文档库 最新最全的文档下载
当前位置:文档库 › 神经网络在CVC六辊轧机板形控制中的应用

神经网络在CVC六辊轧机板形控制中的应用

神经网络在CVC六辊轧机板形控制中的应用
神经网络在CVC六辊轧机板形控制中的应用

神经网络在CVC六辊轧机板形控制中的应用

刘智 高诚辉 王伟

(福州大学机械工程及自动化学院 福州 350002)

摘要:本文提出了基于板形机理的神经网络板形预报的思想,对CVC六辊轧机建立了神经网络板形预报模型,并结合神经网络板形预报以及在线PID神经网络控制器建立在线板形控制系统,对冷轧薄板的板形进行控制,以得到良好的板形控制效果。

关键词:CVC六辊轧机神经网络板形控制

1前言

CVC轧机[1,2]是西马克(SMS)公司于上世纪八十年代初提出并开发的一种新型轧机。CVC轧机将工作辊或者中间辊磨成S形曲线,其辊型为全波正弦曲线,上辊和下辊的磨削形状相同,上下轧辊互相错位180°布置,形成了一个对称的辊缝轮廓。通过轴向反向移动上下轧辊,可使轧辊的凸度在最大和最小值之间连续可调。CVC技术最突出的特点在于可连续改变辊缝的凸度,一套轧辊就能满足不同轧制规程的凸度要求。CVC技术的另一特点是辊间挤压力分布较为均匀,没有三角形尖峰,因此轧辊磨损较为均匀。CVC 六辊轧机可以采用轧辊倾辊、工作辊弯辊、中间辊弯辊、工作辊抽辊、中间辊抽辊等多种板形控制手段,具有极强的板形控制能力。

人工神经网络在轧制生产中可用于模型的建立与优化、过程辨识、过程控制及自适应调整、自学习优化控制、传感器监测、在线监测与产品质量预测、参数预测等方面,主要应用在自动化控制系统的过程控制级中。应用的方法是把神经网络与传统相结合,共同实现某些功能,有着广泛的应用前景[3]。目前,欧、美、日本等对神经网络在轧制生产中的应用开展了广泛的研究,并且在实际应用中取得了突出的成就。我国也已经开始了尝试利用人工神经网络解决板形控制的问题,周旭东等[4]提出了一种自适应神经元网络的方法,对板形板厚综合系统进行了仿真研究。胡小平等[5]利用人工神经网络技术建立了板形预测和控制模型,实验结果表明该模型具有较好的效果,可应用于板形在线预测和控制。周晓敏等[6]建立了BP神经网络的CVC冷连轧机板形预报控制模型,仿真验证表明该模型具有很高的预测精度。贾春玉[7]提出冷轧板形控制的模糊神经网络方法,仿真结果表明了该方法的有效性。尽管国内研究人员开展了一些研究,但相对于国外来说还是很少,尤其是应用到生产实际的实例更少。本次研究是基于福州瑞闽CVC六辊轧机的,该轧机是从德国引进的先进轧机,将神经网络应用到该轧机的板形控制中,有望得到更高的板形控制精度。

2基于板形机理的神经网络板形预报

板形预报模型是板形控制系统设计的重要基础,无论是板形控制系统中的调解机构控制特性分析,还是在线适时控制,都需要精确的板形预报模型。新型精确的板形预报模型必将提高板形控制系统的控制精度。

板形预报理论包括传统的机理模型和80年代兴起的神经网络模型。传统的机理模型通过研究轧制金属内部三维塑性变形和轧辊的弹性变形,建立板形预报模型。由于受到金属本性、轧制条件、轧制设备等多方面因素的制约,同时板形控制系统是一个有惯性、有滞后、有扰动、多变量、强耦合的控制系统,无法建立其精确的数学模型,因此单独的机理模型难于用在板形在线预报中。因此本文提出了一种基于板形机理和神经网络的板形预报模型,将神经网络技术引入到了板形预报中,神经网络固有的非线性结构使其特别实用于板形机理很复杂的板形建模问题,它克服了机理模型中的反复迭代、计算时间长、无法考虑在线动态扰动的缺点。其基本思想是:建立神经网络的板形预报模型,利用板形机理模型获得板形数据,离线训练神经网络,再用一定的生产实测数据训练,建立起来的神经网络模型即可用于板形预报。

