文档库 最新最全的文档下载
当前位置:文档库 › 2012高考函数总结

2012高考函数总结

函数问题的题型与方法

(一)映射与函数 1.映射与一一映射 2.函数

函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数

反函数的定义

设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=?(y). 若对于y 在C 中的任何一个值,通过x=?(y),x 在A 中都有唯一的值和它对应,那么,x=?(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=?(y) (y ∈C)叫做函数))((A x x f y ∈=的反

函数,记作)(1

y f x -=,习惯上改写成)(1x f y -=

(二)函数的性质 1. 函数单调性:

定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数.

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;

(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;

注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。

等价关系:https://www.wendangku.net/doc/263102969.html,

(1)设[]1212,,,x x a b x x ∈≠那么

[]1212()()()0x x f x f x -->?

[]b a x f x x x f x f ,)(0)

()(2

121在?>--上是增函数;

[]1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.

2. 函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称) 奇函数:

定义:在前提条件下,若有()()()()0f x f x f x f x -=--+=或,则f (x )就是奇函数。

性质:(1)、奇函数的图象关于原点对称;

(2)、奇函数在x>0和x<0上具有相同的单调区间; (3)、定义在R 上的奇函数,有f (0)=0 . 偶函数:

定义:在前提条件下,若有()()f x f x -=,则f (x )就是偶函数。

性质:(1)、偶函数的图象关于y 轴对称;

(2)、偶函数在x>0和x<0上具有相反的单调区间; 奇偶函数间的关系:新 课标第 一网

(1)、奇函数·偶函数=奇函数; (2)、奇函数·奇函数=偶函数;

(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的)

(5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 3. 函数的周期性:

定义:对函数f (x ),若存在T ≠0,使得f (x+T )=f (x ),则就叫f (x )是

周期函数,

其中,T 是f (x )的一个周期。 周期函数几种常见的表述形式:

(1)、f (x+T )= - f (x ),此时周期为2T ;

(2)、 f (x+m )=f (x+n ),此时周期为2m n - ; (3)、1

()()

f x m f x +=-

,此时周期为2m 。 (三)指数函数与对数函数 1.指数函数)10(≠>=a a a y x 且的图象和性质

2.对数函数y=log a x的图象和性质:

3. 分数指数幂与根式的性质:

(1)

n

a =0,,a m n N *>∈,且1n >). (2)1

m n

m n

a

a

-=

=

0,,a m n N *>∈,且1n >).

(3)n a =.

(4)当n 为奇数时,a =;当n ,0

||,0a a a a a ≥?==?-

4. 指数式与对数式的互化式: log b a N b a N =?=(0,1,0)a a N >≠>.

指数性质: (1)1、1p p

a a

-=

; (2)、0

1a =(0a ≠) ; (3)、()mn m n a a = (4)、(0,,)r

s

r s

a a a a r s Q +?=>∈ ; (5)、m n

a =;

指数函数:

(1)、 (1)x y a a =>在定义域内是单调递增函数;

(2)、 (01)x y a a =<<在定义域内是单调递减函数。注: 指数函数图象都恒过点(0,1) 对数性质:

(1)、 log log log ()a a a M N MN += ;(2)、 log log log a a a M

M N N

-= ; (3)、 log log m a a b m b =? ;(4)、 log log m n a a n

b b m

=

? ; (5)、 log 10a = (6)、 log 1a a = ; (7)、 log a b a b = 对数函数:

(1)、 log (1)a y x a => 在定义域内是单调递增函数;

(2)、log (01)a y x a =<<在定义域内是单调递减函数;注: 对数函数图象都恒过点(1,0)

(3)、 log 0,(0,1),(1,)a x a x a x >?∈∈+∞或

(4)、log 0(0,1)(1,)a x a x

N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >). 对数恒等式:log a N a N =(0a >,且1a ≠, 0N >).

推论 log log m n a a n

b b m

=(0a >,且1a ≠, 0N >).

