文档库 最新最全的文档下载
当前位置:文档库 › 5.1概述 5.2列车自动空气制动机

5.1概述 5.2列车自动空气制动机

5.1概述  5.2列车自动空气制动机
5.1概述  5.2列车自动空气制动机

第五章制动装置

第一节概述

一、相关概念

1.制动:人为地施加相反方向的力于运动中的车辆使其减速、停止运动,或采取措施防止静止中的车辆移动,这种作用叫制动。

2.制动装置:机车车辆上为了达到制动目的而装设的机械。

制动装置是提高列车运行速度,增加牵引重量和提高调车作业效率的重要条件。

3.制动方式:我国目前广泛使用闸瓦摩擦式制动装置或盘形制动装置。

4.制动作用:闸瓦(或闸片)压紧车轮踏面(或制动盘),阻止车辆运行的作用。消除制动的作用称为缓解作用。

5.制动距离:司机将大闸手把置于制动位起,到列车停车止,列车所走行的距离。

二、制动机种类

根据动力来源及操作方法,制动机主要有以下几种:

1.自动空气制动机——使用范围最广的制动机。

特点:充风缓解、排风制动

2.电空制动机——以压缩空气为动力,用电来操纵控制的制动机。

特点:列车前后部制动机动作一致性较好,列车纵向冲击较小,制动距离短。

3.轨道电磁制动机

特点:电磁铁以一定的吸力吸附在轨面上,产生摩擦力而起制动作用。

4.再生制动

特点:将列车动能转化的电能反馈回电网,提供给别的列车使用。

5.电阻制动

特点:电阻制动方式是把列车动能转化的电能加于列车自带的电阻器中,使电能变为电阻器的热能,并最终消散于大气中。

6.人力制动机——以人力为动力来源,通过人力进行控制的制动机。。

作用

介绍自动空气制动机的由来

第二节列车自动空气制动机

【历史回顾】

最早——手动式机械闸;

1869年——直通式空气制动机;(美国:韦斯汀豪斯)

1872年——自动式空气制动机。

列车自动空气制动机由机车制动机和车辆制动机构成,分别装在机车、车辆上,列车运行时由司机统一操纵。

一、列车自动空气制动机的主要组成部分

(一)装设在机车上的部件

1.空气压缩机。又称风泵,用以产生压缩空气,供制动系统及其他风动装置使用。

2.总风缸。机车贮存压缩空气的容器,风缸内空气压力为750~900 kPa。

3.电空制动控制器。通过控制相关电路的闭合与开断,产生电信号,控制全列车制动系统进行制动、缓解与保压。

1)单独制动阀(简称单阀,俗称小闸)用于单独控制机车制动、缓解;

2)自动制动阀(简称自阀,俗称大闸)用于全列车制动、缓解。

6个作用位:

1.过充位

2.运转位

3.中立位

4.制动位

5.重联位

6.紧急制动位

(二)装设在车辆上的部件

1.副风缸。每辆车辆储存压缩空气的容器。缓解时,总风缸经调压后的压缩空气通过控制阀(或分配阀)进入副风缸贮存;制动时副风缸内的压缩空气又经控制阀(或分配阀)直接进入制动缸。

2.控制阀(或分配阀)。根据制动管内空气压力的变化来控制压缩空气的流向,使制动机形成制动、保压或缓解作用,为空气制动机中最主要且复杂的部件。

3.制动缸。制动缸是将压缩空气的压力转变为制动动力的部件。利用压缩空气推动制动缸活塞,压缩缓解弹簧,再通过基础制动装置的作用将制动缸活塞杆的推力传递到制动梁,使闸瓦压紧车轮,产生摩擦力而起制动作用。结合图片P69页有误

二、列车自动制动机的基本作用原理

(一)充风缓解作用

司机将大闸手柄置于运转位,大闸等部件将总风缸与列车制动管的空气通路连通,总风缸的高压空气经调压阀调整到规定压力后进入列车制动管,使制动管增压,再通过控制阀(分配阀)的作用,使制动管的风(压缩空气)经控制阀(分配阀)进入副风缸贮存,以备制动时使用。此过程称为充风作用。在总风缸向副风缸充风的同时,若制动机原处于制动状态,则通过控制阀(分配阀)的作用,使制动缸内的气体经控制阀(分配阀)的排气口排向大气,制动缸活塞在缓解弹簧的作用下被推回原位,再经基础制动的联动作用使闸瓦离开车轮而缓解,此过程称为缓解作用。

因此充风作用和缓解作用是同时产生的,故称为充气缓解作用。(二)排风制动作用

司机将大闸手柄置于制动位时,大闸等部件遮断总风缸与制动管的空气通路,连通制动管与大气的通路,则制动管的风经排气口排向大气,使制动管呈减压状态,通过控制阀(分配阀)的作用,使副风缸的风经控制阀(分配阀)进入制动缸,推动制动缸活塞,压缩缓解弹簧,伸出活塞杆,经基础制动装置的联动,使闸瓦压紧车轮踏面而起制动作用。

(三)制动后保压作用

司机将大闸手柄置于中立位时,大闸切断了制动管的充、排气气路,制动管压力即不上升也不下降,控制阀(分配阀)切断制动缸的充、排气气路,制动缸内气体压力保持不变,处于制动后的保压状态。

列车制动机的主要特点是:制动管呈增压状态时,通过控制阀(分配阀)的作用,使制动机起充风缓解作用;制动管呈减压状态时,通过控制阀(分配阀)的作用,使制动机起制动作用,即“增压缓解,降压制动”。

若列车在运行中,发生了列车脱钩分离事故,由于制动软管被拉断,制动管的风压急剧降低,通过控制阀(分配阀)的作用,使分离后的全部车辆(包括机车),能迅速地、自动地产生制动而停车,从而保证了安全行车。

