文档库 最新最全的文档下载
当前位置:文档库 › 改进型电容三点式振荡器

改进型电容三点式振荡器

改进型电容三点式振荡器
改进型电容三点式振荡器

课程设计报告

题目:改进型电容三点式振荡器

学生姓名: ***

学生学号: ********

系别:电气信息工程学院

专业:通信工程

届别: 2014届

指导教师: ***

电气信息工程学院制

2013年3月

]

改进型电容三点式振荡器

学生:**

指导教师:***

电气信息工程学院通信工程专业

前言

高频信号发生器主要用来向各种电子设备和电路提供高频能量或者高频标准信号,以便测试各种电子设备和电路的电气特性。高频信号发生器主要是产生高频正弦振荡波,振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。为此,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。振荡器主要分为晶体振荡器和LC振荡器,LC振荡器中的基本电路就是通常所说的三端式振荡器,根据反馈网络由电容还是电感完成的分为电容反馈振荡器和电感反馈振荡器。同时为了提高振荡器的稳定度,通过对电容三端式振荡器的改进可以得到克拉泼振荡器和西勒振荡器两种改进型的电容反馈振荡器。

高频电子元器件,高频集成电路的工艺技术指标有长足进步,并正在迅速的向多功能,高功率,模块化,可集成和可编程的方向发展,且计算机辅助设计技术,信号处理技术也广泛引入通信电路的设计中。集成电路具有体积小、功耗低、可靠性高、性能好以及易于使系统整机实现少调整和不调整等优点,通信电路正迅速向急方向发展。系统集成它改变了用通用元、器件组装电子系统的传统方法,而直接将系统制作在芯片上,从而大大促进了系统、电路与工艺的结合。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,此次采用的是电容三点式振荡器的两种改进型振荡器之一的西勒振荡器,其具有输出波形好、工作频率高、改变电容调节频率时不影响反馈系数等优点,适用于宽波段、频率可调的场合。西勒振荡器由起能量控制作用的放大器、将输出信号送回到输入端的正反馈网络以及决定振荡频率的选频网络组成。但没有输入激励信号,而是由本身的正反馈信号来代替。当振荡器接通电源后,即开始有瞬变电流产生,经不断地对它进行放大、选频、反馈、再放大等多次循环,最终形成自激振荡,把输出信号的一部分再回送到输入端做输入信号,从而就会产生一定频率的正弦波信号输出。

1振荡器的基本原理及其电路 1.1振荡器的介绍

在电子线路中,除了要有对各种电信号进行放大的电子线路外,还需要有在没有激励信号的情况下产生周期性振荡信号的电子线路,这种电子线路就是振荡器。 振荡器是一种能量转换器,它不需要外部激励就能自动地将直流电源共给的功率转换为制定频率和振幅的交流信号功率输出。振荡器一般由晶体管等有源器件和某种具有选频能力的无源网络组成。 振荡器的种类很多,根据工作原理可分为反馈型振荡器和负阻型振荡器,根据所产生的波形可分为正弦波振荡器和非正弦波振荡器;根据选频网络可分为LC 振荡器﹑晶体振荡器﹑RC 振荡器等。 1.2振荡器的基本原理

振荡器LC 回路的三个端点与晶体管的三个电极分别连接构成的电路即为三端式

振荡器,其示意图如下图所示

图1一般的三点式振荡器

三点式LC 正弦波振荡器的组成法则是:与晶体管发射极相连的两个电抗元件应为同性质的电抗,而与晶体管集电极—基极相连的电抗元件应与前者性质相反。也就是说上图中be

Z

?、ce

Z

?

与bc

Z

?

的性质必须相反振荡器才能起振。

设:be

Z

?、ce Z ?

、bc

Z

?为纯

eb be f -V V V ==

ce eb

ce be v X X V V F =

=

负号表示产生180o 相移与Vbe 和E 间的180o 相移合成.为360o 相移,满足正反馈条件。 为此,X ce 、X eb 必为同名电抗,而X cb 须是X ce 与X eb 的异名电抗。

1.3电容三点式振荡器

电容三点式的原理示意图如下图所示

图2电容三点式振荡器

由图可见:与发射极连接的两个电抗元件为同性质的容抗元件C1和C2;与基极和集电极连接的为异性质的电抗元件L ,根据前面所述的班别准则为,该电路满足相位条件。 其工作过程是:振荡器接通电源后,由于电路中的电流从无到有变化 ,将产生脉动信号。振荡器电路中有一个LC 谐振回路,具有选频作用,当LC 谐振回路的固有频率与某一谐振频率相等是,电路产生谐振。虽然脉动的信号很微小,通过电路放大及正反馈使振荡幅度不断增大。当增大到一定程度时,导致晶体管进入非线性区域,产生自给偏压,使放大器倍数减小,最后达到平衡,此时振荡幅度不再增大。于是使振荡器只有在某一频率时才能满足振荡条件,于是得到单一频率的振荡信号输出。

该振荡器的振荡频率为:0f =

, 反馈系数F 为:12/F C C ≈, 若要它产生正弦波,满足F=1/2~1/8,太小或者太大均不容易起振。一个实际的振荡电路,在F 确定后,其振幅增加的主要是靠提高振荡管的静态电流值。但是如果静态电流值取得太大,振荡管工作范围容易进入饱和区,输出阻抗降低使振荡波形失真。严重时,甚至使振荡器停振。所以在实用中,静态电流值一般取Ico=0.5mA~4mA 。 电容三点式的优点是振荡波形好;电路的频率稳定度高,工作频率可以做得较高,达到几十赫兹到几百赫兹的甚高波段范围。 电路缺点是若调用C1或C2改变振荡回路的工作频率,反馈系数也将改变使振荡器的频率稳定度不高。 2改进型电容三点式振荡电路设计

改进型的电容三点式分为两种:克拉泼振荡器、西勒振荡器。

2.1克拉泼振荡器

电容三点式改进型克拉泼振荡器如下图所示

图3克拉泼振荡器电路图

电路的特点是在共基电容三点式振荡器的基础上,用一电容C5,串联于电感L 的支路上。其作用是增加回路总电容和减小管子与回路间的耦合来提高振荡回路的标准性。使振荡频率的稳定度得到提高。 因为C5为可调电容远小于C1或C2,所以电

