文档库 最新最全的文档下载
当前位置:文档库 › 1.2 向量的数量积与向量积

1.2 向量的数量积与向量积

1.2 向量的数量积与向量积
1.2 向量的数量积与向量积

中有一个为零向量,规定它们的夹角可在作用于某物体上, 物体有一段位移S , 求力F

所作的功|cos θ?

)数量积定义b

(,)

a b ∧

a

a

rjb

=|a|cos

P b

rja

= |b|cos

rjb

|||

a b

?

仅与向量方向有关,与模无关。

+ y1

j+ z1

k,

b均为非零向量,则

|||

a b

?

=

|b

试证:向量a xi y j

=++

++ y z

22,cosβ=

x

|||a a ?=°,而大小为100N 的力F

作用于质点。求此质点从点由力学知识知道,力②方向:它的方向垂直于OP 与F 所决定的平面,其正方向按右手法则确定:π的角度到由上述物理总是抽象出如下定义:

b a b ?垂直于a 和b ,且a 成右手系(见图)。由图可知,模||a b ?等于以 a , b 为邻边的平行四边形面积。由向量积的定义可知:

向量积具有如下的运算规律:

a

?( b + c )= a ? b + a ? c ;( a + b )11k

x x y -

+

θ

a b ?b

a

o

i

k

11k x x -

+

设 a = i +2 j - k , b =2 j +3 k , 计算而2

1453

i

k

a b ?== 2+2i j - c a b =? 2 , 2}.

对于任意,R λλ∈≠

及x 轴的单位向量.

本节是向量运算中很重要的部分,与上节共同讲述了向量的坐标表示以及向量的运算,这些

11.高一数学导学案向量的数量积的运算(解析版)

6.2.4平面向量的数量积 2课时向量数量积的运算律 导学案 【学习目标】 1.了解数量积的运算律 2.会用向量数量积的公式解决相关问题. 【自主学习】 知识点1 向量数量积的性质 设a、b为两个非零向量,e是与b同向的单位向量. (1)a·e=e·a=|a|cos〈a,b〉; (2)a⊥b?a·b=0且a·b=0?a⊥b; (3)a·a=|a|2或|a|=a2; (4)cos〈a,b〉=a·b |a||b|; (5)|a·b|≤|a||b|. 知识点2 向量数量积的运算律 (1)a·b=b·a(交换律); (2)(λa)·b=λ(a·b)=a·(λb)(结合律); (3)(a+b)·c=a·c+b·c(分配律).

【合作探究】 探究一 向量的数量积的运算律 【例1】已知|a |=2,|b |=3,a 与b 的夹角为120°,试求: (1)a ·b ; (2)(a +b )·(a -b ); (3)(2a -b )·(a +3b ). [分析] 根据数量积、模、夹角的定义以及数量积的运算,逐一进行计算即可. [解] (1)a·b =|a |·|b |cos120°=2×3×(-1 2 )=-3. (2)(a +b )·(a -b )=a 2-a ·b +a ·b -b 2=a 2-b 2=|a |2-|b |2=4-9=-5. (3)(2a -b )·(a +3b )=2a 2+6a ·b -a ·b -3b 2=2|a |2+5a ·b -3|b |2=2×4-5×3-3×9=-34. 归纳总结:求向量的数量积时,需明确两个关键点:相关向量的模和夹角.若相关向量是两个或两个以上向量的线性运算,则需先利用向量数量积的运算律及多项式乘法的相关公式进行化简. 【练习1】已知向量a 与b 的夹角为3π 4,且|a |=2,|b |=2,则a ·(2a +b )等于 . 答案:2 解析:a ·(2a +b )=2a 2+a ·b =4-2=2. 探究二 向量的模 【例2】已知向量a ,b 满足a ·b =0,|a |=1,|b |=1,则|a -3b |=________. [答案] 10 [分析] 利用模的公式和数量积的运算律进行求解. [解析] 因为a ·b =0,|a |=1,|b |=1, 所以|a -3b |=(a -3b )2=a 2-6a ·b +9b 2=12+9×12=10.

