文档库 最新最全的文档下载
当前位置:文档库 › DF601系列变频器专用输出电源滤波器

DF601系列变频器专用输出电源滤波器

DF601系列变频器专用输出电源滤波器
DF601系列变频器专用输出电源滤波器

Electromagnetic Interference Control Expert

DF601Serials

Output EMC Filters for Frequency Converter 变频器专用输出EMC 滤波器

? 额定电流最高达1200A

Rated currents up to 1200A ? 具有dv/dt 抑制效果 Dv/dt limitation

?

有效减少变频器输出侧的电磁干扰

Reduction of electromagnetic interference levels from Inverters

?

可替代大部分进口原装滤波器

Optional choice for import input EMC filters.

特点 Features ? 通用、紧凑、嵌入式

/螺母/接线

General purpose, compact single phase filter with faston/nut/wire terminal ?

为变频器及特别干扰严重场合设计

Design for VVVF and high noise environment

应用 Application ?

专用于变频器及变频设备。用于降低EMC 干扰,用于主电源侧,切断电网与变频器之间的干扰通道 Specified design for VVVF and Frequency Converters. Design for EMC noise suppression and connect on the power input side to quarantine the interference way between power network and VVVF.

技术参数 Technical Data

额定电压 Rated Voltage 440 VAC 工作频率 Operation Frequency 0~120 Hz 开关频率 Switching Frequency 16K Hz max

耐压测试 Hi-pot Test

2250VDC, 1 minutes (线对线Line to Line) 2700VDC 1 minutes (线对地Line to Ground) 气候类别 Climate Category

25/85/21 (-25°C to +85°C)

设计参考标准 Design corresponding to

UL 1283, CSA 22.2 No. 8 1986, IEC/EN 60939

安装示意图 Connection Diagram

外形尺寸 Outline Dimensions(mm) 选型表 Type Selection Table 出线端子方式 Output Connection

型号 Model 额定电流(A) Rated Current 变频/伺服器容量 (KW)VVVF/Servo Capacity 外形尺寸Dim. Fig.

DF601-5A-01 5 0.75/1.5Fig 1Screw -DF601-8A-01 8 2.2/3.7Fig 1Screw -DF601-16-01 16 5.5/7.5Fig 2Screw -DF601-30-01 30 11/14Fig 2Screw -DF601-45A-01 45 18.5/22Fig 3Screw -DF601-75A-01 75 30/37Fig 4Screw -DF601-100A-01 100 45Fig 4Screw -DF601-120A-01 120 55Fig 4Screw -DF601-150A-01 150 75Fig 5Screw -DF601-200A-01 200 90

Fig 5Screw -DF601-300A-01

300 110/132/150Fig 6

-

Copper Bus

DF601-420A-01 420

160/210/220Fig 6- Copper Bus DF601-500A-01 500 250/260Fig 7- Copper Bus DF601-600A-01 600

280/315Fig 7- Copper Bus DF601-800A-01 800 400

Fig 7- Copper Bus DF601-1200A-01 1200

500/600Fig 7- Copper Bus

备注:以上规格为公司标准产品,可根据客户产品定制设计产品性能和尺寸外观。Remark: Customized products are available according to special performance or dimensions requirements

更多产品请登陆官方网站:https://www.wendangku.net/doc/282663979.html, For more products please go to official website: https://www.wendangku.net/doc/282663979.html,

变频器电路图-整流、滤波、电源及电压检测电路

变频器电路图-整流、滤波、电源及电压检测电路 以下仅仅对变频器电路图-整流、滤波、电源及电压检测电路的分析,好象论坛上发不了图纸. 1. 整流滤波部分电路 三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。 2. 直流电压检测部分电路 电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电路动作。由整流二极管D5、D6、D7、D18、D19、D20组成的整流电路输出脉动直流电,其后级的检测电路可对交流电压过低的情况进行实时检测,检测报警信号也通过光耦U1输出。 3. 电源电路 U62(VIPER100SP)是内部带场效应管的开关电源控制芯片。母线电压+VPW通过保险F1加到开关变压器T1的第2脚,T1的第1脚和第2脚是初级线圈,U62内部集成了特别的启动电路,电路启动后,T1次级3、4、5脚输出的感应脉冲经整流滤波后得到电压检测电路所需的正负电压,正电压也同时提供给U62以维持其工作。T1其它次级输出的感应脉冲经整流滤波后分别供应U、V、W三相上桥光耦驱动所需电压(+VHU,0VHU)(+VHV,0VHV)(+VHW,0VHW),还有其它控制电路所需电压(+VSI,0VSI,-VSI)。芯片U56(LM2575S-ADJ)是一个PWM开关式输出稳压芯片,将+VSI电压降压并稳定为5V(+VSI5)供给CPU等芯片所需电路。 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。