中南大学电力机车制动机作业答案

《电力机车制动机》作业参考答案 作业一 1.试简述自动式空气制动机的作用原理。 答:(1)缓解状态:司机将制动阀手柄置于“缓解位”,压力空气经制动阀向列车管充风,三通阀活塞两侧压力失去平衡而形成向右的压力差,推动活塞带动滑阀、节制阀右移,一方面开通充气 沟,使列车管压力空气经充气沟进入副风缸贮备;另一方面开通制 动缸经滑阀的排风气路,使制动缸排风,最终使闸瓦离开车轮实现缓解作用。 (2)制动状态:司机将制动阀手柄置于“制动位”,列车管内压力空气经制动阀排风,即列车管减压,三通阀活塞两侧压力失去平衡而形成向左的压力差,推动活塞左移,关闭充气沟使副风 缸内的压力空气不能向列车管逆流;同时,活塞带动滑阀、节制阀左移,使滑阀遮盖排气口 以关断制动缸的排风气路,并使节制阀开通副风缸向制动缸充风的气路,随着压力空气充入 制动缸,将推动制动缸活塞右移,最终使闸瓦压紧车轮产生制动作用。 (3)保压状态:司机将制动阀手柄置于“中立位”,切断列车管的充、排风通路,即列车管压力停止变化。随着制动状态时副风缸向制动缸充风的进行,副风缸压力降低,当降到稍低于列车 管压力时,三通阀活塞带动节制阀微微右移,从而切断副风缸向制动缸充风的气路,使制动 缸既不充风也不排风,即制动机呈保压状态。 作业二 1.什么是绝对压力和表压力?它们有什么样的关系? 答:绝对压力是指压力空气的实际压力。表压力是指压力表指示的压力值。绝对压力等于表压力与大气压力之和 2.我国对制动管的最小及最大减压量是如何规定的? 答:一般地,单机时,最小有效减压量选取40kPa;牵引列车时,最小有效减压量选取50kPa;牵引60辆以上时,最小有效减压量选取70kPa。 当列车管压力为500kPa或600kPa时,则其列车管最大有效减压量分别为140kPa或170kPa。 3.什么叫制动波?什么叫制动机的稳定性、安定性及灵敏度? 答:这种制动作用沿列车长度方向由前向后逐次传播现象,人们把它叫作“制动波”。 当列车管减压速率低于某一数值范围时,制动机将不发生制动作用的性能,称为制动机的稳定性。常用制动时不发生紧急制动作用的性能,称为制动机的安定性。当列车管减压速率达到一定数值范围时,制动机必须产生制动作用的性能,称为制动机的灵敏度。 4.产生列车制动纵向动力作用的主要原因有哪些? 答:(1)制动作用沿列车长度方向的不同时性,即列车前部制动力形成得早,上升得快,后部则晚而慢。 (2)全列车制动缸的压力都达到指定值以后,单位制动力沿列车长度方向的不均匀分布。这是由于列车中车辆类型和装载状态不同而造成的。 (3)各车辆之间的非刚性连接使由于前两种原因产生的纵向动力作用更加剧烈。 作业三 1.试画出SS4改型电力机车的风源系统。 答:

列车制动机安定保压试验作业指导书(一)

作业指导书 列车制动机安定保压试验

目 次 一、作业介绍 (1) 二、作业流程示意图 (2) 三、作业程序、标准及示范 (3) 1.确认风压 (3) 2.制动减压 (3) 3.充风缓解 (4) 4.试验结束 (5) 四、附件 (7) 1.作业定置示意图 (7) 2.安定试验命令代码说明 (7) 3.制动缸活塞行程 (7)

一、作业介绍 1.作业地点:车辆段各列检作业场。 2.适用范围:适用于现场人工检查列车制动机安定保压试验作业。 3.上道作业:列车制动机感度试验。 4.下道作业:列车制动机持续一定时间保压试验。 5.人员要求:取得铁路岗位培训合格证书的检车员。 6.作业要点:制动时,减压140kPa(列车主管压力为600kPa时减压 170kPa),不得发生紧急制动,并确认制动缸活塞行程须符合规定;同时保压,1min内无线风压监测仪显示的列车主管压力下降不大于20kPa。

二、作业流程示意图

三、作业程序、标准及示范 1.确认风压 1.1尾部正号检车员观察无线风压监测仪显示列车管压力情况,确认风压达到规定压力(500Kpa或600Kpa)后,准备进行列车制动机安定保压试验。 1.2列检值班员确认列车车辆制动试验监测系统显示屏显示信息正确,如图1。 图1 2.制动减压 2.1尾部正号检车员依次逐段向列车前部传递制动信号(昼间-用检车锤高举头上,夜间-用检车灯高举头顶上下摇动),机后正号检车员接到制动信号后,操作发码机,输入安定试验命令代码,执行安定保压试验。机车试风时,机后正号检车员向司机显示制动信号,如图2。 图2 2.2尾部正号检车员确认无线风压监测记录仪显示减压140Kpa(列车主管压力为600Kpa时减压170Kpa)达标后;向前传递车辆制动机确认信号,各段

120型货车空气制动机单车试验规范

120型货车空气制动机单车试验规范 1、适用范围 本规范适用于装用120型货车空气制动机的车辆,使用改造后的货车单车试验器(以下简称单车试验器),进行单车制动性能试验。 2、试验准备 2.1安装120型货车空气控制阀(以下简称120阀)之前,须将压缩空气对制动主、支管进行吹扫,待制动管吹净后,将120阀装上。 2.2制动机单车试验前须用200kPa压缩空气将制动机各风缸内水分及污垢吹净。 2.3装120阀的货车车辆按规定将手动空重车调整在空车位进行试验,若需进行重车位试验,应在有关技术文件另行规定。 3、试验设备 3.1总风源压力应不低于600kPa,货车单车试验器的试验风压调整到 500kPa(以下简称定压),单车试验器与制动软管连接用的胶管内径为 25mm,长度应为 1."5-2m,单车试验器每月进行一次机能检查,机能检查要求见附录。不合格时,单车试验器不许使用。 3.2测定制动缸压力时,应在制动缸或120阀排气口安装 1."5级压力表,压力表每三个月应校验一次。 4、试验步骤及要求 4.1制动管漏泄试验 将单车试验器与车辆一端制动软管相连,开放两端折角塞门,加软管堵,关组合式集尘器,操纵手把置1位充风,待制动管达规定压力,移操纵阀手把至3位保压1分钟,制动管漏泄不得超过10kPa。

4.2全车漏泄试验 将组合式集尘器置开放位,操纵阀手把置1位充气,待副风缸充气至定压后,将操纵阀手把置3位保压1分钟,制动管漏泄不得超过10kPa。 4.3制动、缓解感度试验 操纵阀手把置1位充气,待副风缸达定压时,将操纵阀手把移至4位。当制动管减压40kPa时,立即移操纵阀手把至3位。120阀须在制动管减压40kPa 以前发生制动作用,其局部减压量不得大于40kPa,局部减压作用终止后,保压1分钟不得缓解。随后,将操纵阀手把移至2位充气。制动管长度为16m以下的车辆,120阀应在45S内使制动缸压力缓解至30kPa以下。制动管长度为16-24m的车辆,在制动感度试验后,将操纵阀手把移至4位使制动管继续减压 30kPa,手把移至3位,待压力稳定后,将操纵阀手把移至2位充气,120阀应在45s内使制动缸压力缓解至30kPa以下。 4.4制动安定试验 操纵阀手把置1位充气,待副风缸达定压时,将操纵阀手把移至3位,打开常用排风阀,制动管减压200kPa后缓慢关闭常用排风阀,制动机不得发生紧急制动作用。 试验完毕,按表1要求检查制动缸活塞行程。随后,保压1分钟(当压力表装在120阀排气口时,应将操纵阀手把移至1位后,保压1分钟)。制动缸漏泄不得超过10kPa。 装闸调器 (356×254) 装闸调器 (254×254)制动缸活塞行程调整 125±10 155±10制动缸活塞标记A