平面向量的数量积导学案

平面向量的数量积导学案

河北孟村回民中学高一数学导学纲编号 班级姓名 年级高一作者温静时间 课题 2.4平面向量的数量积课型新授【课程标准】1.掌握平面向量的数量积及其几何意义; 2.了解并掌握平面向量数量积的重要性质及运算律; 【重点】重点是数量积的定义、几何意义及运算律,. 【难点】难点是夹角公式和求模公式的应用. 【导学流程】 一、了解感知: (一)知识链接:1、向量加法和减法运算的法则_________________________________. 2、向量数乘运算的定义是 . 3、两个非零向量夹角的概念:_________________________________. 思考:通过前面的学习我们知道向量的运算有向量的加法、减法、数乘,那么向量与向量能否“相乘”呢?

(二)自主探究:(预习教材P103-P106) 探究1:如下图,如果一个物体在力F的作用下 产生位移s,那么力F所做的功W= ,其中 θ是 . 请完成下列填空: F(力)是量;S(位移)是量;θ是; W(功)是量; 结论:功是一个标量,功是力与位移两个向量的大小及 其夹角余弦的乘积 启示:能否把“功”看成是力与位移这两个向量的一种 运算的结果呢? 新知1向量的数量积(或内积)的定义 已知两个非零向量a和b,我们把数量cos a bθ叫做a和b的数量积(或内积),记作a b?,即 注:①记法“a·b”中间的“·”不可以省略,也不可 以用“?”代替。 ②“规定”:零向量与任何向量的数量积为零,即a?=。 00

探究2:向量的数量积运算与向量数乘运算的结果有什么不同?影响数量积大小因素有哪些? 小组讨论,完成下表: θ的范围0°≤ θ<90° θ=90° 0°<θ≤ 180° a·b的符号 新知2:向量的数量积(或内积)几何意义 (1)向量投影的概念:如图,我们把cos aθ叫做向量a在b 方向上的投影;cos bθ叫做向量b在a方向上的投影. 说明:如图, 1cos OB bθ =. 向量投影也是一个数量,不是向量; 当θ为锐角时投影为_______值;当θ为钝角时投影为_______值; 当当θ = 0?时投影为 ________;当θ=90?时投影为__________; 当θ = 180?时投影为__________. (2)向量的数量积的几何意义:数量积a·b等于a的长度︱a︱与b在a的方向上的投影的乘积。

(重点)平面向量数量积公式的应用(可编辑修改word版)

F D C A a B 1 O - A 1 b B 平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1. 长度问题 例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ? AE + AD ? AF = AC 2 。 B E 2. 垂直问题 例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明: PA ⊥ EF 。 3. 夹角问题 例 3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1. 证明一些公式: 例 4: 对 于 任 意 实 数 , Y , 求 证 : cos(+ ) = cos cos - sin sin 。 X y A B P E D O F C x y A E O C D B x

2. 证明三角恒等式: 例 5:已知 、 为锐角, 且 3sin 2 + 2 s in 2 = 1 , A 5 3sin 2- 2 s in 2= 0 ,求证:+ 2= 。 2 A 6 A 4 A 7 e A 3 A 1 A 2 3. 求三角函数值: 2 例 6:求值: cos 7 + cos 4+ c os 6。 7 7 4. 解与三角形有关的问题: 例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) = 3 ,求角 C 的值。 2 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y a b

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角; 2.平面向量数量积的运算 1第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度与相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义与性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A.-72 B.-12 C 、32 D 、52 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°、点E 与F 分别在线段BC 与DC 上,且u u u r BE =23u u u r BC ,u u u r DF =16 u u u r DC ,则u u u r AE ·u u u r AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(- 1+2m )-4(-2-m )=0,则m =-12,所以b =? ?????-121,所以a ·b =-1×????-12+2×1=52、 (2)取u u u r BA ,u u u r BC 为一组基底,则u u u r AE =u u u r BE -u u u r BA =23u u u r BC -u u u r BA ,u u u r AF =u u u r AB +u u u r BC +u u u r CF =-u u u r BA +u u u r BC +512u u u r BA =-712u u u r BA +u u u r BC ,∴u u u r AE ·u u u r AF =????23 u u u r BC -u u u r BA ·????-712 u u u r BA +u u u r BC =712|u u u r BA |2-2518u u u r BA · u u u r BC +23|u u u r BC |2=712×4-2518×2×1×12+23=2918、 [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系就是相等还就是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 平面向量的垂直问题 1第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 就是边长为2的等边三角形,已知向量a ,b 满足u u u r AB =2a ,u u u r AC =2a +b ,则下列结论正 确的就是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥u u u r BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A.-92 B.0 C.3 D 、152 [解析] (1)在△ABC 中,由u u u r BC =u u u r AC -u u u r AB =2a +b -2a =b ,得|b |=2,A 错误.又u u u r AB =2a 且|u u u r AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B,C 错误.所以(4a +b )·u u u r BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥u u u r BC ,D 正确,故选D 、 (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0、∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6).