(1)对CVC六辊轧机板形进行现场测试,获取与板形有关的轧制参数和板形参数,利用实测的轧制参数进行板形计算,比较板形计算结果与实测板形数据,改进计算方法,提高计算精度,建立可靠的板形计算机理模型。

(2)根据神经网络理论,建立板形预报模型。以板形计算机理模型为工具,在计算机上进行大量不同规格薄板的模拟轧制,输出对应产品的板形结果,将这些产品和板形结果以及一定的生产实测数据作为样本对神经网络进行训练,再将神经网络预报的结果与模拟轧制预报结果以及生产实测数据进行比较分析,研究该神经网络模型的预报精度,建立可靠的板形离线预报神经网络。

136

137

模型具有如下特点:

(1)在板形预报研究中综合了机理模型和神经网络模型的优点,是一种可行高效的预报方法。机理模型中板形概念清楚,能分析各种板形影响因素;神经网络模型具有非线性结构,能够考虑轧制过程中的动态因素,适合板形建模。神经网络建模过程中发挥机理模型的作用,具有建模时间短、成本少的优点。

(2)基于板形机理和神经网络的板形预报模型对尚处于设计阶段未投入生产的轧机的板形预报建模具有不可替代的作用。传统的神经网络建模必须从生产中实测大量数据,因此对未投入生产的轧机无法建模,而该研究可采用仿真数据建模。

3建立CVC 六辊轧机板形预报神经网络模型

3.1基于板形机理的神经网络预报模型

根据机理模型[5,6]的仿真结果和该轧机的控制调节机构可以确定为多变量的输入和输出,采用BP 网络的4层模型。第一层为输入层,第二层、第三层为隐含层,第四层为输出层。将已知轧制参数及控制变量作为输入模式向量,例如入口带材信息、轧辊信息、轧辊倾辊量、工作辊弯辊力、中间辊弯辊力、中间辊抽辊量等各因素。将轧后的板形信息作为输出模式向量,如轧后板带的前、后张力以及板厚的横向分布,还有板形的一次、二次和四次项偏差。输入层和输出层的神经元个数与其输入、输出的变量个数相同,中间层的神经元个数可由神经网络的收敛情况而定。

输出层

隐含层

隐含层

输入层

1 2

图1 BP 神经网络模型

神经网络建立以后,可利用板形机理模型获得板形数据以及少量的生产实测数据进行离线神经网络的训练,同时神经网络具有记忆功能,可将训练结束后神经网络的权值、阈值以及所建立的神经网络预测模型记忆起来,再输入新的未知输入模式向量时可不经过训练而得到相应的输出模式向量,因此所建立起来的神经网络可用于板形预报。而且在实际生产中如果实测板形和预报板形相差较大时,可通过对神经网络进行误差逆传播训练直至得到一致的板形输出,达到板形预报模型的在线训练的目的,因此具有自适应性。

3.2神经网络逆模型

所建立起来的神经网络逆模型和已建立的神经网络预报模型相反,与神经网络预报模型具有反映射的作用,同样采用4层模型,以神经网络预报模型的输入为输出,输出为输入,中间两层为隐含层。以神经网络预报模型得到的数据库为学习样本进行有导师的训练,这样将板形信息作为输入模式向量输入该模型,便可得到控制变量等模式向量,对实际生产中轧机的控制机构进行预设定。

4结合神经网络板形预报的在线板形PID 神经网络控制系统

在轧机条件已定,并制订了合理的轧制工艺方法的条件下,设计合理的板形控制系统对得到良好的最终带材板形是至关重要的。一个完整的板形控制系统是多种控制方案的综合体。它不但需要控制轧制力,

同时还要控制液压弯辊力、轧辊抽辊、轧辊倾辊以及局部热凸度等因素。因此这些因素相互影响,构成了一个多变量、强耦合的控制系统,传统的PID控制方法已不能满足要求了。基于神经网络的PID控制器[8]具有许多优异的性能。对于复杂的控制系统来说,它的可塑性、自适应性和自组织性使它具有很强的学习能力,并且它还具有良好的鲁棒性和容错性以及满足适时性能要求的潜力。