容串联后的等效电容约为C3。电路的振荡频率为:

01/2f π=与基本电

容三点式振荡电路相比,在电感L 支路上串联一个电容后有以下特点:

1.振荡频率可改变不会影响反馈系数;

2.振荡幅度比较稳定;

3.电路中的C5为可变电容,调整它即可以在一定范围内调整振荡频率。 但是C5不能太小否则会导致停振,所以克拉破振荡器频率覆盖率较小,仅达1.2~1.4;为此,克拉泼振荡器适合与做固定频率振荡器。

2.2西勒振荡器

电容三点式改进型西勒振荡器如下图所示

:

图4西勒振荡器电路图

电路的特点是字克拉泼电路的基础上,用一电容C4,并联于电感L 两端。作用是保持了晶体管与振荡回路弱耦合,振荡频率的稳定度高,调整范围大。电路的振荡

频率为:0f =

, 西勒振荡电路有以下特点:振荡幅度比较稳

定;振荡频率可以较高;频率覆盖率较大,可达 1.6~1.8,因而在一些短波超、短波通信机,电视接收机中用的较多。

该电路振幅起振条件: 1AF > 该电路相位起振条件:π??n F 2A =+ 振幅平衡条件: 1AF = 相位平衡条件:π??n F 2A =+

放大器电路由晶体三极管2N222、滤波电容、高频旁置电容、集电极旁置电阻R1、基极旁置电阻R2、R3、射极旁置电阻R5组成。放大器可选用如电子管、晶体管等,本设计采用晶体三极管2N222作为能量控制的放大器。

选频网络用来决定振荡频率,本设计采用LC 并联谐振回路,由C2、C3、C4、L 、C5组成,要求C2,C3>>C4,C5。

反馈网络是将输出信号送回到输入端的电容分压式正反馈网络,C3和晶体管构成正反馈。

3改进型电容三点式电路设计

3.1改进型电路选择

不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路,有与电容三点式振荡电路有一些缺陷,通过改进,得到了西勒振荡器

西勒振荡器的接入系数与克拉泼振荡器相同。西勒振荡器的频率改变主要通过改变C4完成,C4的改变并不影响接入系数p,因而波段内输出较平稳。而C4改变,频率变化较明显,使得西勒振荡器的频率覆盖系数较大。本次课设选择西勒振荡电路作为正弦波发生电路。

4.2电路原理图设计

电路原理图如下图所示

图5改进型电容三点式振荡器原理图

3.2电路结构

上图中的电路主要由3部分构成: 1.起能量放大作用的三极管放大器; 2.三点式回路组成的正反馈网络; 3.射极跟随器构成的缓冲级。 3.3静态工作点设置

合理选择振荡器的静态工作点对振荡器的起振、工作的稳定性和波形质量的好坏

有着密切的关系。一般小功率振荡器的静态工作点应选在远离饱和区而靠近截至区的地方。根据上述原则,一般小功率振荡器集电极电流I CQ 大约在0.8mA~4mA 之间选取,故本实验电路中:

选择I CQ =1.5mA , CQ V =0.5V , β=40

Ω

=-=

+K I V V R R CQ

CEQ

CC 3e c

为提高电路的稳定性e R 值适当增大,取e R =1K Ω,则c R =2K Ω

又 V

K A R V V E CQ EQ 5.11*m 5.1===

A

A

I I CQ BQ m 05.040

m 2/===β

取流过Rb2的电流为10mA ,则20.7 4.4EQ b BQ

V R K I +=

=Ω, 取4K Ω

可取1b R =5K Ω,这样额定电流是2mA,满足任务要求。 4.3.振荡回路元件确定

回路中的电抗元件分为电容C 和电感L 两部分。通常满足接入系数C2/C3不能过大或者过小,否则不容易起振,一般适宜1/8~1/2。

振荡器工作频率为:0f =

当f 0=6MHz , L=10uH

本电路中,回路谐振频率f 0主要C4和C5决定,即4522

1

704C C pf f L

π+=

=

取C4=30pf,C5为100pf可调电容,因为要遵循C2,C3》C4,C5,C2/C3=1/8~1/2的条件,故取C2=120pf,c3=560pf。

4 Mutisim10系统仿真和调试

4.1仿真软件介绍

Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

4.2 系统仿真实现

在Multisim软件中绘制改进型电容三点式

振荡器的电路图,并更改好各元件数值连接好虚拟示波器和频率计,如下图所示:

图6 Multisim10绘制的系统电路图

其中起振电路示波器XSC2显示波形如图所示:

图7三点式振荡器的输出波形

由图可见振荡器输出波形比较理想,输出频率接近6MHz。为满足任务要求加上100?的负载,在振荡器后接上射极跟随器以达到放大输出信号和减小输出内阻的目的,使其能够驱动100?的负载。加上100?的负载后输出波形如下图所示:

图8加载100?负载后的波形输出

5总结

5.1设计小结

由加载100?负载的仿真结果,可以看出波形输出器的波形输出大体保持了原有波形,波形基本上为正弦波,基本上无失真,所以波形的失真应与缓冲器有关,可见单一的射极跟随器无法完整的保持波形不变。由图可知加载100?负载后输出电压大于1V,满足任务需求。且通过调节C5可以改变输出频率,使其输出范围在6MHz 左右变化,满足了设计任务的需求。