平面向量数量积学案

平面向量的数量积(1)学案 一、导学目标: 1.掌握平面向量的数量积定义; 2.掌握平面向量数量积的重要性质及运算律; 3.熟练应用平面向量的数量积处理有关模长、角度和垂直问题, 掌握向量垂直的条件; 二、学习过程: (一)复习引入 1.向量数量积的定义 (1)向量数量积的定义:____________________________________________ (2)向量数量积的性质: ①如果e 是单位向量,则a e ?=e a ?=________; ②a a ?=___________或a =__________; ③cos ,a b <>=________; ④非零向量,a b ,a b ⊥?________________; ⑤a b ?____a b . 2.向量数量积的运算律 (1)交换律:a b ?=________; (2)分配律:()a b c +?=______________________; (3)数乘向量结合律:(a λ)·b =________________. (二)探索研究 小试牛刀 1.(口答)判断题. (1)=?; (2)a b b a ?=?; (3)22a a =; (4)()()a b c a b c ?=?; (5)a b a b ?≤?; (6) . 2. 已知向量a 和b 的夹角为135°,2a =,3b =,则a b ?= ________ =??=?

3.已知2a =,3b =,则a b ?=-3,则a 和b 的夹角为__________ 4.(2010·重庆)已知向量a 、b 满足0a b ?=,2a =,3b =,则2a b -=________ 学生归纳: 例题探究 例1(2010·湖南) 在Rt ABC ?中,90C ∠=,4AC =,则AB AC ?等于( ) A .-16 B .-8 C .8 D .16 变式: 1.在ABC ?中,3AB =,2AC =,BC =AB AC ?等于 ( ) A.-32 B.-23 C.23 D.32 2.在ABC ?中,3AB =, 2AC =,5AB AC ?=,则BC =_____________ 例2已知向量a b ⊥,2a =,3b =,且32a b +与a b λ-垂直,则实数λ的值为________. 变式: (2011·课标全国) 已知a 和b 为两个不共线的单位向量,k 为实数,若向量a b +与向量ka b -垂直,则k =________ (三)练习 1.已知4a =,3b =,(23)(2)61a b a b -?+=,(1)求a 与b 的夹角θ;(2)求a b +. 2.(2011·广东) 若向量,,a b c 满足//a b ,且a c ⊥,则(2)c a b ?+=( ) A .4 B .3 C .2 D .0 3.在ABC ?中,M 是BC 的中点,1AM =,2AP PM =,则()PA PB PC ?+=_______ 4.设非零向量,,a b c 满足a b c ==,a b c +=,则a 与b 的夹角为 ( ) A .150° B .120° C .60° D .30° 5.(2011·辽宁) 若,,a b c 均为单位向量,且0a b ?=,()()0a c b c -?-≤,则a b c +-的最大值为 ( ) A.2-1 B.1 C. 2 D.2

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

学案27平面向量的数量积及其应用

学案27 平面向量的数量积及其应用 导学目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题. 自主梳理 1.向量数量积的定义 (1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影. (2)向量数量积的性质: ①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ?________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |. 2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式 (1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________; (2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ?________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2), 则|a |=________________,cos 〈a ,b 〉=____________________________. (4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB → |=_____________________. 自我检测 1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC → 等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( ) A .-2 B .2 C.12 D .-1 2 4.平面上有三个点A (-2,y ),B (0,2 y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________. 5.(2009·天津)若等边△ABC 的边长为3,平面内一点M 满足CM →=16CB →+23 CA →,则MA →·MB → =________.