2016年HXD型电力机车制动机共性题库

HXD型电力机车共性题库 ?一、填空题 ? 5.和谐型电力机车动力制动方式为( )。 ?答案:再生制动 ?8.制动显示屏LCDM位于司机室操纵台,通过它可进行CCBⅡ系统()、故障查询等功能的选择和应用。 ?答案:自检 ?9.自动制动手柄位置包括运转位、初制动、全制动、( )、重联位、紧急位。 ?答案:抑制位 ?10.和谐型电力机车自阀制动后需单独缓解机车时,单阀应在运转位向( )侧压。 ?答案:右 ?11.ERCP发生故障时,自动由()和13CP来代替其功能。 ?答案:16CP ?19.自阀手把运转位时,16CP响应( )压力变化,将作用管压力排放。 ?答案:列车管 ?20.自阀手把常用制动区,BCCP响应( )压力变化,机车制动缸压力上升。 ?答案:作用管 ?16.和谐型电力机车制动机采用了( )气路的空气制动系统,具有空电制动功能。 ?答案:集成化 ?25.和谐型电力机车机车基础制动方式为( )制动(和谐2机车除外)。 ?答案:轮盘 ?https://www.wendangku.net/doc/2c2253084.html,BⅡ系统是基于微处理器的电空制动控制系统,除了()制动作用开始,所有逻辑都是微机控制的。 ?答案:紧急 ?32.和谐型电力机车单阀手柄移至制动区,()响应工作,使制动缸产生0—300kPa 作用压力。答案:20CP ?33.和谐型电力机车侧压单阀手柄时,()工作,可实现缓解机车的自动制动作用。 ?答案:13CP ?36.和谐型电力机车采用了新型的空气干燥器,有利于()的干燥,减少制动系统阀件的故障率。 ?答案:压缩空气 ?38.20CP响应手柄的不同位置,使制动缸产生作用压力为()kPa。当侧压手柄时,实现缓解机车的自动制动作用。 ?答案:0—300 ?39.和谐型电力机车换端前将大闸放置重联位,插上防脱插销,小闸置( )位。 ?答案:全制动 ?41.和谐型电力机车制动系统采用的是克诺尔的( )型和法维莱制动机。 ?答案:CCBⅡ ?https://www.wendangku.net/doc/2c2253084.html,BⅡ型制动机主要由LCDM制动显示屏、EBV()、集成处理模块IPM、继电器接口模块RIM和电空控制单元EPCU等组成。 ?答案:电子制动阀 ?47.和谐型电力机车弹停装置动作,且弹停塞门()关闭时,如要缓解弹停装置,必须在走行部的(弹停风缸)上进行手动缓解。

列车制动机全部试验过程及要求

列车制动机全部试验过 程及要求 标准化管理部编码-[99968T-6889628-J68568-1689N]

1. 检修作业完毕,应进行列车制动机性能全部试验。 2. 列车试验器应由专人操纵。 3.进行列车制动机性能全部试验,确认车列制动机性能。全体检车员地沟试风作业,作业过程依次传递确认制动机的性能试验号志。? 4. 尾部检车员确认列车主管压力达到600kpa后,首尾两端检车员核查首尾车风表压力与试验风表、列车试验器风表压力差不大于20kpa,同时确认总风管表压力。由专人进行微控大闸遥控操作试验。 4.1充风试验: 确认列车管压力达到定压并且全列贯通良好后,进行充风试验。 4.2列车管漏泄试验: 确认列车管压力达到600kpa时,保压1min,列车管压力下降不得超过20kpa。 4.3制动缓解感度试验: 列车管压力达到600kpa时,减压50kpa,检车员应按规定辆数检查确认全列车发生制动作用,保压1min内不得发生自然缓解。充风缓解时检车员按规定辆数检查确认制动机1min内缓解完毕。 4.4制动安定试验: 在风压达到600kpa时,减压170kpa,检车员按规定辆数检查确认全列车不得发生紧急制动,制动缸活塞行程符合规定。 4.5制动保压试验: 在风压达到600kpa时,减压170kpa,在制动状态下保压1min,制动主管压力空气漏泄量不大于20kpa。 4.6总风管漏泄试验: 在风压达到600kpa时,保压1min,总风管压力下降不得超过20kpa。 4.7.持续一定时间的全部试验 4.7.1全部试验后,将自动制动阀手把置于制动区减压170kpa。? 4.7.2保压5min不得发生自然缓解,由尾部检车员显示试风完了信号,并逐段传递。 5.当遥控和电控失效时,开启手自动转换球阀,使用手动扳动微控列车试验器进行试验。 5.1漏泄试验。 5.1.1尾部检车员发出保压号志,依次前传给列车制动试验器操作员。 5.1.2 列车试验器操作员接到检车员保压号志后,关闭第一辆车前部折角塞门,使列车保压1min。 5.1.3尾部检车员检查试验风表,列车制动主管压力下降不大于20kpa/min。尾部检车员在确认列车主管压力达到600kpa后向前发出制动号志,依次前传给列车制动试验器操作员。 5.1.4 尾部检车员确认保压良好后,依次传递号志,列车试验器操作员将第一辆车前部折角塞门打开。 5.2 制动缓解感度试验。 5.2.1 尾部检车员在确认列车主管压力达到600kpa后向前发出制动号志,依次前传。 5.2.2列车试验器操作员接号志后,将自动制动阀手把移至制动区。减压 50kpa,检车员按规定辆数检查确认制动机发生制动作用,并在1min内不得发生自然缓解。