5.2设计体会

高频电子线路的课程设计看似简单,实际深究起来却相当复杂。本次选题的三点式看似十分简单,然而缓冲级的设计却有很大的拓展空间。在这方面,参考资料显得十分重要。课本上只是简单的介绍西勒振荡器的基本原理,而跟多的任务要求实现需要我们去查阅资料和联系各个知识点。通过这次设计我对各种元件的识别和测试有了更深的了解,对以前很少接触的电感元件的色环识别也有了一定的认识。对课本中寥寥页的三点式正弦波振荡器工作原理和相关参数的关系也有了进一步的了解。在此次课设过程中,我深刻地感受到了自己理论知识的有限和自身的不足,并且学会了对资料的取舍和分析。在整个课设过程中,同学之间相互经验的借鉴也十分重要,往往也是成功的突破口。总之,通过这次课设我学习到了如何解决高频线路中的相关困难,更进一步地熟悉了晶体管的应用和具体使用方法,增强了对实验的思考能力,培养了我细心的科学态度和不厌其烦的耐心。同时本次课设也暴露了我的很多不足,在今后的学习中,我将进一步发扬优点,克服缺点。

我们在学习理论知识的同时还要努力培养自己的动手操作能力,对于通信工程的我们更是如此,通过这次课程设计我也看到了自己的差距,今后会努力提高自己的动手操作能力,以求真正领会各种专业知识,为将来的工作打下良好的基础。

参考文献

[1] 吴友宇. 模拟电子技术基础. 清华大学出版社,2009

[2] 谢家奎.电子线路非线性部分.高等教育出版社,2010

[3] 熊伟.Mutisim7电路设计及仿真应用 .清华大学出版社,2005

[4] 黄志伟. 基于Multisim 2001电子电路计算机仿真设计与分析.电子工业出版社,2004

[5] 康华光.电子技术基础模拟部分.高等教育出版社,2005

附录

器件清单

电容三点式震荡电路的设计..

北方民族大学课程设计报告 院(部、中心)电气信息工程学院 姓名郭佳学号 21000065 专业通信工程班级 1 同组人员 课程名称通信电路课程设计 设计题目名称 500KHz电容三点式LC正弦波振荡器的设计起止时间2013.3.4——2013.4.28 成绩 指导教师签名 北方民族大学教务处制

摘要 本次课设介绍了电容三点式高频振荡电路的设计方法,反馈振荡器的原理和分析以及电容三点式电路参数的计算,并利用其它相关电路为辅助工具来调试放大电路,解决了放大电路中经常出现的自激振荡问题和难以准确的调谐问题。同时也给出了具体的理论依据和调试方案,从而实现了快速、有效的分析和制作,振荡器电路。并以500KHz的振荡器为例,利用multisim制作仿真的模型。 关键字:电容三点式振荡仿真

目录 目录 (3) 1、概述 (4) 2、三点式电容振荡器 (5) 2.1 反馈振荡器的原理和分析 (5) 2.2 电容三点式参数 (6) 2.3设计要求 (8) 3、电路设计 (8) 4 、调试与总结 (10) 1 仿真 (10) 2、总结: (11) 5、心得体会 (11)

1、概述 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个 是反馈电压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必 须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

电容反馈LC振荡器实验内容及步骤

讲义不要带出本实验室,以便后来者使用电容反馈LC振荡器实验内容及步骤 1、静态工作点的设置 实验电路如图所示。实验步骤: 1、接好地线与12V电源线,此时电路没有振荡。 2、用万用表测量三极管发射极对地电压V E。由于R2为1.5k,所以只要V E=3V, 则I EQ=2mA。 2、了解振荡频率与谐振回路参数的关系 由公式 f L或C t变化时,振荡频率将随之变化。 1、接好地线与12V电源线,此时电路没有振荡。设置I EQ=2mA, 2、将C点接C3,A点接C6,D点接R5,B点分别接C8,C9,C10,测量三种情 况下振荡频率f和输出正弦波的峰-峰值V p-p,并将测量数据填入下表。 3、计算频率的理论值并与测量值比较。

3、了解幅度(峰-峰值Vp-p )与I EQ 的关系 实验步骤: 1、D 接R 5,C 接C 2,A 接C 6, 2、设置静态电流I EQ =0.8mA 。 3、B 接C 10,并测量振荡频率f 和峰-峰值V p-p 。 4、以I EQ 为横坐标,V p-p 为纵坐标,画出峰峰值与静态工作点电流之间的关系,注意分析振荡幅度和频率与I EQ 的关系。并与理论进行比较。 对于其他的I EQ 值,重复上述1~3步骤,并填写下面的表4-4格。 4、测量反馈系数与幅度的关系 实验步骤: 1、静态电流I EQ 设置为2mA 。 2、D 接R 5,C 接C 2,B 接C 9,A 接C 5。 3、测量峰峰值。 4、计算反馈系数C C F 上 下 ,比较反馈系数与峰峰值(幅度)的关系。 对于A 分别接C 6,C 7的情况,重复上述2、3两个步骤,将所得数据填写下表。 5、测量Q 值对振荡频率稳定性的影响 谐振回路的Q 值与回路的电阻有关,改变与电感并联的电阻阻值就可以改变谐振回路的Q 值。 实验步骤: 1、设置I EQ =2mA 。 2、A 接C 5,C 接C 2,B 接C 10,D 分别接R 5,R 6,R 7,观察振荡器是否振荡,如果振荡,测量其频率。填写下面的表格。

5.3.2 三点式振荡电路

5.3.2 三点式振荡电路 定义:三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的反馈型振荡器。 三点式振荡电路用电感耦合或电容耦合代替变压器耦合,可以克服变压器耦合振荡器只适宜于低频振荡的缺点,是一种广泛应用的振荡电路,其工作频率可从几兆赫到几百兆赫。 1、三点式振荡器的构成原则 图5 —20 三点式振荡器的原理图 图5 —20是三点式振荡器的原理电路(交流通路)为了便于分析,图中忽略了回路损耗,三个电抗元件

be ce bc X X X 、和构成了决定振荡频率的并联谐振回路。 要产生振荡,对谐振网络的要求:? 必须满足谐振回路的总电抗0be ce bc X X X ++=,回路呈现纯阻 性。 反馈电压f u 作为输入加在晶体管的b 、e 极,输出o u 加在晶体管的c 、e 之间,共射组态为反相放大器,放大 器的的输出电压o u 与输入电压i u (即f u )反相,而反馈 电压f u 又是o u 在bc X 、be X 支路中分配在be X 上的电压。 要满足正反馈,必须有 ()be be f o o be bc ce X X X X X u u u ==-+ (5.3.1) 为了满足相位平衡条件,f u 和o u 必须反相,由式(5.3.1)可知必有0be ce X X >成立,即 be X 和ce X 必须是同性质电抗,而 ()bc be ce X X X =-+必为异性电抗。 综上所述,三点式振荡器构成的一般原则: (1) 为满足相位平衡条件,与晶体管发射极相连