电抗器、滤波器的使用

应用探讨——电抗器、滤波器的使用——发帖整理 作者主题 谦 总坛主 经验值: 3073 发帖数: 2039 精华帖: 2 主题:应用探讨——电抗器、滤波器的使用——发帖整理 2012-03-21 14:43:56楼主 在变频器使用中,经常会在进线侧和出线侧加电抗器、滤波器,现场操作人员和调试工程师经常会有这样的疑问:为什么要使用电抗器、滤波器?它们的原理和作用是什么?能解决哪些问实际问题?所以本次讨论针对以上问题,欢迎大家就以下内容展开讨论: 1)输入电抗器能抑制谐波吗? 2)输入电抗器能解决逆变器共直流母线时的环流问题吗? 环流又是怎么产生的? 3)输出电抗器能解决电机轴电流和反射电压的问题吗?轴电流,反射电压又是如何产生? 4)输入滤波器,LC滤波器,谐波滤波器等各起什么作用? 5)电抗器、滤波器参数值的计算方法是什么? 6)使用电抗器和滤波器要注意哪些问题? 例如加输出电抗器,最大开关频率会有所限制,原因何在? 在近一个月的时间,大家对此话题进行了深入的讨论,内容包括。 1)输入和输出电抗器的作用。 2 )输入滤波器,LC滤波器,谐波滤波器。 3)电抗器、滤波器参数值的计算方法. 相对而言,讨论更多的集中在电抗器方面。 以下为本次探讨的发帖整理,查看原始交流内容请点击此处。 谦 总坛主 经验值: 3073 发帖数: 2039 精华帖: 2 主题:回复:应用探讨——电抗器、滤波器的使用——发帖整理 2012-03-21 14:44:371楼 1、和输出电抗器的作用

quote:以下是引用yming在2012-01-11 10:22:56的发言: 加精支持。 修改:在600KVA以上变压器。原因:变压器内阻太小,冲击电流太大。 总之,是利用电感元件的“电流不能突变”的特性,应用到所有需要抑制有可能电流突变的场合。当电压(瞬时)波动时,如果有导致电流变化的趋势,电抗器产生反向自感电动势抵消电压变化,减缓电流波动。从而满足应用要求。因此,可以说,电抗器有抑制电压波动的功能(不是消除)。 同样,再配合电容,就可构成滤波器(低通滤波、高通滤波、带通滤波等滤波器及各种陷波器),让指定范围的频率通过。 谦 总坛主 经验值: 3073 发帖数: 2039 精华帖: 2 主题:回复:应用探讨——电抗器、滤波器的使用——发帖整理 2012-03-21 14:44:442楼 quote:以下是引用wq1124在2012-01-17 15:24:36的发言: 电抗器作为无功补偿手段,在电力系统中时不可缺少的,有不同的分类方法,按接法可分为并联电抗器和串联电抗器;按功能可分为限流电抗器和补偿电抗器;按用途可分为限流电抗器、滤波电抗器、平波电抗器、阻尼电抗器等。 变频器和调速器在使用过程中,经常会受到来自浪涌电流和浪涌电压的冲击,会严重损坏变频器和调速器的性能和使用寿命,所以要在其前面加装输入电抗器,用以抑制浪涌电压和浪涌电流,保护变频器和调速器,延长其使用寿命和防止谐波干扰,同时由于变频器和调速器是采用变频的方式调速的,所以在调速的时候经常会产生高次谐波和产生波形畸变,会影响设备正常使用,为此,须在输入端加装一个进线电抗器,可以改善变频器的功率因数及抑制谐波电流,滤除谐波电压和谐波电流,改善电网质量。总之,输入电抗器既能阻止来自电网的干扰,又能减少整流单元产生的谐波电流对电网的污染 输出电抗器的作用:输出电抗器主要作用时补偿长线分布电容的影响,并能抑制输出谐波电流,提高输出高频阻抗,有效抑制dv/dt,降低高频漏电流,起到保护变频器,减小设备噪声的作用。 直流电抗器的作用:直流电抗器接在变频系统的直流整流环节与逆变环节之间,主要用途时将叠加在直流电流上的交流分量限定在某一规定值,保持整流电流连续,减小电流买充值,时逆变环节运行更稳定及改善变频器的功率因数。