2018年一轮复习《平面向量的数量积及应用》教学教案

平面向量的数量积及应用 知识梳理: 平面向量的夹角及表示: (1).平面向量的夹角的定义 (2).范围: 表示方法: 当夹角为0或错误!未找到引用源。时,则称a与b ,记作: ; 当夹角为9错误!未找到引用源。时,则称a与b ,记作: ; 2.向量的数量积定义: 3.数量积几何意义与投影的概念: 4.数量积的性质:设a与b是非零向量,e是单位向量,错误!未找到引用源。是a与e的夹角, 则 ①错误!未找到引用源。= ;②a错误!未找到引用源。b时,a错误!未找到引用源。b错误!未找到引用源。③错误!未找到引用源。同向量,错误!未找到引用源。 ④错误!未找到引用源。反向量,错误!未找到引用源。⑤错误!未找到引用源。|错误!未找到引用源。=错误!未找到引用源。 特别地:错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。+2a错误!未找到引用源。b 错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。-2a 错误!未找到引用源。b (a+b)错误!未找到引用源。(a-b)=错误!未找到引用源。-错误!未找到引用源。 ⑥数量积的运算律: 交换律:;结合律:;分配律: ⑦数量积的坐标运算:; ⑧两向量垂直叛定:;

⑨两向量夹角公式: ; ⑩向量的模及两点间的距离: ; 二、题型探究 探究一:平面向量的数量积运算 例1:已知|a |=5,|b |=4,a 与b 的夹角为12错误!未找到引用源。,求: ○1错误!未找到引用源。 ○2错误!未找到引用源。 ○3错误!未找到引用源。-错误!未找到引用源。 ; ○4(2a-b )错误!未找到引用源。(a+3b ) (答案:-10;21;9;-48) 探究二、数量积的综合应用 例2:已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a ?-)2(= 例3:已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°, (1)求证:)(b a -⊥c ; (2)若1||>++c b a k )(R k ∈,求k 的取值范围. 解:(1)∵ 1||||||===c b a ,且a 、b 、c 之间的夹角均为120°,

平面向量的数量积及其应用定稿1

平面向量的数量积及其应用 【考试要点】 1.考查平面向量数量积的运算. 2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】 本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系. 【教学过程】 活动一心动入境

(5)(a+b)2=a2+2a·b+b2. (6)(a-b)2=a2-2a·b+b2. 课前活动二[归纳反思] (1)若a·b>0,能否说明a和b的夹角为锐角? (2)若a·b<0,能否说明a和b的夹角为钝角? (3) 若向量a,b,c满足a·b=a·c(a≠0),是否能有b=c? (4)若向量a,b,c满足(a·b)c≠a(b·c),是否有(a·b)c=a(b·c)? (5) 正三角形ABC中,与的夹角应为多少度? 热身训练1.平面向量a与b的夹角为45°,a=(1,1),|b|=2,则|3a+b|等于() A.13+6 2 B.25 C.30 D.34 2.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________. 3.已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________. 4.已知e1,e2是互相垂直的单位向量,若3e1-e2与e1+λe2的夹角为60°,则实数λ的值是________. 考点一平面向量的数量积及在平面几何中的应用 探究实践1 【例1】如图,在△ABC中,AB=3,AC=5,∠BAC =60°,D,E分别是AB,AC的中点,连接CD,BE 交于点F,连接AF,取CF的中点G,连接BG,则AF → ·BG → =________. (2)在直角梯形ABCD中,∠A=90°,AD∥BC,BC

人教A版选修2-1《空间向量的数量积运算》导学案

第三章第3课时 空间向量的数量积运算 学习目标: 1、 掌握空间向量夹角的概念及表示方法; 2、 掌握两个向量的数量积概念、性质和计算方法及运算规律。 课前预习案 一、 教材助读,知识归纳: 1、两个向量的夹角: 夹角的形成:角AOB ∠叫做向量→ a 与→ b 的夹角,记作:<→ a ,→ b >。 夹角的范围: ≤ <→ a ,→ b > ≤ 。 <→a ,→b >=0时,→a 与→ b 的方向 ;<→ a ,→ b >=π时,→ a 与→ b 的方向 。 特别地:如果<→ a ,→ b >= 则称→ a 与→ b 互相垂直,并记作 。 2、两个向量的数量积 (1)||,,→ =a a OA a OA 记作:的长度或模的长度叫做向量则有向线段 设 (2)已知空间两个非零向量→a ,→b ,则??→→b a b a ,cos ||||叫做→a ,→ b 的数量积 记作b a ?,即:b a ?= 。变形式:cos<→ a ,→ b >= 。 特别地:①零向量与任何向量的数量积为0,即a ?0=0 ②a a ?==??a a a a ,cos |→ a |2 ③0=??⊥b a b a 3、空间向量数量积的运算律: ①b a ?)(λ= (数乘的结合律) ②=?b a (交换律) ③ =+?)(c b a (分配率) 课堂探究案 一、 例题讲解,合作探究: 探究1,问题解决 垂直问题 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。(三垂线定理) 如图,已知PO ,PA 分别是平面α的垂线、斜线,AO 是PA 在平面α内的射影,α?l ,且OA l ⊥,求证: PA l ⊥。 变式练习1如图所示,已知正四面体O-ABC 的棱长为 a ,用向量法证明AB ⊥OC 。 . 探究2,问题解决长度问题 已知平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长都等于1,且两两夹角是60°,求对角线AC 1的长。 A A 1 B C A D B 1 C 1 D 1 A ?l A αP ? O a b B O a b

