文档库 最新最全的文档下载
当前位置:文档库 › 对数与对数函数.板块一.对数与对数运算.学生版

对数与对数函数.板块一.对数与对数运算.学生版

对数与对数函数.板块一.对数与对数运算.学生版
对数与对数函数.板块一.对数与对数运算.学生版

1

题型一:对数的定义与对数运算

【例1】 ⑴将下列指数式化为对数式,对数式化为指数式:

①45625=;②61264-=;③1 5.733m ??= ???;④12log 164=-;

⑤lg 0.012=-;⑥ln10 2.303=.

⑵求下列各式中x 的值:

①642log 3

x =-;②log 86x =;③lg100x =;④2ln e x -=.

【例2】 将下列指数式化为对数式,对数式化为指数式:

(1)712128

-=; (2)327a =; (3)1100.1-=; (4)12

log 325=-; (5)lg0.0013=-; (6)ln100=4.606.

【例3】 将下列对数式写成指数式:

(1)416log 2

1-=;(2)2log 1287=;

(3)lg 0.012=-; (4)ln10 2.303=

典例分析 板块一.对数运算

2 【例4】 已知32()log f x x =, 则(8)f 的值等于( ).

A. 1

B. 2

C. 8

D. 12

【例5】 计算下列各式的值:(1)lg 0.001; (2)4log 8; (3

【例6】 ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345

【例7】

).

A. 1

B. -1

C. 2

D. -2

【例8】

25log ()a -(a ≠0)化简得结果是( ).

A. -a

B. a 2

C. |a |

D. a

【例9】

化简3log 1的结果是( ).

A. 1

2 B. 1 C. 2

【例10】 计算2(lg5)lg2lg50+?= .

【例11】 计算:()2151515log 5log 45log 3?+

对数函数基础运算法则及例题_答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x = 4 9 时,不等式 log a (x 2–x – 2)>log a (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x = 49使原不等式成立. ∴log a [249)49(2--]>log a )349 2)49(1[2+?+? 即log a 1613>log a 1639. 而1613<16 39 . 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为??? ? ???++-<-->++->--322032022222x x x x x x x x ,解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5 ,2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2)–f (x 1) = 212221log log 11x x x x ---2 1221(1)log (1)x x x x -=-=.11log 2 1 122x x x x --? ∵0<x 1<x 2<1,∴ 12x x >1,2111x x -->1. 则2 1 12211log x x x x --?>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = log a (a –a x ) (a >1). (1)求f (x )的定义域和值域;(2)判证并证明f (x )的单调性. 解:(1)由a >1,a –a x >0,而a >a x ,则x <1. 故f (x )的定义域为( -∞,1), 而a x <a ,可知0<a –a x <a ,又a >1. 则log a (a –a x )<lg a a = 1. 取f (x )<1,故函数f (x )的值域为(–∞, 1). (2)设x 1>x 2>1,又a >1,∴1x a >2x a ,∴1x a a -<a-2x a , ∴log a (a –1x a )<log a (a –2x a ), 即f (x 1)<f (x 2),故f (x )在(1, +∞)上为减函数.

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质 1.对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化: log (0,1,0) x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式:log 10 a =, log 1 a a =, log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即 10log N ; 自然对数:ln N ,即 log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘: log log () n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 2.对数函数及其性质 定义:函数log (0 a y x a =>且1)a ≠叫做对数函数 图象: 定义域:(0,)+∞ 值域:R 过定点:图象过定点(1,0),即当1x =时,0y =. 1 x y O 1 x y O

奇偶性:非奇非偶 单调性:在(0,)+∞上是增函数1a >;在(0,)+∞上是减函数01a <<; 函数值的变化情况: log 0(1)log 0(1)log 0(01) a a a x x x x x x >>==<<< log 0(1)log 0(1)log 0(01) a a a x x x x x x <>==><< 变化对图象的影响:在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. 判断技巧:指数函数令1=x 得到第一象限内底大图上;对数函数令1=y 得到第一象限底大图下。 3.反函数的概念 (1)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ?=.如果对于y 在 C 中的任何一个值,通过式子()x y ?=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ?=表示x 是y 的函数,函数()x y ?=叫做函数()y f x =的反函数,记作1 ()x f y -=,习惯上改写成1()y f x -=. (2)反函数的性质 ①原函数()y f x =与反函数1 ()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1 ()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则' (,)P b a 在反函数1 ()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数. 例题与解析: 例题1:将下列指数式与对数式进行互化. (1)64)4 1 (=x (2)5 15 2 1= - (3)327log 3 1-= (4)664log -=x 解析:(1)∵64)41(=x ,∴x =41log 64 (2)∵51521 =-,∴21 51log 5 -= (3)∵327log 3 1-=,∴27)31(3=- (4)∵log x 64 = –6,∴x - 6 = 64. 例题2:比较下列各组数的大小: (1)log 0.7 1.3和log 0.71.8; (2)log 35和log 64. (3)(lg n )1.7和(lg n )2 (n >1);