6.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则https://www.wendangku.net/doc/263102969.html,

(1)log ()log log a a a MN M N =+; (2) log log log a

a a M

M N N

=-; (3)log log ()n a a M n M n R =∈; (4) log log (,)m n a a n

N N n m R m

=∈。

(四)补充

1.二次函数的解析式的三种形式:

(1) 一般式2()(0)f x ax bx c a =++≠;

(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此 式)

(3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标

为12(,0),(,0)x x 时,设为此式)

2.常见函数的图像:

)(x f (R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴

是2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2

b a x -=

对称.

4. 对称变换:①y = f (x ))

(轴对称

x f y y -=???→? ②y =f (x ))

(轴对称

x f y x -=???→? ③y =f (x ))

(原点对称x

f y --=???→? 六.例题讲解

例1.已知函数()f x 定义域为(0,2),求下列函数的定义域:

分析:x 的函数f(x 2

)是由u=x 2

与f(u)这两个函数复合而成的复合函数,其中x 是自变量,u 是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u

2,即0

x 2

<2.求x 的取值范围.

解:(1)由0<x 2<2, 得

例2.

已知xy <0,并且4x

2

-9y 2

=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.

分析: 4x 2-9y 2=36在解析几何中表示双曲线的方程,仅此当然不能确定一

个函数关系y=f(x),但加上条件xy <0呢?

所以

因此能确定一个函数关系y=f(x).其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).

例3. 下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是()A.1

B.2 C.3 D.4

分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误.

奇函数的图象关于原点对称,但不一定经过原点,因此②不正确.

若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A.

例4. 若y=log

a

(2-ax)在[0,1]上是x的减函数,则a的取值范围是()A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)

分析:本题存在多种解法,但不管哪种方法,都必须保证:①使log

a

(2-ax)

有意义,即a>0且a≠1,2-ax>0.②使log

a

(2-ax)在[0,1]上是x的减函数.由

于所给函数可分解为y=log

a

u,u=2-ax,其中u=2-ax在a>0时为减函数,所以

必须a>1;③[0,1]必须是y=log

a

(2-ax)定义域的子集.

解法一:因为f(x)在[0,1]上是x的减函数,所以f(0)>f(1),

即log

a 2>log

a

(2-a).

解法二:由对数概念显然有a>0且a≠1,因此u=2-ax在[0,1]上是减函数,y= log

a

u应为增函数,得a>1,排除A,C,再令

故排除D,选B.

例5.(1997年全国高考试题)甲、乙两地相距Skm,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元.

(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;

(2)为了使全程运输成本最小,汽车应以多大速度行驶.

分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决.

故所求函数及其定义域为

但由于题设条件限制汽车行驶速度不超过ckm/h,所以(2)的解决需要

论函数的增减性来解决.

由于v

1v

2

>0,v

2

-v

1

>0,并且

又S>0,所以即

则当v=c时,y取最小值.

例6.作出下列函数的图象(1)y=|x-2|(x+1);(2)y=10|lgx|.

分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.

解:(1)当x≥2时,即x-2≥0时,

当x<2时,即x-2<0时,

这是分段函数,每段函数图象可根据二次函数图象作出(见图6)

(2)当x≥1时,lgx≥0,y=10|lgx|=10lgx=x;

当0<x<1时,lgx<0,

所以

这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图7)

例8. 已知f(x+199)=4x2+4x+3(x∈R),那么函数f(x)的最小值为____.

分析:由f(x+199)的解析式求f(x)的解析式运算量较大,但这里我们注意到,y=f(x +100)与y=f(x),其图象仅是左右平移关系,它们取得

求得f(x)的最小值即f(x+199)的最小值是2.

例9. 已知函数f(x),x∈F,那么集合{(x,y)|y=f(x),x∈F}∩{(x,y)|x=1}中所含元素的个数是.()

A.0 B.1 C.0或1 D.1或2

分析:这里首先要识别集合语言,并能正确把集合语言转化成熟悉的语言.从函数观点看,问题是求函数y=f(x),x∈F的图象与直线x=1的交点个数(这是一

次数到形的转化),不少学生常误认为交点是1个,并说这是根据函数定义中“惟一确定”的规定得到的,这是不正确的,因为函数是由定义域、值域、对应法则三要素组成的.这里给出了函数y=f(x)的定义域是F ,但未明确给出1与F 的关系,当1∈F 时有1个交点,当1 F 时没有交点,所以选C .