4.1神经网络PID控制器

对于解决复杂非线性轧制控制问题来说,需采用非线性预测模型的BP神经网络PID控制器,如图2所示。图中NN和NNM分别为两个不同的BP神经网络,K P、K I、K D分别为PID控制器的比例系数、积分系数和微分系数。结合板形控制的实际问题,被控对象为CVC六辊轧机。由于以下控制系统是综合控制系统,全面考虑了CVC六辊轧机的多个板形控制机构对轧件的作用,采用5个PID控制器,同时所建立的BP神经网络(NN)应有15个输出,即有5组PID控制器的控制系数作为神经网络(NN)的输出。对

4.2

图3 在线神经网络闭环控制系统

138

通过研究CVC六辊轧机各调控手段对板形偏差的调控功效[10,11]可知:轧辊倾辊可以消除一次板形偏差;中间辊弯辊可以消除二次板形偏差;工作辊弯辊和中间辊抽辊既可以消除二次板形偏差也可以消除四次板形偏差;分段冷却可以消除高次板形偏差。

由于CVC六辊轧机一般都是在空载状态下进行中间辊抽辊,也就是说在轧完一卷带材后进行中间辊抽辊,因此在神经网络预报对二次、四次板形偏差的调控预设定时应充分发挥中间辊抽辊的作用,其他二次、四次调控手段起辅助作用,同时结合板形机理得到轧制力预设定值。将已知轧制参数及控制变量作为输入模式向量输入基于板形机理的神经网络预报模型,便得到预报板形信息。然后将预报板形和目标板形进行比较,如果板形较差,则需修改控制变量,重复以上过程直至得到良好的预报板形。如果板形良好,则经过神经网络逆模型可得到轧制参数以及轧机的控制变量对轧机进行预设定。

在线板形仪得到的实测板形结合给定的目标板形经过板形偏差模式识别得到一次、二次、四次和高次板形偏差,板形偏差进入在线BP网络PID控制器进行学习训练得到各PID控制器的比例系数,并经各自的PID控制器得到相对应的各板形调控手段的调节量,来实现对板形的闭环控制。

与传统的闭环控制系统相比该系统具有下特点:

(1)通过神经网络预报可较真实的反映出轧后板形的信息,可以有针对性的对轧机进行控制。

(2)结合神经网络预报得到轧机的预设定在很大程度上提高了轧制前阶段板形的平直度,提高了板材总的成材率,且该模型可在线训练,具有自适应性。

(3)在线板形偏差通过BP神经网络PID控制器直接得到各调控手段的合理的调节量,无需经过解耦计算,提高了控制精度。

(4)该系统的板形控制能力随着在线BP神经网络的不断学习训练而逐渐增强,并逐渐趋向稳定,神经网络将为PID控制提供合理的控制系数,使系统保持在最优的控制状态。

5结束语

本文提出了基于板形机理的神经网络预报的思想,解决了传统神经网络建模必须从生产中实测大量数据而无法对未投入生产的轧机进行建模的问题。同时提出一种在线神经网络板形闭环控制系统,以得到良好的板形控制效果。