最新高一数学对数运算及对数函数试题

高一数学对数运算及对数函数试题 一:选择题 1.若log 7[log 3(log 2x )]=0,则为( ) A . B . C . D . 解:∵log 7[log 3(log 2x )]=0, ∴log 3(log 2x )=1, ∴log 2x=3, ∴x=8, ∴ = = = . 故选D . 2.23(log 9)(log 4)?=( ) (A ) 14 (B )1 2 (C ) 2 (D )4 【答案】D 3.的值是( C ) A . 12 B . C . ﹣12 D . 解:=log 6(4×9)+2﹣16=﹣12, 故选C . 4.实数﹣ ?+lg4+2lg5的值为( D ) A . 25 B . 28 C . 32 D . 33 解: ﹣?+lg4+2lg5=﹣2×(﹣2)+lg (4×25)=27+4+2=33, 故选D . 5.已知lg2=a ,10b =3,则log 125可表示为( ) A . B . C . D .

解:∵lg2=a,10b=3, ∴lg3=b, ∴log125= = =. 故选C. 6.lgx+lgy=2lg(x﹣2y),则的值的集合是() A.{1} B.{2} C.{1,0} D.{2,0} 解:∵lgx+lgy=2lg(x﹣2y),∴lg(x﹣2y)2=lgxy, ∴(x﹣2y)2=xy,∴x2﹣5xy+4y2=0, ∴﹣5?+4=0,∴=1(舍去)或=4, 故=log24=2, 故选B. 7.已知f(e x)=x,则f(5)等于(D) A.e5B.5e C.l og5e D.l n5 解:∵f(e x)=x,令e x=t,解得x=lnt, ∴f(t)=lnt(t>0), ∴f(5)=ln5, 故选D. 8.设,则a,b,c的大小顺序为()A.a>b>c B.a>c>b C.b>a>c D.c<a<b 解:因为, 又1.8>1.5>1.44, 函数y=2x是增函数,所以a>c>b. 故选B. 9.已知幂函数y=f(x)的图象过点,则log2f(2)的值为(A)A.B. C.2D.﹣2 ﹣

11对数运算和对数函数

如皋市薛窑中学2011届高三理科数学一轮复习 11对数运算和对数函数 【考点解读】 对数:B 级 对数函数的图象与性质:B 级 【复习目标】 1.理解对数的概念及其运算性质;了解对数换底公式(只要求知道一般对数可以转化成自然对数或常用对数); 2.了解对数函数的概念;理解对数函数的性质,会画对数函数的图象。 活动一:基础知识 1.对数及其运算性质 一般的,如果(0,1)a a a >≠的b 次幂等于N ,即b a N =,那么指数 b 叫做以a 为底N 的对数,记作log ,a N b =其中a 叫做 ,N 叫做 ,式子log a N 叫做 。 常用对数:通常将10log N 的对数叫做常用对数,为了方便,N 的常用对数记作 。 自然对数:通常将以无理数e=2.71828L 为底的对数叫做自然对数,为了方便,N 的自然对数 记作 。 对数恒等式:log a N a = (0a >且1,0a N ≠>)叫做对数恒等式。 对数换底公式:log b N = . 对数的性质: (1)负数和零没有对数; (2)1的对数是零,即log 10a =; (3)底的对数等于1,即log 1a a =。 如果0,1,0,0a a M N >≠>>,那么 ① log ()a MN = ; ② log a M N = ; ③ log n a M = (n R ∈) 2.对数函数x y log =(0>a 且1≠a )的图像和性质