的两个电抗元件be X 、ce X 必须为同性, 而不与发射极相连的电抗元件bc X 的电 抗性质与前者相反,概括起来“射同基 反”。此构成原则同样适用于场效应管电路,对应 的有“源同栅反”。 (2) 振荡器的振荡频率可利用谐振回路的谐振频率来估 算。 若与发射极相连的两个电抗元件be X 、ce X 为容性的,称为电容三点式振荡器,也称为考比兹振荡器(Colpitts),如图5 —21(a )所示; 若与发射极相连的两个电抗元件be X 、ce X 为 感性的,称为电感三点式振荡器,也称为哈特莱振荡器(Hartley),如图5 —21(b )所示。 图5 —21 电容三点式与电感三点式振荡器电路原理图

电容三点式振荡器-高频课设

1 概述 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电 压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必须相位相同,这是 相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

2 三点式电容振荡器 2.1 反馈振荡器的原理和分析 反馈振荡器原理方框图如图2.1所示。反馈型振荡器是由放大器和反馈网络组成的一 个闭合环路,放大器通常是以某种选频网络(如振荡回路)作负载,是一个调谐放大器。 图2.1 反馈振荡器方框图 为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。定义A (S )为开环放大器的电压放大倍数: ) () ()(S U S U S A i o = F(S)为反馈网络的电压反馈系数: ) () ()('S U S U S F o i = )(S A f 为闭环电压放大倍数: ) ()(1) ()()()(S F S A S A s U s U S A i o f ?-== 在振荡开始时,由于激励信号较弱,输出电压的振幅o U 则比较小,此后经过不断放大与反馈循环,输出幅度o U 开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即: 1)( jw T 因此起振的振幅条件是:

最新压控LC电容三点式振荡器设计及仿真

实验二压控 LC 电容三点式振荡器设计及仿真1 2 一、实验目的 3 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 4 2、了解和掌握压控振荡器电路原理。 5 3、理解电路元件参数对性能指标的影响。 6 4、熟悉电路分析软件的使用。 7 二、实验准备 8 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 9 2、学习压控振荡器的工作原理。 10 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 11 三、设计要求及主要指标 12 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 13 2、实现电压控制振荡器频率变化。 14 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 15 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 16 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 17 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 18 四、设计步骤

19 1、整体电路的设计框图 20 整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分, 21 22 设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的频 23 24 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 25 2、LC 振荡器设计 26 27 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频28 率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中29 采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基30 础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频31 率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

四LC电容反馈式三点式振荡器

实验四 LC 电容反馈式三点式振荡器 一、实验目的 1. 掌握LC 三点式振荡电路的基本原理,掌握LC 电容反馈式三点振荡电路 的设计及电路参数计算; 2. 掌握振荡回路Q 值对频率稳定度的影响; 3. 弄清振荡器反馈系数不同时,静态工作电流EQ I 对振荡器起振及振幅的 影响。 二、预习要求 1. 弄清LC 振荡器的工件原理; 2. 分析图4-1电路的工作原理及各元件的作用,计算晶体管静态工作电流 EQ I 的最大值(设晶体管的β值为50); 3. 电路中,1L =3.3h μ, 若C =120pf , C '=680pf ,计算当T C =50pf 和T C =150pf 时振荡频率各为多少? 三、仪器设备 1. 双踪示波器 1台 2. 高频电路实验学习机 1台 3. 万用表 1块 4. 实验板1G 1块 四、实验内容及步骤 实验电路见图4-1。实验前根据4-1所示原理图在实验板上找到相应器件及插孔并弄清其作用。 1. 检查静态工作点 (1)在实验板+12V 插孔上接入+12V 直流电源,注意电源极性不能接反。

+12V 图4-1 LC电容反馈式三点式振荡器原理图 (2)C、R、 T C不接,C'接(C'=680pf),用示波器观察振荡器停振时 的情况(此时用示波器观察应为一条直线)。 注意:连接C'的导线要尽量短。 (3)改变电位器 P R(0~47KΩ),用万用表测得晶体管V的发射极工作 电压 EQ U, EQ U可连续变化,记下 EQ U的最大值 max EQ U,计算 max EQ I的值,填入表4.1中。 表4.1 其中:max max 4 EQ EQ U I R =(已知 4 R=1KΩ)。 2.振荡频率与振荡幅度的测试

电容三点式振荡电路

电容三点式振荡电路的分析与仿真 摘要:自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器。 关键词:电容三点式、multisim、振荡器 引言:不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路。

设计原理: 1、电容三点式振荡电路 (1)线路特点 电容三点式振荡器的基本电路如图(1)所示。与发射极连接的两个电抗元件为同性质的容抗元件C2和C3;与基极和集电极连接的为异性质的电抗元件L。它的反馈电压是由电容C3上获得,晶体管的三个电极分别与回路电容的三个端点相连接,故称之为电容反馈三端式振荡器。电路中集电极和基极均采取并联馈电方式。C7为隔直电容。 图(1) (2)起振条件和振荡频率 由图可以看出,反馈电压与输入电压同相,满足相位起振条件,这时可以调整反馈系数F,使之满足A0F>1就可以起振。