《空间向量数量积的运算》的教学反思

《空间向量数量积的运算》教学反思 本节课我讲了选修2-1第三章《空间向量的数量积运算》这个节,这是本章第三节的内容,主要学习的是空间向量的数量积的运算及应用。根据大纲,要求学生能熟练应用空间向量的运算解决简单的立体几何问题,这也是本节课的难点。突破难点的方法是让学生会用已知向量表示相关向量,就是利用三角形法则或多边形法则把未知向量表示出来,进而再求两个向量的数量积、夹角、距离等。 三方面实行整体设计,注重与学生已有知识的联系及相关学科知识的联系(物理学:功),因为本节知识是向量由二维向三维的推广,所以预习平面向量的运算起了一定的作用,使学生体会知识的形成过程和数学中的类比学习方法。在整个教学过程中,我还是沿用知识复习、学生探究、教师例题分析、师生合作归纳小结的主线实行教学,符合学生的认知规律,也易于学生对知识的掌握,在教学方法上,我注重多媒体演示和传统板书教学有效结合,较好地辅助了教学。同时,结合新高考的要求,我注重了数学核心素养的培养,在教学中例题分析与归纳时,我注重了数学思想方法的渗透,如本节课我就渗透了数形结合思想、类比思想等,本节课的核心理念是体现学生在学习中的主体性。但我注重调动学生的主观能动性,最大限度的发挥学生的主体作用,在教学过程中,学生的思维活跃,积极讨论问题,自主解决相关例题。精彩处在于学生积极参与互动,学生评判,教师引导,学生积极归纳知识点,整个课堂热烈有序,张而有驰,整体课多次出现教学高潮,博得了学生与听课专家的热烈掌声,从课后反馈来看,本堂课普片反应学懂了,掌握了知识和解决问题的水平,正在学有所用。 不足之处:在创设情境时,我用的是知识性引课,不够引人入胜,要是能想出更好的引课方式或动画设计,在一开始就抓住学生的眼球,调动起学生学习的积极性,应该效果会更好。其次,在课堂中没有充分发挥学生的主体性,老师由引导者又逐步变成了主导者。另外,难点突破应该在两个例题上,不过前边耽误了时间,导致重点地方没有充足的时间解决,没达到最初的意图。对问题的探究需要时间,课上让学生放开去探究,减少了课堂容量,影响到了例题的分析讲解。应

向量的数量积及其应用教案

平面向量的数量积及其应用 讲师:王光明 一、复习目标 深刻理解平面向量数量积的定义及其几何意义。能应用向量数量积解决有关向量垂直问题,向量的长度、夹角的问题,能将其它章节某些问题转化为可用向量数量积解决的问题,培养学生的创新精神和应用能力。 二、基础知识知识点回顾 1、两个向量的夹角是如何规定的?两个向量的夹角的取值范围是什么? 如下图,已知两个非零向量和作=,=,则∠AOB =θ(0°≤θ≤180°)叫做向量与的夹角,记作〈,〉. 2、平面向量数量积的定义是什么?其几何意义是什么? 如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ 叫做a 与b 的数量积(或内积或点积),记作:a ?b ,即a ?b =a b cos q 。规定:零向量与任一向量的数量积是0. 注意数量积是一个实数,不再是一个向量 a ? b 的几何意义:数量积a ?b 等于a 的模||a 与b 在a 上的投影的积。b 在a 上的投影为||cos b θ =b a a ,它是一个实数,但不一定大于0 3、平面向量数量积有哪些性质? 设e 是单位向量,〈a ,e 〉=θ. (1)e ·a =a ·e =|a |cos θ. (2)当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |, 特别地,a ·a =|a |2 ,或|a (3)a ⊥b ?a ·b =0.(a 、b 都是非零向量) 注意:零向量的方向是任意的,因此可以和任意向量平行,但却不可以与任何向量垂直