-逆变器输出滤波器计算-

输出滤波器的计算 一、滤波器选择的部分指标 (1)逆变电源的空载损耗是逆变电源的重要指标之一。空载损耗与空载时滤波器的输入电流有关,电流越大,损耗越大,原因有以下两个方面:一方面,滤波器的输入电流越大,逆变开关器件上的电流越大,逆变器的损耗就越大;另一方面,空载时滤波器的输入电流也流过电抗器及电容器,电流增大也会使电抗器及电容器的损耗增大。所以从限制空载电流的角度来讲,空载时滤波器的输入电流不能太大。一般的,空载时滤波器的输入基波电流不能超过逆变电源的额定输出电流的30%。 设I m 表示空载时输入滤波器的输入基波电流的有效值,U 0表示输出电压基波的有效值,Wo 为基波角 频率, 则由图1可得: 00Im CU ω= (1) 有上式可知,空载时滤波器输入基波电流的大小与C 成正比。所以从限制逆变电源空载损耗的角度来讲,LC 滤波器的电容之不能太大。 (2)逆变电源对非线性负载的适应性指标 逆变电源对非线性负载的适应性是衡量逆变电源性能优劣的重要指标。非线性负载之所以会引起逆变电源输出电压波形的畸变,是因为非线性负载时一种谐波电流源,它产生的谐波电流在逆变电源输出阻抗上产生谐波压降,从而引起输出电压波形畸变。可见逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源对非线性负载适应性越好。 开环时逆变电源的输出阻抗就是LC 滤波器的输出阻抗,根据公式LC L Z 201ωω?= (2)

在L 、C 乘积恒定时,L 越小,则输出阻抗值越小。 当逆变电源采用电容电流及电压瞬时值反馈控制方案时,可以得到和开环时相同的结论。 综上说述可以得到以下两点结论: 1)在L 、C 之积恒定时,L 越小,逆变电源的输出阻抗越小,逆变电源对非线性负载的适应性越好; 2)L 越小,越不容易出现过调制,逆变电源对非线性负载的适应性越好。、 (3)在采用同步调制控制方式的逆变电源中,频率为(2ωs -ω0)的谐波是逆变器输出PWM 波中复制最高的谐波,它对输出电压的波形影响最大。输出电压中,只要频率为(2ωs -ω0)的谐波符合要求,则其他高次谐波含量均能符合要求。所以在这种情况下设计LC 滤波器是,只需考虑滤波器对(2ωs -ω0)频率谐波的衰减。 二、输出LC 滤波器的计算 2.1综述 一般说来,空载与负载相比,空载时电压中的频率(2ωs -ω0)的谐波含量是最大的,根据公式: )(*)1(1*2)2(1222200απββπωωJ N Q N b HF s ++=? (3) 式中C L R Q L //=;00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;2 2)1(/ββα?+=Q b ;)(1απJ 为1阶的Besset 函数,计算比较繁琐。 空载时,)2(00ωω?s HF 可表示为: )(*11*2)2(1 200απβπωωJ N b HF s ?=? (4) 式中:00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;βα?=1b 。 对式(4)进行分析,可得空载时)2(00ωω?s HF 的特性如下: a ,当逆变电源输入电压增大时,输出电压中的频率为 )2(0ωω?s 的谐波的谐波含量将增大。

开关电源适配器浪涌抗扰实验分析

开关电源适配器浪涌抗扰实验分析 自从开关电源适配器开始实行标准以来,我国在1999年和2008年推出了两个有关雷击浪涌抵抗的相关标准。这两个标准分别对应国际上的两种现行标准。虽然与雷击浪涌有关的GB/T17626.5规定在我国已经有两个版本,但因为大多数国内产品迟迟未根据新标准进行修订,所以造成了 GB/T17626.5-1999和GB/T17626.5-2008两个标准并存的局面。本文将为大家介绍开关电源适配器雷击浪涌抗扰度实验方法,以及实验等级。 ?标准主要模拟间接雷击(开关电源通常都无法经受直接雷击),如雷电击中户外电网线路,有大量电流流入外部线路或接地电阻,因而产生了干扰电压;间接雷击(如云层间或云层内的雷击)在外部线路上感应出的脉冲电压和电流;雷电击中线路邻近物体,在其周围建立强大电磁场,在外部线路上感应出电压;雷电击中附近地面,地电流通过公共接地系统时所引进的干扰。 ?电源适配器在浪涌抗扰试验标准处模拟自然界的雷击外,还提到了变电所等场合,因为开关动作而引进的干扰,如主电源系统切换时的干扰;同一电网,在靠近开关电源适配器附近的一些小开关跳动时形成的干扰;切换伴有谐振线路的晶闸管设备;各种系统性的故障,如设备接地网络或者接地系统间的短路和飞弧故障。 ?雷击浪涌抗扰度试验方法 ?1、根据试验品的实际使用和安装条件进行布局和配置,包括有些标准会改变体现波形发生器信号内阻的附加电阻。 ?2、根据产品要求来定试验电压的等级及试验部位。 ?3、在每个选定的试验部位上,正、负极性的干扰至少要各加5次,每次浪涌的最大重复率为1次/min。因为大多数系统用的保护装置在两次浪涌之间

开关电源中常用EMI滤波器

摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。三端电容器在抑制开关电源高频干扰方面有良好性能。文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。 1 开关电源特点及噪声产生原因 随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。 开关电源干扰主要来源于工频电流的整流波形和开关操作波形。这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。文中主要研究的是开关电源输入端的EMI滤波器。 2 EMI滤波器的结构 开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。为了更好地抑制共模噪声; 共模扼流圈应选用磁导率高,高频性能好的磁芯。共模扼流圈的电感值与额定电流有关。差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。常选