高频课设电容三端式振荡器

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 电容三端式振荡器 初始条件: 电容三端式振荡器原理,Multisim软件 要求完成的主要任务: (1)设计任务 根据电容三端式振荡器的原理,设计电路图,并在multisim软件仿真出波形结果。 (2)设计要求 ①正常工作状况时的波形图; ②起振条件的仿真,要求改变偏置电阻、相位电容和电源电压值,再观察起振波形和振荡电压的变化情况。 时间安排: 1、2014 年11月17 日集中,作课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年11月17 日,查阅相关资料,学习基本原理。 3、2014 年11月18 日至2014 年11月20日,方案选择和电路设计。 4、2014 年11月20 日至2014 年11月21日,电路仿真和设计说明书撰写。 5、2014 年11月23 日上交课程设计报告,同时进行答辩。 课设答疑地点:鉴主13楼电子科学与技术实验室。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 1 克拉泼振荡器原理 (3) 1.1 克拉泼振荡器产生的原因 (3) 1.2 克拉泼振荡器电路分析 (3) 1.3 克拉泼振荡器起振条件 (4) 1.3.1 相位条件 (4) 1.3.2振幅条件 (4) 1.4 克拉泼振荡器的振荡频率 (5) 2 克拉泼振荡器仿真分析 (6) 2.1 正常起振的电路图 (6) 2.2改变偏置电阻的仿真 (7) 2.3改变相位电容的仿真 (8) 2.4改变电源大小的仿真 (8) 3 心得体会 (9) 参考文献 (10)

电容三点式震荡电路

摘要 弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器的两种改进型振荡器之一的西勒振荡器。其具有输出波形好、工作频率高、改变电容调节频率时不影响反馈系数等优点,适用于宽波段、频率可调的场合。西勒振荡器由起能量控制作用的放大器、将输出信号送回到输入端的正反馈网络以及决定振荡频率的选频网络组成。但没有输入激励信号,而是由本身的正反馈信号来代替。当振荡器接通电源后,即开始有瞬变电流产生,经不断地对它进行放大、选频、反馈、再放大等多次循环,最终形成自激振荡,把输出信号的一部分再回送到输入端做输入信号,从而就会产生一定频率的正弦波信号输出。西勒振荡器广泛应用于各种电子设备中,特别是在通信系统中起着重要作用。它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分;各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器;并在自动控制装置和医疗设备等许多技术领域也得到了广泛的应用 关键词:电容三点式、西勒电路、mulsitis

1 设计原理 1.1电路选取 不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路,有与电容三点式振荡电路有一些缺陷,通过改进,得到了西勒振荡器。 1.2 电容三点式振荡器 电容三点式振荡器的基本电路如图1-3所示 图1-1电容三点式振荡器 由图可见:与发射极连接的两个电抗元件为同性质的容抗元件C 1和C 2 ;与基极和集电极 连接的为异性质的电抗元件L,根据前面所述的判别准则,该电路满足相位条件。 其工作过程是:振荡器接通电源后,由于电路中的电流从无到有变化,将产生脉动信号,因任一脉冲信号包含有许多不同频率的谐波,因振荡器电路中有一个LC谐振回路,具有选频作用,当LC谐振回路的固有频率与某一谐波频率相等时,电路产生谐振。虽然脉动的信号很微小,通过电路放大及正反馈使振荡幅度不断增大。当增大到一定程度时,导致晶体管进入非线性区域,产生自给偏压,使放大器的放大倍数减小,最后达到平衡,即AF=1,振荡幅度就不再增大了。于是使振荡器只有在某一频率时才能满足振荡条件,于是得到单一频率的振 荡信号输出。该振荡器的振荡频率o f为:

实验一 LC电容反馈 三点式振荡电路

实验一 LC电容反馈三点式振荡电路 一,实验目的: (1)掌握三点式振荡电路的基本原理,掌握LC电容反馈式三点振荡 电路设计及电参数计算 (2)掌握振荡回路Q值对频率稳定度的影响 (3)掌握振荡器反馈系数不同时,静态工作电流Ieo对振荡器及振 幅的影响 二,预习要求 (1)复习LC振荡器的工作原理 (2)分析图1-1电路的工作原理,及各元件的作用,并计算晶体管静 态工作电流Ic的最大值(设晶体管的β值为50) (3)实验电路中,L1=3.3uH,若C=120pf,C’=680pf,计算当Ct=50pf 和Ct=150pf时振荡频率各为多少 三,实验仪器 (1)双踪示波器 (2)频率计 (3)万用表 (4)实验板B1 四,实验内容及步骤 实验电路见1-1,实验前根据图1-1所示原理图在实验板上找到相应器件及插孔并了解其作用.

OUT 图1-1 LC电容反馈肆三点式振荡器原理图 1,检查静态工作点 (1)在实验板+12V扦孔上接入+12V直流电源,注意电源极性不能接 反 (2)反馈电容C不接,C’接入(C’=680pf),用示波器观察振荡器停 振时的情况 注意:连接C’的接线要尽量短 (3)改变电位器Rp测的晶体管V的发射极电压Ve,Ve可连续变化, 记下Ve的最大值,计算Ie值 Ie=Ve/Re 设Re=1k? 2,振荡频率与振荡幅度的测试 实验条件:I e=2Ma,c=120pf,C’=680pf,RL=110K (1)改变Ct电容,当分别接为C9,C10,C11时,记录相应的频率值,

并填入表3.1 (2)改变Ct电容,当分别接为C9,C10,C11时,用示波器测量相应振 荡电压的峰峰值Vp-p,h,并填入表1.1 表1.1 3,测试当C,C’不同时,起据点,振幅与工作电流Ier的关系(R=110K?) (1)取C=C3=100pf,C’=C4=1200pf,调电位器Rp使Ieq(静态值)分 别为表3.2所标各值,用示波器测量输出振荡幅度Vp-p,并填入表1.2 表1.2 (2)取C=C5=120pf,C’=C6=680pf,C=C7=680pf,C’=C8=120pf,分 别重复测试表3.2的内容 4,频率稳定度的影响 (1)回路LC参数固定时,改变并联在L上的电阻使等效Q值变化时, 对振荡频率的影响 实验条件:f=6.5MHZ时,C/C’=100/1200pf,Ieq=3mA改变L的并联电

电容三点式振荡器电路设计与实现

郑州轻工业学院本科 通信电子线路课程设计总结报告 设计题目:电容三点式振荡器电路设计与实现 学生姓名:赵玉春 系别:计算机与通信工程学院信息与通信工程系专业:通信工程 班级:08级1班 学号:58号 指导教师:曹瑞、黄敏 2010年12月25日