(4)cos θ= ×a b |a ||b | . (5)|a ·b |≤|a ||b |. 4. 平面向量数量积运算律: (1)a ·b =b ·a ; (2)(λa )·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c 思考讨论 ()()a b c a b c 与是否相等? 5.向量数量积的坐标运算: 设a =(x 1,y 1),b =(x 2,y 2),则 (1)a ·b =x 1x 2+y 1y 2; (2)|a (3)cos 〈a ,b 〉 (4)a ⊥b Ta ·b =0Tx 1x 2+y 1y 2=0. 三、双基训练 1.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |等于 A.7 B.10 C.13 D.4 解析:|a +3b |= 960cos 1161+????+=13. 答案:C 2.已知a =(λ,2),b =(3,—6),且a 与b 的夹角为钝角,则λ的取值范围是 解析:a 与b 的夹角为钝角,cos < 0且cos≠-1, 又cos =()(),11,4λ∈-∞-?- 3.已知,,为非零的平面向量. 甲:, :,a b a c b c ?=?= 乙则 ( )

(学案)校级公开课--平面向量的数量积及应用(学案)

课题:平面向量的数量积及其应用 一、知识归纳:见课本 二、问题探究: 问题1.()1已知ABC △中,||6,||9,45BC CA C ==∠=?,则BC CA ?= ()2已知平面上三点,,A B C 满足3,4,5AB BC CA ===, 则AB BC BC CA CA AB ?+?+?的值等于 ()3已知,a b 是两个非零向量,且a b a b ==-,求a 与a b +的夹角 问题2.在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。 (1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(OC t AB -)·OC =0,求t 的值。 问题3 已知向量a =,23sin ,23cos ?? ? ??x x b =,2sin ,2cos ??? ??-x x 且x ∈??????-4,3ππ. (1)求a ·b 及|a +b |; (2)若f(x)=a ·b -|a +b |,求f(x)的最大值和最小值.

2 问题4 设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3 ,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角, 求实数t 的范围. 课堂练习 1、一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成0 60角,且1F ,2F 的大小分别为2和4,则3F 的大小为 A. 6 B. 2 C. 25 D. 27 2. |a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为 ( )A .30° B .60° C .120° D .150° 3.如图所示,在平行四边形ABCD 中, AC =(1,2) ,BD =(-3,2),则AD ·AC = . 4、.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.

平面向量数量积的坐标表示学案

必修4 2.4.3 平面向量数量积的坐标表示、模、夹角 【学习目标】 1.举例说明平面向量数量积的坐标表示、用坐标表示向量的模、夹角、垂直、平面内两点间的距离公式; 2.能运用以上知识解决有关问题和解决问题的思想方法; 3.通过本节课的学习,进一步加深对向量数量积的认识,提高同学们的运算速度、运算能力、创新能力及数学素质. 【学习重点】平面向量数量积的坐标表示、坐标表示向量的模、夹角、垂直、距离等公式. 【难点提示】平面向量数量积的坐标表示、坐标表示向量的模、夹角、垂直、距离的综合 运用以及灵活解决相关问题. 【学法提示】1.请同学们课前将学案与教材106108P 结合进行自主学习(对教材中的文字、 图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备; 2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达. 【学习过程】 一、学习准备 前面我们学习了向量有关知识,请对照上面知识网络,回顾其中知识内容,请对不熟悉的知识点进行复习,并填写在空白处,同时思考下列问题: 1.两个非零向量的夹角 ,夹角的范围是 ; 当两向量共线与垂直时夹角分别是 、 、 ;与非零向量a 垂直的向量有 个; 2.平面向量数量积定义 , 向量数量积的几何意义 、向量数量积的性质 、 、 、 、 . 3.向量数量积满足的运算律 、 、 ;