例10.方程lgx+x=3的解所在区间为 ( )

A .(0,1)

B .(1,2)

C .(2,3)

D .(3,+∞) 分析:在同一平面直角坐标系中,画出函数y=lgx 与y=-x+3的图象(如图2).它们的交点横坐标0x ,显然在区间(1,3)内,由此可排除A ,D .至于选B 还是选C ,由于画图精确性的限制,单凭直观就比较困难了.实际上这是要比较0x 与2的大小.当x=2时,lgx=lg2,3-x=1.由于lg2<1,因此0x >2,从而判定0x ∈(2,3),故本题应选C .

例11. (1)一次函数f(x)=kx+h(k ≠0),若m <n 有f(m)>0,f(n)>0,则对于任意x ∈(m ,n)都有f(x)>0,试证明之;

(2)试用上面结论证明下面的命题:若a ,b ,c ∈R 且|a|<1,|b|<1,|c|<1,则ab+bc+ca >-1.

分析:问题(1)实质上是要证明,一次函数f(x)=kx+h(k ≠0), x ∈(m , n).若区间两个端点的函数值均为正,则对于任意x ∈(m ,n)都有f(x)>0.之所以具有上述性质是由于一次函数是单调的.因此本问题的证明要从函数单调性入手. (1)证明:当k >0时,函数f(x)=kx+h 在x ∈R 上是增函数,m <x <n ,f(x)>f(m)>0;

当k <0时,函数f(x)=kx+h 在x ∈R 上是减函数,m <x <n ,f(x)>f(n)>0. 所以对于任意x ∈(m ,n)都有f(x)>0成立.

(2)将ab+bc+ca+1写成(b+c)a+bc+1,构造函数f(x)=(b+c)x+bc+1.则f(a)=(b+c)a+bc+1.

当b+c=0时,即b=-c , f(a)=bc+1=-2c +1.因为|c|<1,所以f(a)=-2c +1>0.

当b+c ≠0时,f(x)=(b+c)x+bc+1为x 的一次函数.因为|b|<1,|c|<1, f(1)=b+c+bc+1=(1+b)(1+c)>0, f(-1)=-b-c+bc+1=(1-b)(1-c)>0. 由问题(1)对于|a|<1的一切值f(a)>0,即(b+c)a+bc+1=ab+ac+bc+1>0. 例12. 定义在R 上的单调函数f(x)满足f(3)=log 23且对任意x ,y ∈R 都有f(x+y)=f(x)+f(y).

(1)求证f(x)为奇函数;

(2)若f(k ·3x )+f(3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 分析:欲证f(x)为奇函数即要证对任意x 都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x 可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.

(1)证明:f(x+y)=f(x)+f(y)(x ,y ∈R), ① 令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0. 令y=-x ,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有

0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.

(2)解:f(3)=log

2

3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k·3x)<-f(3x-9x-2)=f(-3x+9x+2), k·3x<-3x+9x+2,

32x-(1+k)·3x+2>0对任意x∈R成立.令t=3x>0,问题等价于t2-(1+k)t+2>0对任意t>0恒成立.

R恒成立.七.方法总结

⑴.相同函数的判定方法:定义域相同且对应法则相同.

⑵.函数表达式的求法:①定义法;②换元法;③待定系数法.

⑶.反函数的求法:先解x,互换x、y,注明反函数的定义域(即原函数的值域).

⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.

⑸.函数值域的求法:①配方法(二次或四次);②“判别式法”;③反函数法;

④换元法;⑤不等式法;⑥函数的单调性法.

⑹.单调性的判定法:①设x

1,x

2

是所研究区间内任两个自变量,且x

1

<x

2

②判定f(x

1)与f(x

2

)的大小;③作差比较或作商比较.

⑺.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)/f(x)=1是偶;f(x) /f(-x)=-1为奇函数.

⑻.图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象。

相关文档
相关文档 最新文档