郑州轻工业学院 课程设计任务书 题目:电容三点式振荡器电路设计与实现 专业、班级通信工程08-1学号 58姓名赵玉春 主要内容、基本要求、主要参考资料等: 1、主要内容 1) 焊接振荡器电路板。 2) 通过LC振荡器和晶体振荡器输出的波形,对比分析LC振荡器与晶体振荡器的频率稳定度。 2、基本要求 元器件排放错落有致,节点焊接正确,设计结构设合理,实验数据可靠,结果输出稳定。 3、主要参考资料 [1]张启民编著.通信电子线路.西安:西安电子科技大学出版社,2004. [2]董尚斌等编.通信电子线路.北京:清华大学出版社,2007. [3]顾宝良编著.通信电子线路教程.北京:电子工业出版社,2007. 完成期限:2010年12月25日 指导教师签名: 课程负责人签名: 2010年12月25日

目录 1、设计题目 (4) 2、设计内容 (4) 3、设计思路 (4) 4、设计原理 (4) 5、运行结果 (9) 6、实验体会 (10) 7、参考文献 (11)

一:设计题目: 电容三点式振荡器电路设计与实现 二:设计内容: 1) 振荡器电路板的设计与焊接。 2) 调节LC振荡器和晶体振荡器中静态工作点,并了解反馈系数及负载对振荡器的影响。 3) 测试、分析比较LC振荡器与晶体振荡的稳定状况。 三:设计思路: 焊接一个符合电容三点式的电路板,电路板上包含有LC振荡电路和集体震荡器震荡电路。 焊接好电路板之后,调节LC振荡器和晶体振荡器的静态工作点。 观察LC振荡器和晶体振荡器的波形图,同时对LC振荡器和晶体振荡器所产生的波形图进行对比分析。 四:设计原理: 本次实验首先需要焊接电路板,在焊接电路板时需要注意一些节点的焊接,同时避免焊接时出现短路现象。 本次实验验中振荡器包含电容反馈LC三端振荡器和一个晶体振荡器。振荡电路主要由振荡回路模块、偏置电路模块、输出缓冲电路模块组成。它选择主要是根据所给定的工作频率(或工作频段)频率稳定度的要求。因为设计的电路要求是高频信号,故选择LC振荡电路或晶体振荡电路,现在分别应用这两种电路,分别比较它们的频稳性。 1) 三点式震荡电路的基本模型

实验3 电容三点式LC振荡器实验指导

实验3 电容三点式LC振荡器 一、实验准备 1.做本实验时应具备的知识点: ●三点式LC振荡器 ●西勒和克拉泼电路 ●电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响 2.做本实验时所用到的仪器: ●LC振荡器模块 ●双踪示波器 ●万用表 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能; 3.熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响; 4.熟悉负载变化对振荡器振荡幅度的影响。 三、实验电路基本原理 1.概述 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振

荡频率可高达几百MHZ~GHZ。 2.LC振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。 3.LC振荡器的频率稳定度 频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4.LC振荡器的调整和参数选择 以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图3-1所示。 图3-1 电容三点式LC振荡器交流等效电路 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路。

高频课设报告---通信电子线路课程设计——电容三点式正弦波振荡器

目录 一课程设计目的 (2) 二课程设计题目 (2) 三课程设计内容 (2) 3.1 仿真设计部分 (2) 3.1.1设计方案的选择 (2) 3.1.2振荡器的原理概述 (3) 3.1.3方案对比与选择 (5) 3.1.4电路设计方案 (7) 3.1.5元器件的选择 (9) 3.1.6电路仿真 (9) 3.1.7元器件清单 (12) 3.2系统制作和调试 (13) 3.2.1系统结构 (13) 3.2.2系统制作 (15) 3.2.3调试分析 (16) 四课后总结和体会 (17) 参考文献 (17)

一课程设计目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,进一步培养学生的动手能力。 二课程设计题目 1、模块电路设计(采用Multisim软件仿真设计电路) 1)采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器; 2)额定电源电压5.0V ,电流1~3mA; 输出中心频率 6 MHz (具一定的变化范围); 2、高频电路制作、调试

LC 高频振荡器的制作和调试 三 课程设计内容 3.1 仿真设计部分 3.1.1设计方案的选择 电容反馈式振荡电路的基本电路就是通常所说的三端式(又称三点式)的振 荡器,即LC 回路的三个端点与晶体管的三个电极分别连接而成的电路,如图2-0 所示。由图可见,除晶体管外还有三个电抗元件X1、X2、X3,它们构成了决定 振荡器频率的并联谐振回路,同时构成了正反馈所需的网络,为此根据振荡器组 成原则,三端式振荡器有两种基本电路,如图2-0所示。图2-0中X1和X2为容 性,X3为感性,满足三端式振荡器的组成原则,反馈网络是由电容元件完成的, 称电容反馈振荡器 电容反馈式振荡电路的设计及原理分析 电路由放大电路、选频网络、正反馈网络组成。总体设计方案框图如下: V 0 图2-1 三端式振荡器基本电路

LC电容反馈三点式振荡器proteus仿真实验

实验报告 课程名称:高频电子线路 实验名称:LC电容反馈三点式振荡器 姓名: xxx 专业班级xxxxx 一、实验目的 1:掌握LC三点式振荡电路的基本原理及电路设计和电参数计算2:掌握振荡器反馈系数不同时,静态工作电流I(EQ)对振荡器的起振及幅度的影响。 二、实验内容及其结果 实验电路如下: 1:检查静态工作点 (1):改变电位器RV,测得三极管Q的发射及电压V(E),V(E)可以连续变化,记下V(E)的最大值,并计算I(E)=V(E)/R(E).