飞机交流电源测频电路低通滤波器的设计与仿真

电子设计工程 Electronic Design Engineering 第23卷Vol.23第2期No.22015年1月Jan.2015 收稿日期:2014-01-09 稿件编号:201401070 作者简介:党媚(1980—),女,陕西西安人,硕士,教师。研究方向:电气自动化专业。 交流电源是大、中型飞机普遍采用的一次电源类型,频率是交流电源一项重要的物理参数,也是评价交流电源电能质量的重要内容之一。在系统运行的过程中,既要保证频率在规定的范围之内,还要在频率超出规定的范围时按要求停止向用电负载供电,从而保护电源设备和用电负载免受危害。然而飞机所处的电磁环境非常复杂,电源系统极易受到电磁干扰的影响,而使测频电路的输入信号中混入高频噪声,导致测频结果产生较大的误差,或者出现频率跳变的现象。在某型机交流电源地面模拟试验的过程中就出现了反复的频率跳变问题,虽然没有导致交流电源频率保护动作,但可以想象,在机上复杂的电磁环境中,尤其是在战时强电磁干扰的条件下,后果不可忽视,轻者将使系统性能降级,重者可能导致交流电源因保护误动作而失效,甚至危机飞行安全。因而,实时、准确地获取系统频率信息成为交流电源系统安全、可靠运行的关键环节。 1原因分析及解决思路 某型飞机是采用脉冲计数法计算系统频率的。该方法首 先将被测信号的波形变换为方波后,向方波中填充计数脉冲进行计数,最后根据计数脉冲的个数和计数脉冲的周期计算被测信号的频率。经分析发现,引起频率产生跳变的原因是测频电路中的过零比较器在信号过零点附近因误触发而翻转,这正是在测频电路的输入信号中混入了高频噪声所致。 为消除或有效减小电磁干扰的影响,保证测频结果的准确性,在被测信号输入过零比较器之前应滤除混入电路中的高频噪声[1],这里选择三阶巴特沃斯有源低通滤波器实现。巴特沃斯滤波器具有通频带内频率响应曲线平坦,阻频带内逐渐下降为零,因此滤波特性好,获得较为普遍的应用。利用巴特沃斯函数,通过选择合适的阶数,可以在一定精度范围内近似实现理想低通滤波器特性。函数的阶数越高,转移特性越逼近理想滤波器,但是所需的元件数量也就越多,电路也就越复杂,对于一般的工程需要采用二阶电路即可满足要求,而对滤波性能要求更高的场合,可选择三阶低通滤波电路。 2二阶有源RC 低通滤波器 一种二阶有源RC 电路如图1所示[2],该电路称为Sallen- Key 低通电路,属于有源滤波器。有源滤波电路不仅能够补偿 无源网络中的能量损耗,提高信号的输出功率;同时,运算放大器有高输入阻抗和低输出阻抗的特点,在实现多级相连时相互之间的影响很小,负载效应也明显下降,尤为适用于低频应用场合。 根据节点电压方程可得电路的电压转移函数为: H sk (s )=V o (s )V i (s )= A f ω2 n s 2+ωn Q s +ω2 n 飞机交流电源测频电路低通滤波器的设计与仿真 党媚 (西安航空职业技术学院陕西西安710089) 摘要:针对型号研制过程中出现的交流电源频率测量出现跳变的问题,进行了故障定位和原因分析,并提出了解决方案。设计了适用于飞机交流电源系统频率测量电路的低通滤波器,对其特性进行了计算分析,并基于SIMULINK 建立了滤波器的模型,进行了仿真验证,结果表明设计的滤波器是有效的。关键词:交流电源;低通滤波器;频率测量;仿真中图分类号:TN713 文献标识码:A 文章编号:1674-6236(2015)02-0102-03 Design and simulation on low pass filter for frequency measurement circuit of aircraft AC power system DANG Mei (Xi ’an Aeronautical Polytechnic Institute ,Xi ’an 710089,China ) Abstract:This paper conducted fault location and causal analysis ,and provided the solution for this problem of Ac power frequency measurement jump In the process of model development .A low pass filter apply to Aircraft Ac power system frequency measurement circuit are Designed ,and it's characteristics are also be analyzed and calculated.The filter model is set up based on Simulink for simulation ,the result shows that the method of filter design is effective.Key words:Ac power ;a low pass filter ;frequency measurement ;simulation -102-

(完整word版)电源适配器检验标准.doc

深圳市小樱桃实业有限公公司 电源适配器检验标准 文件编号:XYT-WI-QCD-24 版本号:A0 生效日期:2014年5月 15日 编制人:编制日期: 审核人:审核日期: 批准人:批准日期:

文件号 :XYT-WI-QCD-24 深圳市小樱桃实业有限公司 工作文件 题目:电源适配器来料检验标准生效日期 : 2014 年5月15日版本 : A0 页数 :第2页(共5页) 文件修订目录表 次序原版本新版本文件修改栏修订人生效日期 1A0第一版本发放(ISO9001:2008版)郭华2014年 5月 15日 部门评审 /发放管理栏: 行政人事部业务部采购部生产部 开发部品质部工程部财务部 计划部仓库

深圳市小樱桃实业有限公司 工作文件 题目:电源适配器来料检验标准文件号 :XYT-WI-QCD-24 生效日期 : 2014 年5月15日版本 : A0 页数 :第3页(共5页) 1.目的 本文件针对来料电源适配器提供检验标准及判定依据,并为保证适配器符合本公司品质要 求和客户需求。 2.适用范围 适用于本公司生产使用的电源适配器。 3.定义 3.1 CR-致命缺陷:危及人身安全的缺陷,国家明令禁止的缺陷; 3.2 MAJ- 主要缺陷:影响到产品的性能及严重损坏外观效果的缺陷; 3.3 MIN- 次要缺陷:不影响客户使用或对外观效果伤害不大的缺陷, 4.检验方法及条件 4.1准备工作: 4.1.1. 准备样品、承认书( IQC)、工作文件、; 4.1.2. 准备好不良标识的贴纸及检验记录表; 4.1.3. 准备好检验工装。测试仪。 4.2检验环境: 灯光亮度大于 400LUX(大概 1米高度的一盏 40瓦的日光灯)。 4.3检验设备: 4.3.1耐压测试仪,用于测试耐压性能(条件不允许时由供方提供测试报告)。 4.3.2带温度测试的万用表或温湿度计 4.3.3游标卡尺 5.检验标准 序号不良现象不良描述判定 5.1 包装部分 5.1.1 规格 / 料 外箱标识与实物不相符 , 规格写错或盖错章或贴错标签等MAJ 号错 5.1.2 产品混装产品混有其他规格型号的产品MAJ 5.1.3 数量错包装数量不符(多或少)MAJ 5.2 尺寸

变频器专用滤波器的选型

变频器专用滤波器的选型 链接:https://www.wendangku.net/doc/282663979.html,/tech/11678.html 变频器专用滤波器的选型 变频器专用滤波器,依据其安装位置的不同,可以分为变频器输入滤波器和输出滤波器两种。这两种滤波器,不但是安装位置不同,其功能亦不相同,且安装位置不能互换。 因此,在变频器专用滤波器应用过程中,首先要解决的,就是变频器专用滤波器的选型问题。在选型过程中,我们务必要弄清楚以下两点: 第一,就是应该选用变频器输入滤波器,还是变频器输出滤波器。 1、观察法。这也是最简单的判断办法,就是把变频器的输出线拆掉,然后,给变频器上电,让其达到正常工作状态,此时,我们再来观察,干扰是否依然存在,如果存在,一般情况下,就是需要加变频器输入滤波器。反之,则需要加变频器输出滤波器,也可能是变频器输入滤波器和变频器输出滤波器需要同时加。请注意,这里说的是一般情况,并不是百分之百的准确。 2、示波器法。如果手头有示波器的话,可以用示波器来测量一下变频器输出端和输出端,以及受干扰设备的输入 端的波形,通过波形来看一下干扰源在哪里,再来决定是选用变频器输入滤波器,还是变频器输出滤波器。 第二,就是要明确变频器的额定电压 这里,我们需要知道变频器是单相电源,还是三相电源的。 第三,就是要明确变频器的额定电流 变频器专用滤波器在选型时,一定要注意这一点,否则,可能会适得其反。 变频器专用滤波器的额定电流,一定要比变频器的额定电流要大,一般来讲,变频器专用滤波器的额定电流是变频器额定电流的1.2~1.5倍为佳。 比方说,11KW变频器专用滤波器,绿波杰能推荐的变频器专用滤波器的额定电流是30~40A。 原文地址:https://www.wendangku.net/doc/282663979.html,/tech/11678.html 页面 1 / 1

完整版电源滤波器基本知识

电源滤波器基本知识 一、术语定义 1. 额定电压 EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲:230V, 50Hz;美国:115V, 60Hz) 2. 额定电流 在额定电压和指定温度条件下(常为环境温度40C), EMI滤波器所允许的最大连续工作电流(Imax)。在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式得出:|op=ln皿刁r鬲 3. 试验电压 在EMI滤波器的指定端子之间和规定时间内施加的电压。试验电压分为两种,- 种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。 4. 泄漏电流 EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出: l LC=2x^x FxCxV 其中 F为工作频率, C为接地电容的容量, V为线-地电压 5. 插入损耗 是衡量滤波器效果的指标。指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。在50Q系统内测试时,可用下式来表示: IL=20Lg(E0/E1) 其中,IL-插入损耗(单位:dB) EO-负载直接接到信号源上的电压 E1-插入滤波器后负载上的电压 6. 气候等级 指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX 前2位数字代表滤波器的最低工作温度

