互联网时代特有的红包传递方式已经普遍使用。对这一变化,你有何看法? 链接材料:微信红包团队28 日凌晨公布数据,2017 年除夕微信红包142 亿个,较去年同期增长75.7%,创下新高;腾讯旗下口QQ平台各类电子红包累计参与用户达3. 42 亿,同样创下析高。 【二】家之脉陈忠实 ①1950年春节过后的一天晚上,在那盏祖传的清油灯之下,父亲把一支毛笔和一沓黄色仿纸交到 我手里:?你明日早起去上学。?我拔掉竹筒笔帽儿,是一撮黑里透黄的动物毛做成的笔头。父亲又说:?你跟你哥合用一只砚台。? ②我的三个孩子的上学日,是我们家的庆典日。在我看来,孩子走进学校的第一步,认识的第一个字,用铅笔写成的汉字第一画,才是孩子生命中光明的开启。他们从这一刻开始告别黑暗,走向智慧人类的途程。 ③我们家木楼上有一只破旧的大木箱,乱扔着一堆书。我看着那些发黄的纸和一行行栗子大的字问父亲:?是你读过的书吗??父亲说是他读过的,随之加重语气解释说:?那是你爷爷用毛笔抄写

学科竞赛试题及答案

2011—2012 学年第一学期 第二临床2010 年级学科竞赛试题 考试日期:2011年11月10 日 考试时间:100 分钟 考试方式:闭卷 (总分:100 分,共100 题) 考试说明:1、请将选择题答案全部填涂在答题卡上,写在试卷上一律无效。其余试题的答案写在试卷上。 2 、请在答题卡上填涂好姓名、班级、寝室号、学号。考号为学号。 3、所有试卷不得带出考场之外,否则以作弊论处。 4、在考试结束前10 分钟时,监考老师先收答题卡,考试结束 时, 再收试卷,并以班级为单位,按学号顺序整理好。 一、单选题(每题1 分,共62 分) 生理 1. 低温、缺氧或代谢抑制剂影响细胞的Na-K+泵活动时,将导致() A. 静息电位增大,动作电位幅度减小 B. 静息电位减小,动作电位幅度增大 C. 静息电位增大,动作电位幅度增大 D. 静息电位减小,动作电位幅度减小 E. 以上都不是 2. 终板膜上与终板电位产生有关的离子通道是() A. 电压门控钠离子通道 B. 电压门控钾离子通道 C. 电压门控钙离子通道 D. 化学门控非特异性镁通道

E. 化学门控钠离子和钾离子通道 3. 局部兴奋的产生是由于() A. 刺激使细胞超级化 B. 膜自身去极化反应 C. 刺激使细胞膜轻度去极化 D. 刺激激活大量Na+通道 E. 膜自身超级化 4. 下列不可作为第二信使的物质有() A .Ca+ B .cAMP C .IP3 D .DG E .调钙蛋白 5.骨骼肌收缩和舒张的基本功能单位是() A. 肌原纤维 B.肌小节 C.肌纤维 D.粗肌丝 E.细肌丝 6. 下列哪项因素会降低骨骼肌的收缩力() A. 增加后负荷 B. 增加前负荷 C. 给肾上腺素 D. 缺氧 E. 给咖啡因 7.在局部兴奋中,不应期不明显的原因是() A. 激活的钠离子通道数量少,失活也少 B. 与动作电位中的钠离子通道性质不同 C. 阈下刺激的后作用时间短 D. 没有钠离子通道的再生性开放机制 E. 钾离子通道开放 8 骨骼肌细胞外液中钠离子浓度降低使() A. 静息电位增大B .动作电位幅度变小 C. 去极化加速D .膜电位降低 E.复极化加速 9. 血管外破坏红细胞的主要场所是() A. 肾和肝B .淋巴结C .肾脏D .脾和肝E .胸腺和骨髓 10.安静时细胞膜内K+向膜外移动是通过() A. 主动转运 B.单纯扩散 C.易化扩散 D.出胞 E.入胞 11、外源性和内源性凝血的主要区别是() A. 前者发生在体内,后者发生在体外 B. 前者发生在血管内,后者发生在血管外 C. 前者只需体内凝血因子,后者还需外加因子 D. 前者只需血液凝血因子,后者还需组织因子 E. 激活因子的途径区不同 12、血小板含量明显减少时,可导致皮肤出现出血瘀点,其原因是血小板() A. 不易粘附血管内膜 B. 使血管回缩出现障碍 C. 释放血管活性物质不足 D. 凝集能力下降 E. 不能修复和保持血管内皮物质的完整性 13、哪一种血性的人不易找到合适的供血者() A. AB型,Rh阴性 B. A型,Rh阴性

最新三年级科学试题及答案

1、我看到了什么 一、判断 1、每一种大树的表皮都是相同的。(错) 2、大树不会开花结果。(错) 3、要想了解大树,我们先从观察入手。(对) 4、树干上除了有一些寄生在上面的植物外,还有一些小动物也活跃在大树上。(对) 二、选择 1、树木的(B)是输送水分和养料的通道,所以保护它十分重要。A、叶B、表皮C、根D、枝叶 2、大树的( C )能使大树牢牢矗立在土地上。A、叶 B 、皮C、根 D 、枝 3、每一种大树的叶子( A )A、各不相同B、都相同 C 、形状相同 4 树瘤是( C )原因造成的A、生病B、天生的C、树皮或树枝受到了伤害 2、校园的树木 一、判断: 1、所有的植物秋天都落叶。(错) 2、画树的拓片是用圆珠笔把树皮画出来。(错) 3、远远看去一棵大树的形状是由树冠、树干、树根组成。(对) 4、树的器官一般包括根、茎、叶、花、果实和种子六部分。(对) 二、选择题: 1、树的器官一般包括根、茎、叶、花、果实和( b )组成。A 树皮B 种子C 树冠 2、从远处看树木,看到的是树的形态是( a )。A 整体B 部分C 粗细 3、一棵树都有生长、发育和( c )。A 开花B 结果C 生殖 4、树的生长需要阳光、水和(c )。A 氧气B 二氧化碳C 空气 3 大树和小草 科学概念: 1.小草与大树一样,具有生命体的共同特征。 2.大树和小草的主要不同之处在于植株的高矮,茎的粗细和质地。 3.大树和小草都生长在土壤中,都有绿色的叶,都会开花结果,都需要水分,阳光和空气。 一.判断1.小草和大树的生长都需要阳光和水分(对) 2.小草不会开花,也不会结果(错) 3.小草的寿命一般都比较短(对) 二.选择1.下面不属于大树和小草共同点的是(D)A.都长在土壤里 B.都需要阳光,水分C.都有根,茎,叶 D.寿命都很长 2.下面哪种植物不是陆生植物(B)A.蒲公英 B.水花生 C.狗尾草 D.车前草 4、观察水生植物 科学概念: 1.水葫芦叶柄部位膨大的海绵体充满空气是浮在水面上的原因 2.水生植物都有根,茎,叶等器官,他们的生长需要水分,阳光和空气 一.判断1.金鱼藻生活在水中,所以它的生长不需要空气(错)

相关文档
相关文档 最新文档