实验结果如下: (1):在V(E)最大时的静态工作电路如下: 由上图知:Umax(E)=5.62319V, Imax(E)=5.62319mA. (2):交流通路如下: (3):实验电路中,各元器件作用分析 图中:C2,C3与L1构成型LC滤波电路;RV、R2,R4组成

分压时偏置电路;R3为集电极直流负载电阻;C1,C4隔直电容,C,C

’’,L2,CT构成并联谐振回路;RL是负载电阻。 2:振荡频率与震荡幅度的测试 实验条件:U(E)=2V,C=120pF,C’’=680pF,RL=110K. 改变电容CT值,记录相应的频率值以及相应的振荡电压的峰-峰值,填入下表。 实验结果如下: X方向一方格代表0.5uS,Y方向一方格表示5V。CT(pF)F(MHZ)V(p-p) 5038.5 100 2.59 150210 结果分析:由上表数据可知,与理论推测比较吻合;因为电容CT变化会直接影响三极管Q的等效负载,CT减小,负载也会相应减小,进而使三极管的放大倍数减小;而对于振荡频率的变化,源于振荡频率f(0)在L2一定时与C(总)成反比,故有CT增大而,F减小。 3:测量C,C’’不同时,起振点幅度与工作电流I(EQ)的关系

三点式振荡器

改进型电容三点式振荡电路的设计 摘要 高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。 高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。振荡器的功能是产生标准的信号源,广泛应用于各类电 子设备中。为此,振荡器是电子技术领域中最基本的电子线路,也是从事电 子技术工作人员必须要熟练掌握的基本电路。 本次课设设计了改进型电容三点式高频振荡器,介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。使用 Protel2004DXP制作PCB板,并使用环氧树脂铜箔板和FeCl3进行了制 板和焊接。使用实验要求的电源和频率计进行验证,实现了设计目标。 1 实验原理 1.1 振荡的原理 三点式LC正弦波振荡器的组成法则(相位条件)是:与晶体管发射极相连的两个电抗元件应为同性质的电抗,而与晶体管集电极—基极相连的电抗元件应与前者性质相反。图1-1所示为满足组成法则的基本电容反馈LC振荡器共基极接法的典型电路。当电路参数选取合适,满足振幅起振条件时,电路起振。当忽 f可近似认为等略负载电阻、晶体管参数及分布电容等因素影响时,振荡频率 osc f,即 于谐振回路的固有振荡频率 o f=(1)

式中 C 近似等于1C 与2C 的串联值 12 12 C C C C C ≈ + (2) 图1-1 电容反馈LC 振荡器 由图1-1所画出的分析起振条件的小信号等效电路如图1-2所示。 图1-2 分析起振条件的小信号等效电路 由图1-2分析可知,振荡器的起振条件为: e L e L m ng g n g g n g +=+>'''1 )(1 (3) 式中 '011 ,//L e L e e g g R R r = = 0e R 为LC 振荡回路的等效谐振电阻; 电路的反馈系数 1 12 f C k n C C =≈ + (4) 由式(3)看出,由于晶体管输入电阻e r 对回路的负载作用,反馈系数f k 并不是越大越容易起振,反馈系数太大会使增益A 降低,且会降低回路的有载Q 值,使回路的选择性变差,振荡波形产生失真,频率稳定性降低;所以,在晶体管参数一定的情况下,可以调节负载和反馈系数,保证电路起振。f k 的取值一般在0.1—0.5 之间。

电容三点式振荡器与变容二极管直接调频电路设计

咼频实验报告(二) --- 电容三点式振荡器与 变容二极管直接调频电路设计 组员 座位号16 __________________ i

实验时间__________ 周一上午 ________ 目录 一、实验目的 (3) 二、实验原理 (3) 2.1 电容三点式振荡器基本原理 (3) 2.2 变容二极管调频原理 (5) 2.3 寄生调制现象 (8) 2.4 主要性能参数及其测试方法 (9) 三、实验内容 (10) 四、实验参数设计 (11) 五、实验参数测试 (14) 六、思考题 (15) ii

实验目的 1. 掌握电容三点式LC 振荡电路的基本原理。 2. 掌握电容三点式LC 振荡电路的工程设计方法。 3. 了解高频电路中分布参数的影响及高频电路的测量方法。 4. 熟悉静态工作点、反馈系数、等效 Q 值对振荡器振荡幅度和频谱纯度的影响。 5. 掌握变容二极管调频电路基本原理、调频基本参数及特性曲线的测量方法。 实验原理 2.1电容三点式振荡器基本原理 电容三点式振荡器基本结构如图所示: 在谐振频率上,必有 X i + X 2 + X 3 =0,由于晶体管的 V b 与V c 反相,而根据振荡器的 振荡条件|T| = 1,要求V be = — V ce ,即i X i = i X 2,所以要求 X i 与X 2为同性质的电抗。 综合上述两个条件,可以得到晶体管 LC 振荡器的一般构成法则如下:在发射极上连 接的两个电抗为同性质电抗,另一个为异性质电抗。 原理电路如图3.2所示: 图3.2原理电路 共基极实际电路如图3.3所示: Xi ―I X 2 I — 图3.1电容三点式振荡器基本结构 C1 C2 图3.3共基极实际电路

高频电子线路课程设计-电容三点式LC振荡器的设计与制作

高频课设实验报告 实验项目电容三点式LC振荡器的设计与制作系别 专业 班级/学号 学生姓名 实验日期 成绩 指导教师

电容三点式 LC 振荡器的设计与制作 一、实验目的 1.了解电子元器件和高频电子线路实验系统。 2.掌握电容三点式LC 振荡电路的实验原理。 3.掌握静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响4.了解负载变化对振荡器振荡幅度的影响。 二、实验电路实验原理 1.概述 2.L C振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。 3.LC振荡器的频率稳定度 频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:△f0/f0来表示(f0为所选择的测试频率:△f0为振荡频率的频率误差,Δf0=f02 -f01:f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高 Q 值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4.LC振荡器的调整和参数选择 以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图1-1 所示。 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏有一定的影响。偏置电路一般采用分压式电路。当振荡器稳定工作时,振荡管工作在非线性