中间数字代表滤波器的最高工作温度 后2位数字代表质量认定时在规定稳态湿热条件下的试验天数 7. 绝缘电阻 绝缘电阻是指滤波器相线,中线对地之间的阻值。通常用专用绝缘电阻表测试。 8. 电磁干扰(EMI) 电磁干扰经常与无线电频率干扰(RFI )交替使用。从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。滤波器用以消除EMI和RFI中的多余电磁能。 9. 频率范围 电磁能量的频率带宽常用赫兹(Hz,每秒循环次数),千赫(KHz,每秒循环千次数)表示。电源滤波器的典型频率范围在150kHz to 30MHz (超过30MHz即为辐射) 10. 阻抗失配 为了达到更好的滤波效果,要使滤波器与它的源阻抗和负载阻抗失配。如图所示。 11.工作频率 电源滤波器的工作频率标称值为50/60Hz(中国、欧洲等为50Hz;北美为60Hz)然而,电源滤波器在直流或400Hz的情况下工作,并不会损害其效力。 二、滤波器的作用

变频器谐波滤波器

设备电源谐波滤波器 DNF-电源谐波滤波器是专为变频器、伺服、中频炉、UPS(或其他含3相6脉整流电路)开发的三相电力系统设备就地谐波抑制解决方案,适用于任何3相6脉整流电路,可以降低其谐波电流畸变率以符合相关标准规定限值。 DNF-电源谐波滤波器的选型方法简单,只要知道设备的工作电压和功率,即可直接选型。现场安装不需要任何调试,即装即用,并且不需要现场维护。 次、11次、13次等奇次谐波),而且能够滤除各种非特征谐波(间谐波); 9.改善设备的EMC电磁兼容性,降低峰值电流,提高设备的抗浪涌能力; 10.性能稳定、可靠性高,维护成本低; 11.选用简单:仅需要知道负载的额定工作电压和功率即可; DNF-电源谐波滤波器产品使用说明 安装在各种含有3相6脉整流设备(如变频器、伺服、中频炉、UPS等)电源输入端; 使谐波畸变率THDI≤16%或10%,适应不同地区标准 串联安装在上述设备的电源输入线上, 广泛应用各种工业场合。

DNF-电源谐波滤波器主要技术指标 额定工作电压:3相,400VAC ±10% 工作频率:50Hz ±1HZ (默认值) /60Hz ±1HZ 过载能力: 承受150%额定电流,1分钟,每小时一次 总谐波失真THID:满载状态下,THDI≤16%或10%。 功率因数:在50% ~ 100%负荷范围内,0.95-1 环境温度:-25°C ~ +40°C 满载运行 +50°C ~ +70°C 降额运行 海拔高度:<1000米 湿度:5%-85% (无结露) 防护等级: IP20 / IP00 DNF无源谐波滤波器系统连接图

附:IEEE-519标准关于諧波電壓及電流失真之限制 短路比Isc/IL 总谐波失真THD Isc/IL: < 20时 THD ≤ 5% ; Isc/IL: 20 < 50时 THD ≤8% Isc/IL: 50 < 100时 THD ≤ 12% ; Isc/IL: 100<1000时 THD ≤15% Isc/IL: > 1000 时 THD ≤20% DNF无源谐波滤波器 THDI 与 负载率 关系曲线图 设备外形尺寸图

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究 魏应冬,吴燮华 (浙江大学电气工程学院,浙江杭州 310027) 摘要:在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。 关键词:开关电源;EMI滤波器;共模;差模 0 引言 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。 减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。 EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。 1 EMI滤波器设计原理 在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。 在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。简言之,EMI滤波器设计可以理解为要满足以下要求: 1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减); 2)对电网频率低衰减(满足规定的通带频率和通带低衰减); 3)低成本。

12V电源适配器检验规程

1 目的:掌握电源适配器的检验标准,使来料质量更好的符合我公司的品质要求 2 适用范围:12V电源适配器。 3检验仪器和设备:万用表、耐高测试仪、示波器、交流毫伏表、调压器、游标卡尺、卷尺。 4 检验项目和技术要求 4.1 外观: 4.1.1面、底壳无开裂、毛刺、变形、划伤、缩水、污迹现象。 4.1.2金属件无氧化、霉斑、污渍,AC插脚、DC插头无松动。 4.1.3螺钉无氧化、漏打、打花、打滑、松动现象。 4.1.4线体无烫伤、划伤、破损、脏污、芯线无外露骨。 4.1.5贴纸内容应正确,铭牌贴无倒贴、贴歪、漏贴、贴错、翘起等现象。4.1.6面、底壳缝隙不能大于1mm,配合良好,不能有内松动现象。 4.1.7铭牌贴或胶壳刻字内容正确、文字清晰,无错字、别字。 4.1.8丝印清晰,无错字、别字毛边。 4.2开机检查: 4.2.1适配器内部元件必须与样品一致。 4.2.2元件上锡良好,无虚焊、连焊。 4.2.3 PCB板无短路、断路,铜皮无起翘。 4.2.4线圈包扎无氧化、松动、翘起等不良现象。 4.2.5硅钢片无氧化、松动、翘起等不良。 4.3电气性能: 4.3.1电气性能参数如下:

4.3.2高压测试:经过下列条件测试时,应无漏电、飞孤、击穿。 初级对次级:3000V,10S,0.5mA; 4.4 DC转输线:DC头无氧化,连接顺序无错乱。 4.5老化:经老化试验后,表面温度不能超过65℃,面、底壳无变形、烧焦现 象。各性能指标在规格范围之内。 4.6跌落试验:经跌落试验后,外壳无破裂,插头无松动、脱落现象,晃动 无异响,各电气性能正常。 4.7阻燃性:经阻燃测试后,材料能阻燃。 5检验方法: 5.1外观:目测法。 5.2结构尺寸:用游标卡尺测量。 5.3开机检查:目测法(有异物用游标卡尺测量)。 5.4电气性能:用测试架测试各性能指标,用耐高压测试仪测试适配器的耐 高压能力。 5.5DC传输线:用专用测试架测量。 5.6老化:在常温下带额定负载通电老化4小时。 5.7跌落试验:适配器从1m高处自由跌落地面三次。 5.8阻燃试验:把适配器外壳敲开,用明火对外壳进行燃烧,当火源离开适 配器时,外胶壳应立即熄灭,不再燃烧,则此适配器外壳是阻燃材料。6缺陷分类:见附表。

电源滤波器基本知识

电源滤波器基本知识

————————————————————————————————作者:————————————————————————————————日期:

电源滤波器基本知识 一、术语定义 1. 额定电压 EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲: 230V,50Hz;美国:115V, 60Hz) 2.额定电流 在额定电压和指定温度条件下(常为环境温度40℃),EMI滤波器所允许的最大连续工作电流(Imax)。在其他环境温度下的最大允许工作电流是环境温度的函 数,可用如下公式得出: 3.试验电压 在EMI滤波器的指定端子之间和规定时间内施加的电压。试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。 4.泄漏电流 EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出: 其中 F为工作频率, C为接地电容的容量, V为线-地电压 5.插入损耗 是衡量滤波器效果的指标。指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。在50Ω系统内测试时,可用下式来表示: IL=20Lg(E0/E1) 其中,IL-插入损耗(单位:dB) EO-负载直接接到信号源上的电压 E1-插入滤波器后负载上的电压 6.气候等级

指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX 前2位数字代表滤波器的最低工作温度 中间数字代表滤波器的最高工作温度 后2位数字代表质量认定时在规定稳态湿热条件下的试验天数 7. 绝缘电阻 绝缘电阻是指滤波器相线,中线对地之间的阻值。通常用专用绝缘电阻表测试。 8. 电磁干扰(EMI) 电磁干扰经常与无线电频率干扰(RFI)交替使用。从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。滤波器用以消除EMI和RFI中的多余电磁能。 9. 频率范围 电磁能量的频率带宽常用赫兹(Hz,每秒循环次数),千赫(KHz, 每秒循环千次数)表示。电源滤波器的典型频率范围在150kHz to 30MHz(超过30MHz,即为辐射) 10.阻抗失配 为了达到更好的滤波效果,要使滤波器与它的源阻抗和负载阻抗失配。如图所示。 11.工作频率

变频器专用滤波和补偿装置

变频器专用滤波和补偿装置 变频技术在大量的感性负载节能方面有着无可替代的地位,节约的电能有时能达到 30% 以上,效益十分可观。随着变频器日益广泛的普及和应用,其占电网总负荷的比例已经越来越大。其中大部分额定电压为三相 380V 的交直交型变频器(以下简称变频器)。然而,随之带来的网侧谐波问题也越来越受到各变频器用户和供电部门的关注。 由于变频器的整流部分一般为三相全波不可控整流,直流回路采用大电容作为滤波器。这样,虽然变频器的网侧输入电压波形基本上是正弦波,但输入电流是脉冲式的充电电流,含有丰富的谐波,表现在网侧的有 5 、 7 、 11 、 13 、 15 、 17 、 19 次谐波电流,一般最大以 5 、 7 次为主。其波形如图 1 所示。 感型负载在运行中要消耗大量的无功电流,但是谐波会使无功补偿装置不能正常运行,并且导致一些现代化的精密控制机床无法运行,因此对使用变频器的系统采取谐波治理措施是必须的。 我公司针对变频器谐波的特点,设计了专用的高、低压滤波装置,可有效滤除变频装置产生的谐波,同时对系统进行有效的无功补偿,满足广大使用变频器的用户需求。