5.3货车空气制动机客车空气制动机

【回顾上次课内容】 1.制动机种类; 2.列车自动空气制动机的主要组成部分; 3.列车自动空气制动机的工作原理。 第三节货车空气制动机 一、120型空气制动机 1.制动管:车辆上贯通压缩空气的通路。 2.制动软管:用于连接相邻两车辆的制动主管。 3.折角塞门:安装在制动主管两端,用于开启或关闭主管与软管之间的压缩空气通路,以便车辆摘挂。 4截断塞门:设在制动支管上远心集尘器的前方,用于开启或关闭车辆制动支管压缩空气的通路。 5.远心集尘器:安装在制动支管上,截断塞门与控制阀之间,用以收集由制动管压缩空气中带来的尘埃、水分、锈垢等不洁物质,将清洁的空气送入控制阀,保证控制阀的正常作用。 6.120型控制阀:120型空气制动机的核心部件,控制压缩空气的流向。 7.副风缸:吊挂在车底架下部,为圆筒形,是储存压缩空气的容器。 8.制动缸:吊挂在车底架下部。目前主要使用密封式制动缸。制动时,活塞杆被推出,活塞杆再推动推杆,带动基础制动装置起制动作用;缓解时,活塞杆缩回制动缸内,推杆便失去推力,车辆缓解。 9.加速缓解风缸与主阀内的加速缓解阀配合使用。其作用是:当某一车辆制动机产生缓解作用时,把准备排人大气的制动缸气体引向加速缓解阀处,使加速缓解阀产生动作后再从主阀排气口排出。 10.空重车调整装置:空重车时所需闸瓦压力即制动力是不一样的,可根据载重量的大小调整制动力的大小。 二、120型控制阀简介 由中间体、主阀、半自动缓解阀、紧急阀三部分组成。。 因采用120型空气控制阀而得名。 结合图片介绍各个部件。

1.中间体:有4个垂直面,为主阀、紧急阀、管子的连接座。 2.主阀:安装在中间体上,是控制阀中最主要的部分。控制着制动机的充风、缓解、常用制动、紧急制动等作用。 3.紧急阀:紧急制动时使用,使制动管产生强烈的局部减压作用,提高减压速度,保证全列车起紧急制动作用。 4.半自动缓解阀:由手柄部和活塞部两部分组成,有缓解排风两个作用。 三、120型控制阀的作用原理(课外自己阅读) 第四节客车空气制动机 一、104型空气制动机 由104型分配阀、压力风缸、副风缸、闸瓦间隙自动调整器、截断塞门、远心集尘器、制动管、折角塞门及制动软管、缓解阀等组成。 104型分配阀由中间体、主阀、紧急制动阀三部分组成。 二、压力表 装在制动主管引出直立支管上,设有刻度盘和指针。 三、紧急制动阀 (一)构造、作用 1.由手柄、偏心轴、阀、阀座、阀体及排风孔等组成,平时手柄向上,打上铅封。 2.作用位。 (1).关闭位。是紧急制动阀不工作的位置,其手柄位于上方极端位。 (2).全开位。是紧急制动阀工作的位置,其手柄位于下方极端位。(二)使用规定 1.危及行车、人身安全情形时; 2.使用时,不必先行破封; 3.长大下坡道,先看压力表。 四、104型电空制动机的简介 120 km/h以上速度的客车采用电空制动机。104型电控制动机的组成包括:104型电空分配阀、制动管、制动缸、工作风缸、缓解风缸、远心集尘器及截断塞门、缓解阀、车长阀、止回阀、缓解指示器和制动软管连接器等。P79页相关内容

列车制动机简略试验作业指导书

作业指导书 列车制动机简略试验

目 次 一、作业介绍......................................................- 1 - 二、作业流程示意图.................................................- 2 - 三、作业程序、标准及示范...........................................- 3 - 1.试验准备 (3) 2.确认风压 (3) 3.传递信号 (3) 4.状态确认 (4) 5.试验结束 (4)

一、作业介绍 1.作业地点:车辆段各列检作业场。 2.适用范围:适用于现场人工检查中转列车制动机简略试验作业。 3.上道作业:列车制动机持续一定时间保压试验。 4.下道作业:中转列车撤除安全防护。 5.人员要求:取得铁路岗位培训合格证书的检车员。 6.作业要点:有列检参加的简略试验中,在列车最后一辆车尾部制动软管上安装无线风压监测仪,确认列车主管压力达到规定后,由机车乘务员负责操纵机车自动制动阀,置常用制动位减压100kPa,列车后部现场检车员确认最后一辆车发生制动作用,然后向机车乘务员显示缓解信号并确认最后一辆车发生缓解作用。

二、作业流程示意图

三、作业程序、标准及示范 1.试验准备 安装尾压仪: 尾部检车员将无线风压监测记录仪电源开关打开,启动无线风压监测仪,并输入相关的股道等信息,将无线风压监测仪安装尾部车辆制动软管上,缓慢打开车辆折角塞门,如图1、2。 图1 图2 2.确认风压 2.1尾部检车员观察无线风压监测仪显示风压达到规定压力(500Kpa或600Kpa)后,对讲机向列检值班员进行报告。 2.2值班员确认列车车辆制动试验监测系统显示屏显示信息正确后,录入制动机简略试验相关数据。 3.传递信号 尾部检车员确认列车管达到规定压力后,依次逐段向列车前部检车员传递简略试验制动信号(对讲机同时辅助),机后检车员接到制动信号后,向机车乘务员显示制动信号,并通知司机减压100Kpa。如图3。

车辆制动机 习题集 --1

列车制动习题 第一章1绪论 一、判断题 1.人为地施加于运动物体(含防止其加速)或停止运动或施加于静止物体,保持其静止状态。这种作用被称为制动作用。() 2.解除制动作用的过程称为缓和。() 3.制动波是一种空气波。() 4.实现制动作用的力称为阻力。 5.制动距离 6.缓解位储存压缩空气 7.制动时 二、选择题 1.基础制动装置通常包括()。 A转向架基础制动装置B空气制动装置 C手制动机D机车制动装置 2.仅用于原地制动或在调车作业中使用的制动机是。 A电空制动机B真空制动机C手制动机D自动空气制动机 3.自动式空气制动机的特点是。 A增压缓解一旦列车分离全车均能自动制动而停车。 B增压制动 C增压制动 D增压缓解 4.安装于机车上通过它向制动管充入压缩空气或将制动管压缩空气排向大气。 A调压阀B自动制动阀C空气压缩机D三通阀 5.将总风缸的压缩空气调整至规定压力后。 A调压阀B紧急制动阀C空气压缩机D三通阀 6.和制动管连通,根据制动管空气压力的变化情况,从而控制向副风缸充入压缩空气的同时把制动缸内压缩空气排向大气实现制动机缓解或者将副风缸内压缩空气充入制动缸产生制动机制动作用的是。 A调压阀B紧急制动阀C空气压缩机D三通阀 7.三通阀(分配阀或控制阀)属压力机构阀,是自动空气制动机的关键部件。 A一B二C三D混合 8.三通阀发生充气、缓解作用时。 A列车管通过三通阀的充气沟向副风缸充气。 B制动内压缩空气通过三通阀排气口排入大气。 C列车管通过三通阀的充气沟向副风缸充气阀内联络通路进入制动缸。 D列车管通过三通阀的充气沟向副风缸充气阀排气口排入大气。9.三通阀发生制动作用时。 A副风缸内压缩空气通过三通阀内联络通路进入制动缸。 B制动内压缩空气通过三通阀排气口排入大气。 C列车管停止向副风缸充气再上升。 D列车管通过三通阀的充气沟向副风缸充气阀排气口排入大气。