状态,通常是依靠晶体管本身的非线性实现稳幅。若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效 Q 值降低,输出波形变差,频率稳定度降低。因此,一般在小功率振荡器中总是使静态工作点远离饱和区靠近截止区。 (2)振荡频率 f 的计算 式中 CT为 C1、C2和 C3的串联值,因 C1(300p)>>C3(75p),C2(1000P)>> C3(75p),故 CT≈C3,所以,振荡频率主要由 L、C 和 C3 决定。 (3)反馈系数F的选择 反馈系数 F不宜过大或过小,一般经验数据 F≈0.1~0.5,本实验取F=0.3 5.克拉波和西勒振荡电路 图 1-2 为串联改进型电容三点式振荡电路——克拉泼振荡电路。图1-3 为并联改进型电容三点式振荡电路——西勒振荡电路。 6.电容三点式 LC 振荡器电路 电容三点式LC振荡器电路如图1-4所示。图中1K01打到“S”位置(右侧)时,为改进型克拉泼振荡电路,打到“P”位置(左侧)时,为改进型西勒振荡电路。开关IS03控制回路电容的变化。调整1W01可改变振荡器三极管的电源电压。1Q02为射极跟随器。1TP02为振荡器直流电压测量点。1W02用来改变输出幅度。 二、实验目的

电容三点式振荡器

电容三点式振荡电路设

一、概述 振荡器是一种在没有加外信号作用下的自动将直流电源的能量变换成为一定波形的交变振荡能量的装置。振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分,各种电子测试仪器如信号发生器、数字式频率计等的核心部分都离不开正弦波振荡器,功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。一个振荡器必须包括三个部分:放大器、正反馈电路和选频网络。 振荡器按波形分可分为正弦波振荡器和非正弦波振荡器,按照工作原理可以分为反馈式型振荡器与负阻式振荡器两大类。反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。所谓产生振荡是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。负阻式振荡器则是将一个呈现负阻特性的有源器件直接与谐振电路相接产生振荡。 电容三点式振荡器是自激振荡器的一种,也叫考毕兹振荡电路。由于它是利用电容将谐振回路的一部分电压反馈到基极上,而且也是将LC谐振回路的三个端点分别与晶体管三个电级相连接,所以这种电路有叫做电容反馈三点式振荡器。它由串联电容与电感回路及正反馈放大器组成。 二、工作原理 1、振荡器振荡条件: (1)平衡条件 相位平衡条件:Σ 振幅平衡条件:KF=1 (2)起振条件 KF>1 (3) 稳定条件 振幅稳定条件:在平衡点的K-u曲线斜率为负,即 在平衡点曲线斜率为负,即 2、对电容三点式振荡器是否满足振荡条件进行分析:

(1)满足相位平衡条件 如图所示的电容三点式振荡器矢量图,假设在晶体管的基极和发射极间有一输入信号,当振荡频率等于LC回路谐振频率时,与反相,电流滞后于。上的反馈电压滞后电流。故与,满足相位平衡条件。 电容三点式振荡器矢量图 (2)满足起振条件 图中---- 晶体管输出电阻----- 晶体管输入电阻 ------ 晶体管输出电容----- 晶体管输入电容----- 回路谐振电阻令,则反馈系数 总电阻 放大倍数K Σ 式中是晶体管的电流放大倍数。

电容三点式正弦波振荡器要点

课程设计报告 课题名称 _____电容三点式正弦波振荡器__ 学院电子信息学院 专业通信工程 班级 学号 姓名好人 指导教师陈布雨

绪论 振荡器是用来产生重复电子信号(通常是正弦波或方波)的电子元件,其构成的电路叫振荡电路。能将直流电转换为具有一定频率交流电信号输出的电子电路或装置。种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电感振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。广泛用于电子工业、医疗、科研等方面。 振荡器的种类很多,使用范围也不相同,但是它们的基本原理都是相同的,都要满足起振、平衡和稳定条件。振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器可分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特特性的器件构成的振荡器。在这种电路,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡器电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。 本次课设设计了电容三点式正弦波振荡器。

一设计原理说明 (4) 1.1 反馈振荡器的原理 (4) 1.1.1 原理分析 (4) 1.1.2 平衡条件 (5) 1.1.3 起振条件 (5) 1.1.4 稳定条件 (6) 1.2 电容三点式振荡器 (6) 1.3 设计原理 (7) 二电路设计与仿真 (8) 2.1 参数设置 (8) 2.2仿真电路图形 (10) 三仿真结果 (11) 四课设小结 (12) 参考文献 (13)

高频电容反馈振荡器电路设计

辽宁工业大学高频电子线路课程设计(论文) 题目:电容反馈振荡器电路设计 学院:电子与信息工程学院 专业班级: 学号: 学生姓名: 指导教师: 教师职称: 起止时间:

课程设计(论文)任务及评语

目录 第1章电容反馈式振荡器的设计方案 (1) 1.1电容反馈式振荡器的设计意义 (1) 1.2 电容反馈式振荡器的设计要求及技术指标 (2) 1.3 电容反馈式振荡器的的设计原理 (2) 1.4 电容反馈式振荡器的方案框图及分析 (4) 第2章电容反馈式振荡器的电路设计及仿真 (5) 2.1电路的设计依据 (5) 2.2原理图EWB软件仿真 (6) 2.3 仿真结果 (7) 2.4计算验证 (7) 第3章设计总结 (8) 参考文献 (9)

第1章电容反馈式振荡器的设计方案 1.1电容反馈式振荡器的设计意义 本次课程设计我的任务是电容反馈式振荡器。通讯工具在我们的生活中的作用越来越重要。通信工程专业的发展势头也一定会更好,为了自己将来更好的适应社会的发展,我必须增强自己对知识的理解和对理论知识的把握,加强动手操作能力来灵活运用所学过的知识。 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 振荡器由3部分组成,它们是放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。振荡器能不能振荡起来并 维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U f 和输入电压 U i 要相 等,这是振幅平衡条件。二是U f 和U i 必须相位相同,这是相位平衡条件,也就是说 必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。总之,其应用范围之广是本次课程设计意义所在。 本次课设输出正弦波,正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

相关文档