1.计算:(1)3948(log 2log 2)(log 3log 3)+?+;(2)41 111 (lg32log 166lg )lg 5 255 +++ (3) 2log ; (4)1324 lg 2493 -+(5)lg 2lg 5lg8lg 50lg 40+--; (6) 2721 log 10log 23235log [43)7]--;(7)2lg5+ 2.设lg 2,lg3,a b ==则5log 12= 。lg83lg5+= 。 3.30.4 40.4,3,log 3的大小关系为 。 4.若函数log ()(0,1)a y x b a a =+>≠的图像过两点(-1,0)和(0,1),则a = ,b = 。 5.对于0,1a a >≠,下列结论: ① 若M=N,则log log a a M N =; ② 若log log a a M N =,则M=N ; ③ 若22log log a a M N =,则M=N ; ④ 若M=N 。则22 log log a a M N =。 其中正确的有 。(填序号) 6.已知732log [log (log )]0x =,那么12 x -= 。 7.设函数9()log f x x =,则满足1 ()2 f x =的x 的值为 。

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

对数的运算及对数函数

§2.2.1 对数与对数运算(一) ¤知识要点: 1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数 2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在 科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N 3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =?=. 4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲: 【例1】将下列指数式化为对数式,对数式化为指数式: (1)71 2128 -= ; (2)327a =; (3)1100.1-=; (4)12 log 325=-; (5)lg0.0013=-; (6)ln100=4.606. 【例2】计算下列各式的值:(1)lg0.001; (2)4log 8; (3). 第14练 §2.2.1 对数与对数运算(一) ※基础达标 1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 0 1ln10e ==与 B. 1()3 81118 log 223 -==-与 C. 12 3log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ). A. 10 B. 0.01 C. 100 D. 1000 4.设13 log 82 x =,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 1 4 5.已知432log [log (log )]0x =,那么1 2 x -等于( ). A. 1 3 B. C. D. 6.若21 log 3 x =,则x = ; 若log 32x =-,则x = . 7.计算: = ; 6lg 0.1= . ※能力提高 8.求下列各式的值:(1) 8; (2)9log

对数运算、对数函数经典例题讲义全

1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______. 2.常用对数与自然对数 通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系 若a >0,且a ≠1,则a x =N ?log a N =____. 对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质 (1)1的对数为____; (2)底的对数为____; (3)零和负数__________. 1.有下列说法: ①零和负数没有对数; ②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4 2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2 .其中正确的是( ) A .①③ B .②④ C .①② D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2

(完整版)对数公式及对数函数的总结

对数运算和对数函数 对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数。③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>。 常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数函数及其性质 类型一、对数公式的应用

1计算下列对数 =-3log 6log 22 =?3 1log 12 log 2 22 2 =+2lg 5lg =61000lg =+64log 128log 22 =?)24(log 432 =++)2log 2)(log 3log 3(log 9384 =++3log 23log 2242 =?16log 27log 32 =+-2log 90log 5log 333 =++c b a 842log log log =+++200 199lg 43lg 32lg Λ =++32log 8log 8log 842 =+25.0log 10log 255 =-64log 325log 225 =)))65536(log (log (log log 2222 2 解对数的值: 18lg 7lg 37lg 214lg -+- 0 =-+-1)21 (2lg 225lg -1 1 3 341log 2log 8?? -? ??? 的值0 提示:对数公式的运算 如果0,1,0,0a a M N >≠>>,那么 (1)加法:log log log ()a a a M N MN += (2)减法:log log log a a a M M N N -= (3)数乘:log log ()n a a n M M n R =∈ (4)log a N a N = (5)log log (0,)b n a a n M M b n R b =≠∈ (6)换底公式:log log (0,1)log b a b N N b b a = >≠且 (7)1log log =?a b b a (8)a b b a log 1log = 类型二、求下列函数的定义域问题 1函数)13lg(13)(2 ++-= x x x x f 的定义域是)1,31 (- 2设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为 ()()4,11,4Y -- 3 函数()f x = ]1,0()0,1(Y - ) 提示:(1)分式函数,分母不为0,如0,1 ≠= x x y 。 (2) 二次根式函数,被开方数大于等于0,0,≥= x x y 。 (3)对数函数,真数大于0,0,log >=x x y a 。 类型三、对数函数中的单调性问题

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

对数运算、对数函数经典例题讲义

1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______. 2.常用对数与自然对数 通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系 若a >0,且a ≠1,则a x =N ?log a N =____. 对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质 (1)1的对数为____; (2)底的对数为____; (3)零和负数__________. 1.有下列说法: ①零和负数没有对数; ②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4 2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( ) A .①③ B .②④ C .①② D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2