铁道机车车辆液压制动机及其国内外发展

铁道机车车辆液压制动机及其国内外发展 摘要介绍了应用于铁道机车车辆上的液压制动机的原理、特点和关键技术,对国内外铁道机车车辆采用液 压制动机的应用进行了分析,并阐述了液压制动机的发展趋势。 关键词液压制动;铁道车辆;发展 列车运行速度越高,对车辆设备小型化、轻量化 及制动系统的性能及可靠性要求越高。采用液压制动 机来代替传统的空气制动机,可以在确保具有与空气 制动装置相同可靠性的条件下实现小型化、轻型化, 同时由于液压系统具有快速响应的特点,可取消防滑 器,并比空气制动系统具有更好的防滑性能。 为了适应高速机车车辆以及城市轨道交通车辆整 体技术的发展,世界上许多国家都对液压制动方式进 行了研究,成为铁路机车车辆制动技术发展的趋势之 一。 目前,随着计算机技术、机电和自动控制技术、 现代制造技术及新材料、新工艺等一系列高新技术的 蓬勃发展,液压技术有了很大的发展。密封材料性能 的提高、液压件微型化以及高可靠性和适用性等,都 给机车车辆制动系统采用液压技术创造了条件。 1液压制动的组成及基本原理 液压制动系统一般是由油泵,蓄能器,电磁控制 阀以及基础制动装置等部件组成。液压系统原理图一 般如图1所示。 由液压系统原理图可以看出,整个液压制动系统 按照功能来分,可以分为微机制动控制器(MBCU)、 电液制动装置及基础制动装置。 微机制动控制器(MBCU)的工作原理与空气制动 机基本相似,以接收常用制动指令、紧急制动指令、 电气制动反馈、A TC信号等输入,经过计算机处理, 输出常用制动指令、紧急制动指令来控制相应电磁阀, 完成制动力的控制。除此之外,它还要控制液压系统 的驱动和控制,如油泵的起停控制,以及整个液压系 统的状态检测等,如液压系统的各种传感器反馈信息。 电液制动装置由电机、油泵、蓄能器、常用制动

JZ-7型制动机

JZ-7型空气制动机讲义何谓制动、制动力、制动机、基础制动装臵、手制动机? 人为地使列车减速、停车或防止停留的车辆移动所采取的措施,称为制动。由人工引起的、可调节的、受到一定限制的与列车运行方向相反并阻止列车的外力,称为制动力。由于实施制动开始到列车完全停车为止,这段时间内列车所行驶的距离称为制动距离。为了实行制动而在机车、车辆上装设的由一整套零部件组成的装臵,称为制动装臵。它一般由制动机、基础制动装臵和手制动机等三部分组成。 制动装臵中可直接受司机操纵控制,从而产生制动力的动力来源的部分,称为制动机。压力空气进入制动缸,推动活塞外移,又通过制动传动装臵,利用杠杆原理将制动缸产生的制动原力扩大若干倍后向各闸瓦传递的装臵,称为基础制动装臵。用人力转动手轮或手把,以代替制动机产生制动力的动力来源的部分称为手制动机。 在铁路运输中,为实现“多拉快跑”、“安全正点”和及时准确地在指定的地点停车,在每台机车、车辆上均装有制动机。 目前安装在接触网作业车上的制动机大致可分为: 1、H-6型空气制动机; 2、DK-1型空气制动机; 3、JZ-7型空气制动机。

JZ-7型空气制动机的主要特点 1、能客、货机车兼用。 2、能自动保压。 将自动制动阀手柄移至需要的减压量位臵上,待列车管减压到与手柄相对应的某一确定压力时,即自动保压。 3、自动制动阀设有过量减压位。 该位臵比常用制动区有更大的减压量,这就解决了列车在长大下坡道地区当列车管及副风缸充气不足的情况下,能有效地进行制动作用。 4、结构上采用橡胶模板、柱塞、O型密封圈、止阀等零部件,不仅可以延长检修期限,而且使制造、运用和检修均较方便。 5、采用二、三压力混合机构的分配阀既有一次缓解,又能阶段缓解。 6、设有过充位。 此位臵可以缩短向列车管、副风缸初充气和再充气的时间,且无过量供给之患。 7、自动制动阀采用凸轮结构,手柄操纵时轻快、方便,不受气温高低的影响。 JZ-7型空气制动机的组成 JZ-7型空气制动机主要包括风源部、控制部、中继部及执行部。风源部由空气压缩机、总风缸、油水分离器、调压气等组成;控制部为制动机的操纵部件,包括自动制动阀、单独制动阀

内燃机车发展史及机车的结构原理

内燃机车发展史及机车的结构原理 内燃机车(diesel locomotive)以内燃机作为原动力,通过传动装置驱动车轮的机车。根据机车上内燃机的种类,可分为柴油机车和燃气轮机车。由于燃气轮机车的效率低于柴油机车以及耐高温材料成本高、噪声大等原因,所以其发展落后于柴油机车。在中国,内燃机车的概念习惯上指的是柴油机。 发展 20世纪初,国外开始探索试制内燃机车。1924年,苏联制成一台电力传动内燃机车,并交付铁路便用。同年,德国用柴油机和空压缩机配接,利用柴油机排气余热加热压缩空气代替蒸汽,将蒸汽机车改装成为空气传动内燃机车。1925年,美国将一台220 kW电传动内燃机车投入运用,从事调车作业。30年代,内燃机车进入试用阶段,直流电力传动液力变扭器等广泛采用,并开始在内燃机车上采用液力耦合器和液力变扭器等热力传动装置的元件,但内燃机车仍以调车机车为主。30年代后期,出现了一些由功率为900~1 000 kW单节机车多节连挂的干线客运内燃机车。