变频器专用低压滤波器柜变频器专用10KV滤波器装置 滤波电抗器系列 低压铁心滤波电抗器: 一、产品用途: 次谐波,从而改善电压波形,提高供电质量,降低系统损耗。 二、产品特点: 我公司生产的铁心滤波电抗器具有高滤波能力,低损耗,低噪音, 高线性,安装简便和使用寿命长的特点。 三、型号标志:四、主要技术参数: 高压空心饼式滤波电抗器:

一、产品用途: 与并联电容器组成LC回路,能有效吸收电力系统3、4、5、7、11次 二、产品特点: 我公司生产干式空芯饼式电抗器采用多层饼式线圈组成,层间距大, 散热性能好。电抗器上下部分层间距平滑无级可调,用以调节电抗器电感 量。具有高滤波能力,低损耗,低噪音,高线性,安装简便和使用寿命长 的特点。 三、主要技术参数: 有源技术是电力电子器件、电力电子控制技术、控制技术、高速运算器等发展到相当水平以后才有实现的可能。如今相关技术均已达到此类用途的要求,如GTO,IGBT,IECT等功率器件;模拟和数字实现的快速实时的无功/谐波分量计算技术(如时域、频域分解);SPWM、电流回滞、非参考计算、空间矢量等变换器调制技术十分繁多,并趋成熟。 有源电力滤波装置APF,是一种基于IGBT逆变器的新型谐波治理装置。通过实时检测负载电流波形,除去波形中基波(50Hz)成分,将剩余部分的波形反向,通过控制IGBT的触发,将反向电流注入供电系统中,实现滤除(抵消)谐波、动态补偿系统无功与电压波动、抑制谐振、提高功率因数等功能,从而达到改善供电系统安全性、节能降耗的目的。 然而,鉴于目前有源设备的成本还相对较高、可控容量和电力系统的巨大电能相比还较小,采用混合型有源电能控制技术是现阶段应用的主要特征。 有源+无源混合电力滤波(HAPF)是将APF和无源滤波相结合,利用无源设备的处理较大容量部分、而利用有源技术改善无源部件的补偿效果和动态性能,共同达到良好的补偿目的;同时,有效地减小了有源部分的容量,以节省APF容量过大而增加的成本。 A、功能特点有:

280KW输入滤波器280KW进线滤波器280KW变频器专用滤波器ME920-630A(1)

产品型号ME920-630品牌上海民恩额定电压380V/440V 额定电流630A 相数三相 产品功能抑制谐波干扰 产品价格 (具体价格请来电咨询) 产品包装 纸箱 可以根据客户提供的技术参数加工定制非标产品!一、280KW 输入滤波器280KW 进线滤波器280KW 变频器专用滤波器 ME920-630A 原理图 制造商Manufacturer 上海民恩电气有限公司 依据标准Standard GB/T7343-87《10kHz-30MHz 无源无线电干扰滤波器和抑制元件抑制特性的测量方法》及UL1283《电磁干扰滤波器》标准制定 型式Type 输入滤波器防护等级Protection level IP20配套变频器功率280KW 额定电流Se.Cur 630A 系统电压Se.Vol 0.4KV 连接方式Connection mode 串联相数Number of phases 三相工作频率Frequency 50/60Hz 气候类别Climate category 25/085/21泄露电流(250VAC/50Hz ) <50mA 冷却方式Cooling Type 自冷试验电压(线-线)2250VDC 极壳耐压Extreme pressure 3000Vac/1min 试验电压(线-地)2700VDC 过载电流Overload current 开机瞬间允许通过4倍过工作电流,1.4倍工作电流1分钟(每小时一次)包装Packing 纸箱 运输方式Transport 快递运输质保期Warranty period 一年产品货期Delivery 2-3天 公司网站:https://www.wendangku.net/doc/282663979.html,

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用 1插入损耗和滤波电路的选择 在用户选择滤波器时,最关心插入损耗性能。但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。这和理论分析是吻合的,因为插入损耗本身是个多解函数。 所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。这符合“知己知彼,百战百殆”的客观规律。 那么滤波电路和电源等效噪声之间存在什么样的关系呢? 众所周知,EMI滤波器是由L、C构成的低通器件。为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。对于EMI滤波器,这些原则应用于共模和差模中。 如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。其中尤以有差模电感的滤波器为多。因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。 图1 共模滤波器模型 1.1.2差模滤波电路 由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。 AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。 开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。 合成的差模滤波电路参见图2。 最后,完整的共、差模滤波电路参见图3。

开关电源AC和DC的输入滤波电路原理

开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。以下是开关电源AC和DC的输入滤波电路原理: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、 F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

相关文档
相关文档 最新文档