对数函数与指数函数的运算

对数函数与指数函数的运算 1.化简下列各式(其中各字母均为正数): (1) ;)(65312121132 b a b a b a ????-- (2).)4()3(6521 332121231----?÷-??b a b a b a 2.化简(1) 313 2)3(---a y x (2) )111)((2211b ab a b a +-+-- 3.化简下列各式 (1) 6113175.0231729)95()27174(256)61(027 .0------+-+-- (2) (a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)] 4.求值(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg

(3) 2.1lg 10lg 38lg 27lg -+ (4)(lg2)3+(lg5)3+3lg2?lg5 (5)化简22)4(lg 16lg 25lg )25(lg ++ 答案: 1.(1)原式= .100653121612131656131212131=?=?=?-+-+--b a b a b a b a b a (2)原式=- )(45)4(25233136121332361------÷-=?÷b a b a b a b a .45145452 32321ab ab ab b a -=?-=?-=-- 2. (1) 639 27x a y ; (2) 3311b a +;

3.(1) 5132;(2) a a 1 ; 4. (1) 0;(2) 25;(3) 23;(4) 1;(5) 2 ;

对数运算与对数函数

对数运算与对数函数 已知底数和指数求幂的运算称为指数运算.如求23=?那么当已知底数和幂,求指数的 运算则称为对数运算.指数运算与对数运算互为逆运算. 【对数运算的相关问题】 1.定义. 若a b =N(a>0且a ≠1,N >0),则称b 是以a 为底N 的对数.记作b=log a N ,其中a 叫做底 数,N 叫做真数. 2指数式与对数式的互化 如图1.10—1所示. ②互换规则:底数不变,指数 与对数互换,幂与真数互换. 3.对数恒等式:① . ② . 证明:①设log a N=b (1),则a b =N (2),将(1)代入(2)得. ②设a b =N(3),则b=log a N(4),将(3)代入(4)得.此结论说明任何一个实数b 都 可以用一个对数表示. 说明:为什么零与负数无对数?为什么要求指数、对数的底数 a >0且a ≠1? 由a b =N ,N >0说明b=log a N 中的真数必须大于0.∴ 零与负数无对数. 又∵ 由1b =1知b 的取值是无法确定的,再如在实数范围内是无意义的.故底数a >0且a ≠1. 例1.化简下列各式:(1). (2) . 解: (1)原式=31 ×=3×6=18. (2)原式=. 4.对数运算性质 如果 (1). (2)= . (3) . 5.换底公式及推论 ①换底公式:. ②推论1: . a b =N b=log a N ? 指数式← →对数式 底数 指数 对数 幂 真数 ①.指数式与对数式 的互化. 图1.10—1

③推论2:. 例2.已知f(x)是R上以2为周期的奇函数,当x∈[0,1]时f(x)=2x,求f(log0.523)的值. 解:∵f(x)是R上以2为周期的奇函数, ∴f(log0.523)=f()=f(-log223)=-f(log223-4)= -f(), 又∵当x∈[0,1]时f(x)=2x,∴f(log0.523)= . 例3.求值. (1). (2)lg52++lg5lg20+lg22. 解:(1)法1.原式=lo()=lo2= lo()3=3. 法2.原式= (2)原式=2lg5+2lg2+lg5(2lg2+lg5)+lg22=2(lg2+lg5)+(lg2+lg5)2=3. 例4.(1)已知log189=a,18b=5. 求log3645. (2)若26a=33b=62c..求证:3ab-2ac=bc. (3)若.求的值. 解:(1)法1.由log189=a,得a=log18 又由18b=5,得b=log185, ∴log3645= 法2. log189=a,得, 再由b=log185= ∴log3645= (2)设26a=33b=62c.=k>0,则6a=log2k,∴6log k2,

对数函数及其运算

2.2对数函数 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式 log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数

设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ?=.如果对于y 在C 中的任何一个值,通过式子()x y ?=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ?=表示x 是y 的函数,函数()x y ?=叫做函数()y f x =的反函数,记作 1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法 ①确定反函数的定义域,即原函数的值域; ②从原函数式()y f x =中反解出1 ()x f y -=; ③将1 ()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质 ①原函数()y f x =与反函数1 ()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1 ()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则' (,)P b a 在反函数1 ()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数. 课堂练习 对数函数与指数函数的混合运算: 1、若log 2,log 3,a a m n ==则32m n a -=_________ 2、若1a >且01b <<,则不等式log (3) 1b x a ->的解集为________ 3、已知35,a b A ==且 11 2a b +=,则A 的值是________ 4、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a -

相关文档
相关文档 最新文档