第二次世界大战以后,因柴油机的性能和制造技术迅速提高,内燃机车多数配装了废气涡轮增压系统,功率比战前提高约50%,配置直流电力传动装置和液力传动装置的内燃机车的发展加快了,到了20世纪50年代,内燃机车数量急骤增长。60年代期,大功率硅整流器研制成功,并应用于机车制进,出现了交—直流电力传动的2 940 kw内燃机车。在70年代,单柴油机内燃机车功率已达到4 410kW。随着电子技术的发展,联邦德国在1971年试制出1 840 kW的交一直一交电力传动内燃机车,从而为内燃机车和电力机车的技术发展提供了新的途径。内燃机车随后的发展,表现为在提高机车的可靠性、耐久性和经济性,以及防止污染、降低噪声等方面不断取得新的进展。 中国从1958年开始制造内燃机车,先后有东风型等3种型号机车最早投入批量生产。1969年后相继批量生产了东风4等15种新机型,同第一代内燃机车相比较,在功率、结构、柴油机热效率和传动装置效率上,都有显着提高;而且还分别增设了电阻制或液力制动和液力换向、机车各系统保护和故障诊断显示、微机控制的功能;采用了承载式车体、静液压驱动等一系列新技术;机车可靠性和使用寿命方面,性能有很大提高。东风11客运机车的速度达到了160km/h。在生产内燃机车的同时,中国还先后从罗马尼亚、法国、美国、

列车制动机持续一定时间保压试验作业指导书(一)

作业指导书 列车制动机持续一定时间保压试验

目 次 一、作业介绍 (1) 二、作业流程示意图 (2) 三、作业程序、标准及示范 (3) 1.确认风压 (3) 2.制动减压 (3) 3.充风缓解 (4) 4.试验结束 (4) 四、附件 (6) 1.持续试验命令代码说明 (6)

一、作业介绍 1.作业地点:车辆段各列检作业场。 2.适用范围:适用于现场人工检查列车制动机持续一定时间保压试验作业。 3.上道作业:列车制动机安定保压试验。 4.下道作业:列车制动机简略试验。 5.人员要求:取得铁路岗位培训合格证书的检车员。 6.作业要点:发出列车运行前方途经长大下坡道区间的,在始发作业、中转作业时应实行持续一定时间保压试验。制动时,列车管减压100Kpa后保压3min,制动机不得发生自然缓解。

二、作业流程示意图

三、作业程序、标准及示范 1.确认风压 1.1尾部正号检车员观察无线风压监测仪显示列车管压力情况,确认风压达到规定压力(500Kpa或600Kpa)后,准备进行列车制动机持续一定时间保压试验。 1.2列检值班员确认列车车辆制动试验监测系统显示屏显示信息正确,如图1。 图1 2.制动减压 2.1尾部正号检车员依次逐段向列车前部传递制动信号,机后正号检车员接到制动信号后,操作发码机,输入持续试验命令代码,执行持续一定时间保压试验。机车试风时,机后正号检车员向司机显示制动信号,并通知司机减压100Kpa,如图2。

图2 2.2尾部正号检车员确认无线风压监测记录仪显示减压100Kpa达标后,同时对讲机通知列检值班员和检车员开始保压。 2.3列检值班员确认监测系统保压到达3min时,向现场进行通报开始进行制动机状态检查,规范用语:“×组×道××次列车保压3min时间已到,开始制动检查”;列车后部现场检车员确认最后一辆发生制动作用,并确认不发生自然缓解。 3.充风缓解 3.1车辆制动试验确认碰头到位后,尾部正号检车员依次逐段向列车前部传递缓解信号,机后正号检车员接到缓解信号后,操作发码机,输入缓解命令代码,对列车实行充风缓解,各段检车员确认车辆开始缓解。机车试风时,机后正号检车员向司机显示制动信缓解号对列车实行充风缓解,如图3。 图3 3.2列检值班员确认列车制动机试验结束后,应确认检查感度试验、安定试验、持续一定时间保压试验数据符合规定,并对列车制动试验数据进行保存。 4.试验结束 4.1车辆开始缓解后列车制动机试验结束,列车尾部正号检车员依次逐段向列车前部检车员传递列车制动机试验结束信号,规范动作:昼间——用检查锤由上部向车列方向作圆形转动,夜间——用检车灯由上部向车列方向作圆形转动,如图4。

120型货车空气制动机单车试验规范

120 型货车空气制动机单车试验规范 1、适用范围 本规范适用于装用120 型货车空气制动机的车辆,使用改造后的货车单车试验器(以下简称单车试验器),进行单车制动性能试验。 2、试验准备 2.1 安装120 型货车空气控制阀(以下简称120 阀)之前,须将压缩空气对制动主、支管进行吹扫,待制动管吹净后,将120 阀装上。 2.2制动机单车试验前须用200kPa压缩空气将制动机各风缸内水分及污垢吹净。 2.3装120阀的货车车辆按规定将手动空重车调整在空车位进行试验,若需进行重车位试验,应在有关技术文件另行规定。 3、试验设备 3.1总风源压力应不低于600kPa货车单车试验器的试验风压调整到500kPa (以下简称定压),单车试验器与制动软管连接用的胶管内径为25mm,长度应为 1."5-2m,单车试验器每月进行一次机能检查,机能检查要求见附录。不合格时,单车试验器不许使用。 3.2测定制动缸压力时,应在制动缸或1 20阀排气口安装 1."5级压力表,压力表每三个月应校验一次。 4、试验步骤及要求 4.1 制动管漏泄试验 将单车试验器与车辆一端制动软管相连,开放两端折角塞门,加软管堵, 关组合式集尘器,操纵手把置 1 位充风,待制动管达规定压力,移操纵阀手把至3位保压 1 分钟,制动管漏泄不得超过10kPa。 4.2 全车漏泄试验