4.平面向量的坐标表示及坐标运算 ,平面向量共线的坐标表示 ; 热身练习 已知△ABC 的三点为A(1,2),B(2,3),C(-2,5),求:(1)____AB =; (2)____AB AC -=;请问同学们,你还能求:____AB =,____AB AC ?=, cos ____ABC ∠=,该△ABC 的形状如何?等. 这就是我们本节课要探究的问题! 二、学习探究 通过“学习准备”,在想一想:前面我们学习了平面向量的坐标表示,我们已经会用向量的坐标表示来表示向量中的哪些相关知识?能用向量的坐标表示解决向量的哪些问题?上节课我们又学习了向量的数量积及相关知识,那么,现在你能用向量的坐标来表示向量的数量积、模、夹角吗?请同学们发挥你的想象探究一下: 探究向量数量积坐标表示 已知:11(,)a x y =,22(,)b x y =,请你坐标表示a b ?? 【提示】请同学们一定要先独立思考,再看链接1 探究: 归纳结论 若11(,)a x y =,22(,)b x y =,则a ?b = . 快乐体验 1.已知:(3,4),(5,12)a b =-=,求:|a |= ,|b |= ,a ?b = , cos ___θ=(θ为向量a 与b 的夹角) 解: 2. 已知(2,3),(2,4),(2,4),a b c ==-=-求2,()(),(),().a b a b a b a b c a b ?+?-?++ 解: 3.已知△ABC 的三点为A(1,2),B(2,3),C(-2,5),求:(1)____AB AC ?=; (2)____AB =;(3)△ABC 的形状是 . 解: 同学们通过探究、归纳、体验,对向量数量积的坐标表示有哪些感悟?它们有哪些性质呢?你能对它们进行深度思考和挖掘拓展吗? 挖掘拓展 1.你能用几种语言来描述平面向量数量积的坐标表示?它实质就是一个运算公式,这个公式又怎样的特征?有几个变量?如何运用该公式? 2.设),(y x a = ,则|a |= 或|a |= (长度公式) 3.如果表示向量a 的有向线段的起点和终点的坐标分别为A ),(11y x 、B ),(22y x ,那么 ||||AB a == (平面内两点间的距离公式) 4.夹角的计算:设),(11y x a =,),(22y x b = ,夹角为θ,则cos θ= 5.垂直关系分析:设),(11y x a = ,),(22y x b = ,则b a ⊥? ?

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

2.4.1平面向量数量积的物理背景及其含义 导学案

2.4.1平面向量数量积的物理背景及其含义 【课标要求】 1、掌握平面向量数量积的意义,体会数量积与投影的关系。 2、平面向量积的重要性质及运算律。 【考纲要求】 1、能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 2、会用向量方法解决某些简单的平面几何问题。 【学习目标叙写】 1、知道平面向量数量积的物理意义,记住其含义; 2、会用向量数量积的公式解决相关问题; 3、记住数量积的几个重要性质。 【使用说明与学法指导】 先阅读教材P103-P105.在理解物理学中作“功”的实例引出数量积的几何概念之后,学习向量数量积的性质与运算律。 【预习案】 问题1:如下图,如果一个物体在力F 的作用下产生位移s ,那么力F 所做的功W = ,其中θ是 . 思考:这个公式的有什么特点?请完成下列填空: F (力)是 量;S (位移)是 量;θ是 ;W (功)是 量; 结论:功是一个标量,功是力与位移两个向量的大小及其夹角余弦的乘积 启示:能否把“功”看成是力与位移这两个向量的一种运算的结果呢? 问题2:向量的数量积(或内积)的定义 已知两个非零向量a 和b ,我们把数量cos a b θ叫做a 和b 的数量积(或内积),记作 a cos a b =? ”代替。 ② 两个非零向量夹角的概念:非零向量a 与b ,作OA =a ,OB =b , 则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角(两向量必须是同起点) 注意:当θ=0时,a 与b 同向;当θ=π时,a 与b 反向; 当θ=2 π 时,a 与b 垂直,记a ⊥b ; ③“规定”:零向量与任何向量的数量积为零,即00a ?=。 思考:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小因素有哪些? 数量积的符号由cos θ的符号所决定,完成下表: 问题3:向量的数量积(或内积)几何意义 (1)向量投影的概念:如图,我们把cos a θ叫做向量 a 在 b 方向上的投影;cos b θ叫做向量b 在a 方向上的投影. 说明:如图,1cos OB b θ=. 向量投影也是一个数量,不是 向量; 当θ为锐角时投影为正值;当θ为钝角时投影为负值; 当θ = 0?时投影为 |b |;当θ=90?时投影为0;当θ = 180?时投影为 -|b | 作图: (2)向量的数量积的几何意义:数量积a ·b 等于a 的长度︱a ︱与b 在a 的方向上的 投影︱b ︱cos α 的乘积。 问题4:由定义得到的数量积的性质。 设a 和都是非零向量,θ是a 与b 的夹角,则 ⑴当a 与垂直时,90θ=,即a b a b ⊥??= ; ⑵当a 与同向时,0θ=,a b ?= ;

相关文档
相关文档 最新文档