将组合式集尘器置开放位,操纵阀手把置 1 位充气,待副风缸充气至定压后,将操纵阀手把置 3 位保压 1 分钟,制动管漏泄不得超过10kPa。 4.3 制动、缓解感度试验 操纵阀手把置 1 位充气,待副风缸达定压时,将操纵阀手把移至 4 位。当制动管减压40kPa时,立即移操纵阀手把至3位。120阀须在制动管减压40kPa 以前发生制动作用,其局部减压量不得大于40kPa,局部减压作用终止后,保压1分钟不得缓解。随后,将操纵阀手把移至2位充气。制动管长度为16m以下的车辆,120阀应在45S内使制动缸压力缓解至30kPa以下。制动管长度为16- 24m 的车辆,在制动感度试验后,将操纵阀手把移至4位使制动管继续减压30kPa,手把移至3位,待压力稳定后,将操纵阀手把移至2位充气,120阀应 在45s内使制动缸压力缓解至30kPa以下。 4.4 制动安定试验 操纵阀手把置 1 位充气,待副风缸达定压时,将操纵阀手把移至3位,打开常用排风阀,制动管减压200kPa后缓慢关闭常用排风阀,制动机不得发生紧急制动作用。 试验完毕,按表 1 要求检查制动缸活塞行程。随后,保压 1 分钟(当压力表装在120阀排气口时,应将操纵阀手把移至 1 位后,保压 1 分钟)。制动缸漏泄不得超过10kPa。 装闸调器 (356X 254 装闸调器 (254X 254制动缸活塞行程调整 125±10 155±10制动缸活塞标记A 115

104电空制动系统

制动系统 前言 牵引与制动是一对矛盾,人为地使列车减速或阻止它加速叫做制动。制动是调速的一种特殊形式。当车辆需要减速、停车或在长大下坡道上运行需要限制列车的速度时,都必须采取制动措施,控制车辆的运行速度。现代铁路运输的安全性,在很大程度上取决于车辆制动性能的好坏。随着铁路运输的发展,行车速度的不断提高,对车辆的制动性能也相应提出了更高的要求,以更好的保证列车高速运行时的安全性和可靠性。 第一节总述 1. 概述 本车采用104集成式电空制动机,其电空制动系统包括列车管、总风管、104集成式电空阀、气路控制箱(餐车没有)、球芯截断塞门与集尘器联合体、副风缸、总风缸1、总风缸2(餐车没有)、工作风缸、缓解风缸、进口SAB电子防滑器、球芯折角塞门、排风塞门、紧急制动阀、止回阀及截断塞门等,车上设有排风塞门拉把,具体参见附图一:带气路控制箱电空制动系统原理图。 制动机、气路控制箱、各种风缸及管路等通过螺栓及管卡吊挂于车辆底架下,各大部件通过管路连接起来,管路上设有各种截断塞门、止回阀等。 各截断塞门手把顺着管子方向为开启,垂直管子为关闭,车辆运行时各风缸下部排水塞门必须处于关闭状态。注:各风缸排水塞门为防石击型,须用三角钥匙来开启或关闭。 手制动装置安装于一位角外端墙上,下部由手制动拉杆与一位盘形制动缸相连。 2.主要技术参数 列车管、总风管压力 600kPa 副风缸容积 234L 工作风缸容积 11L 紧急制动时制动缸压力 420±10kPa(104集成式电空阀) 总风缸1、总风缸2容积 120L(餐车没有总风缸2) 缓解风缸容积 40L

3.主要特点 ①列车纵向管路采用整体管排上车,使得车下管路布置整齐有序,固定牢靠, 安装方便,为实现纵向管路车下组装、整体吊装提供了有利的条件。 ②生活用风(塞拉门和集便器)与空簧用风采用两路独立的辅助供风系统,互不影响,提高了供风质量。 ③采用104集成式电空制动机,增设了防护罩,能更有效地防水、防尘,便于维护和检修,并提高了车辆高速运行时的防石击能力。 ④装有气路控制箱,便于操作和维护,其全封闭结构能有效地提高防石击能力。 ⑤在列车管和制动缸管路中设有压力传感器测试点,为行车安全监测装置提供压力信号。 第二节104集成式电空阀 1 简要说明 最近这些年来,随着旅客列车运行速度的不断提高,对铁路运营的安全以及旅客在列车运行中的舒适度也有了更高的要求,旅客列车电空制动机的使用,不仅对列车运行的安全提供了一定的保证,并且它的制动和缓解性能的提高,减少了旅客列车在运行中调速和停车时的纵向冲动,这就提高了旅客列车运行的平稳性,尽可能地满足旅客乘车时的舒适度。 现已装车运用的104型电空制动机,其结构型式是在104空气制动机的基础上设计而成的,主要是增设了电空阀座,并将其安装在104制动机的主阀和中间体之间,原主阀与中间体的相关气路依旧相通。因为当时要保持原有的装车条件不变,主要是为了旧车改造的方便,从而使得电空制动机的结构显得略微庞大,安装、检修不便。经过对104电空制动机的多年安装、使用及试验,我们认为可将104电空制动机改为集成式安装,这样的话,可方便电空制动机的安装、检修和维护,且其整体结构将趋于紧凑、合理。我们主要对104型电空制动机在安装、使用及性能方面作进一步的探讨和研究,提高104型电空制动机这项技术的各项指标或性能,以适应提速旅客列车的安全运行要求。

我国机车制动机的发展_刘豫湘

—4— 2002年第5期2002年9月10日机车电传动 ELECTRICDRIVEFORLOCOMOTIVES№5 ,2002Sep. 1 0,2002 男,1983年毕业于上海铁道学院铁道车辆专业,高级工程师(教授级),从事机车及列车制动机、电力机车空气管路系统的研究与开发设计工作。 Development of domestic locomotive brake LIU Yu-xiang, HU Yue-wen (R & D center, Zhuzhou Electric Locomotive Works, Zhuzhou, Hunan 412001, China) Abstract: Developing requirements and targets of domestic locomotive brake in current stage are proposed in the light of theirdevelopment history. Opinions are put forward on the basic types, functions, operation & control modes and electrically and pneumaticallyblended braking modes of new types of locomotive brake. Key words: locomotive brake; electrically and pneumatically blended braking ; electro-pneumatic braking; microcomputer control 收稿日期:2002-08-20摘要:结合我国机车制动机的发展史,提出了现阶段我国机车制动机的发展要求与目标,并对新型机车制动机的基本型式、基本功能、操作控制模式、空电联合制动模式的选择等提出了一些观点。 关键词:机车制动机; 空电联合制动; 电空制 动; 微机控制 中图分类号:U260.35 文献标识码:A 文章编号:1000-128X(2002)05-0004-03 1概述 我国机车制动机的发展与牵引动力的变革息息相关。在蒸汽牵引为主的年代里,仅适应于单端操纵的ET-6型机车空气制动机成为唯一的机车制动机。20世纪60年代初期,由ET-6型演变成适应双端操纵的EL-14A型机车空气制动机首先在电力机车上装用,然后用于内燃机车,从而改变了长期单一使用ET-6型机车空气制动机的落后面貌。为适应中国铁路运输的需求,机车制动技术相应地也取得了突破性发展。在20世纪70年代后期,相继研制成功了JZ-7型机车空气制动机和DK-1型机车电空制动机,并在20世纪80年代初期开始批量装车使用。在20世纪90年代,制动机的重联、列车电空制动控制、与列车运行监控记录装置的配合、空电联合制动等新技术也逐步在JZ-7型机车空气制动机和DK-1型机车电空制动机上得到了广泛的应用。 随着我国铁路牵引动力的发展以及交流传动为核心的先进技术在机车上的应用,牵引列车朝着重载、高速方向发展,这就对列车制动系统提出了更新更高的要 求:即减少车辆间及列车的制动冲动;缩短制动距离; 充分利用动力制动以减少基础制动装置的机械磨耗;提高制动系统的可靠性和安全性;实现制动系统的故障检测、故障诊断、故障显示与报警、故障记录等功能。 完成上述要求,仅靠对JZ-7型机车空气制动机和DK-1型机车电空制动机进行改进与完善是做不到的。只有在现代新技术的条件下,结合国内、外机车制动机的成功经验,研制一种新型机车制动机才能达到上述目标。 由于动力分散式动车组的制动系统与机车或动力集中式动力车的制动系统,从原理、型式、控制上差别较大,以下仅对机车(含动力集中的动力车)上使用的机车制动机基本型式的选定、操纵控制模式及基本功能和空电联合制动模式的选择作一些说明。 2机车制动机的基本型式的选定 采用压缩空气推动的闸瓦制动技术已有一个世纪以上的历史,在这段时间内,制动技术虽然有了很大的改进和发展,但目前世界各国铁路绝大多数仍采用空气制动。虽然电力、内燃机车等牵引技术全面发展,应用了动力制动,但列车的制停仍需要用空气制动来完成。当然随着交流传动技术的应用以及200km/h以上高 DOI:10.13890/j.issn.1000-128x.2002.05.002

列车制动机感度试验作业指导书(一)

作业指导书 列车制动机感度试验

目 次 一、作业介绍 (1) 二、作业流程示意图 (2) 三、作业程序、标准及示范 (3) 1.确认风压 (3) 2.制动减压 (3) 3.充风缓解 (4) 四、附件 (6) 1.作业定置示意图 (6) 2.感度试验命令代码说明 (6)

一、作业介绍 1.作业地点:车辆段各列检作业场。 2.适用范围:适用于现场人工检查列车制动机感度试验作业。 3.上道作业:列车制动机漏泄试验。 4.下道作业:列车制动机安定保压试验。 5.人员要求:取得铁路岗位培训合格证书的检车员。 6.作业要点:制动时减压50kPa(编组60辆以上时减压70kPa),全列车须发生制动作用,并在1min内不得发生自然缓解。缓解时,全列车须在1min 内缓解完毕。

二、作业流程示意图

三、作业程序、标准及示范 1.确认风压 1.1尾部正号检车员观察无线风压监测仪显示列车管压力情况,确认风压达到规定压力(500Kpa或600Kpa)后,准备进行列车制动机感度试验,见图1。 1.2列检值班员确认列车车辆制动试验监测系统显示屏显示信息正确后,录入车次、股道、辆数信息,如图1。 图1 2.制动减压 2.1尾部正号检车员依次逐段向列车前部传递制动信号(昼间-用检车锤高举头上,夜间-用检车灯高举头顶上下摇动),机后正号检车员接到制动信号后,操作发码机,输入感度试验命令代码,执行感度制动试验。机车试风时,机后检车员向司机显示制动信号,见图2。 图2 2.2尾部正号检车员确认无线风压监测记录仪显示减压50Kpa(编组60辆

以上时,减压70Kpa)达标后;用对讲机通知各段检车员减压量达标,各段检车员逐辆检查、确认车辆制动状态,并确认1min内不得发生自然缓解,并将发现的“制动关门车”详细信息记载在车统-15A上,并报告值班员,如图3。 图3 3.充风缓解 3.1车辆制动试验确认碰头到位后,尾部正号检车员依次逐段向列车前部传递缓解信号(昼间-用检车锤在下部左右摇动,夜间-用检车灯在下部下部左右摇动),机后正号检车员接到缓解信号后,操作发码机,输入缓解命令代码,执行缓解。机车试风时,机后检车员向司机显示制动信缓解号,见图4。 图4 3.2车辆发生缓解作用后,各段检车员逐辆检查、确认车辆制动机缓解状态,并确认1min内缓解完毕,如图5。

货车空气型制动机类型

模块二货车空气型制动机 空气制动机是指车辆制动装置中利用压缩空气作为制动动力来源,以制动主管的空气压力变化来控制三通阀(分配阀或控制阀)产生动作,实现制动和缓解作用的装置。 一、货车GK型空气制动机 GK型空气制动机是在K2型三通阀的制动机基础上改造而成的,使用在载重50t及其以上的大型货车上。“G”是汉语拼音“改”字的第一个字母,“K”表示K型三通阀,“GK”就是改造K型制动机的意思。GK型三通阀结构如图2.1所示 图2.1 GK型空气制动机由制动软管、连接器、制动主管、支管、截断塞门、远心集尘器、GK型三通阀、副风缸、制动缸等组成。其组成特点是:使用能与直径356mm制动缸配套使用的GK型副风缸,并设置空重车调整装置。包括:降压气室、安全阀、空重车转换塞门、

空重车指示牌及调整手把。 (一)空重车调整装置的调整方法: 当车辆每轴平均载重未满6t时,将空重车调整手把置于空车位;当车辆每轴平均载重在6t及其以上时,将空重车调整手把置于重车位。 (二)空重车调整装置的作用原理: 空重车的制动力不同是通过改变制动缸的容积来实现的。空车位时,开放空重车转换塞门,使制动缸与降压风缸(容积11L)连通,扩大制动缸容积。当制动时,副风缸压缩空气经三通阀进入制动缸,同时经空重车转换塞门进入降压气室,所以制动缸压力由于容积扩大而降低。 GK型制动机空重车调整装置结构示意图 图 2.2 为了使空车位时制动缸压力控制在190Kpa以下,在制动缸与降压气室的连通管上设有E—6型安全阀,它的调整压力为190Kpa。如果空车位制动缸压力超过190Kpa,安全阀开始排风,压力降至160Kpa时安全阀关闭;重车位时,空重车转换塞门处于关闭位置,截断降压气室与制动缸的通路,因此制动时,副风缸压缩空气只进入

相关文档
相关文档 最新文档