参考文献

[1] 许健勇.薄板冷轧厚度与板形高精度控制技术.钢铁.2002,37(1):73-77

[2] 王祝堂.CVC轧机(1).轻金属.1995,(3):47-50

[3] 赵启林,吕程,王国栋.人工神经网络在轧钢中的应用.钢铁研究.1999,(1):44-48

[4] 周旭东,李连诗,王先进等.自适应神经元网络板形板厚综合控制.北京科技大学学报.1994,

16(4):340-345

[5] 胡小平,毛征宇,胡燕平.基于人工神经网络的一种板形反馈控制.制造业自动化.2001,23(3):40-45

[6] 周晓敏,张清东,王长松等.基于BP神经网络的CVC冷轧机板形预测控制模型.北京科技大学学 报.2000,22(4):374-376

[7] 贾春玉.基于模糊神经网络进行冷轧板形智能控制的研究.重型机械.2000,(2):11-14

[8] 陶永华,尹怡欣,葛芦生.新型PID控制及其应用.机械工业出版社.1998,163-170

[9] 张云鹏,王长松,张清东.基于效应函数的冷轧机板形闭环控制策略.北京科技大学学报.1999, 21(2):195-197

[10] 张清东,黄纶伟,周晓敏.宽带钢轧机板形控制技术比较研究.北京科技大学学报.2000,22(2):177-181

[11] 张云鹏,吴庆海,王长松.六辊CVC冷轧机板形控制性能研究.冶金设备.1998,(6):8-10

作者简介

刘智(1979-),男,硕士研究生。

通讯联系人:高诚辉,男,教授。

139

六辊轧机操作说明

六辊轧机操作说明 主电机启动前必须满足如下条件,液压系统、润滑系统工作正常,支撑辊轨道提升缸下落,中间辊、支撑辊平衡缸顶起,工作辊、中间辊轨道支撑装置操纵缸收回,工作辊、中间辊轨道提升缸下落,接轴托架使托架与万向接轴分离,中间辊卡紧缸卡住中间辊,中间辊轴向抽动缸以“高速”将中间辊设置在预定位置,工作辊弯辊缸顶起,工作辊、支撑辊轴向固定缸卡住其轴承座,支撑辊油膜轴承系统启动,压下缸到位,机架间导板处于工作位置,乳化液开启。 轧钢过程中压下缸由伺服阀调整压下行程,工作辊弯辊缸通过比例减压阀调整弯辊力的大小,中间辊轴向抽动缸以“低速”调整中间辊的轴向位置,实现板型控制。 更换工作辊和中间辊时主电机停止(当电机停止时,齿轮座上安装的两个接近开关使工作辊扁头停在竖直方向,便于换辊时万向接轴与工作辊对接),乳化液关闭,机架间导板移开,支撑辊油膜轴承系统关闭,压下缸收回,工作辊及上支撑辊轴向卡板打开,支撑辊平衡缸将上支撑辊顶起至牌坊窗口上表面,中间辊轴向抽动缸将中间辊快速移至初始状态后,中间辊卡紧缸打开,工作辊弯辊缸回落,工作辊、中间辊轨道提升缸抬起,人工在操作侧用销子将下工作辊轴承座与下中间辊轴承座卡在一起,人工在操作侧和传动侧上工作辊轴承座与上中间辊轴承座之间放置垫块,上中间辊平衡缸回落,使上中间辊轴承座落在上工作辊轴承座上的垫块上,二辊辊面分离,工作辊、中间辊轨道支撑装置操纵缸伸出,使支撑装置转动到换辊轨道下,工作辊、中间辊轨道提升缸回落将轨道下放到支撑装置上,接轴托架缸托住万向接轴,人工拆除工作辊弯辊缸的液压管线后,便具备了换辊条件,台车移动缸以“高速”将台车向轧机方向推出5100mm,接近开关发出停止信号,工作辊、中间辊换辊缸伸出,人工将台车上部挂钩挂在下工作辊轴承座的换辊钩上,工作辊、中间辊换辊缸缩回,将上下工作辊及上下中间辊一起拉出到横移小车上,台车以“低速”退回5100mm到换辊位置,接近开关发出停止信号,人工摘掉挂钩,台车止动销操纵缸将锁紧销拉出,换辊小车横移缸推出1724.5mm,将准备好的新辊横移到换辊位置,旧辊同时移出。台车止动销操纵缸将锁紧销推回锁住横移小车,台车移动缸以“低速”将台车向轧机方向推出5100mm,接近开关发出停止信号,工作辊、中间辊换辊缸伸出,将新辊推到轧钢位置,台车退回完成工作辊、中间辊更换。 单独更换工作辊时,上中间辊平衡缸不回落,上中间辊轴承座与上工作辊轴承座间不放置垫块,也不用销子将下工作辊轴承座与下中间辊轴承座连在一起,其余操作程序同上,便可单独更换工作辊。 更换支撑辊时,工作辊、中间辊以从牌坊中拉出,下支撑辊轴向固定缸将卡板打开,上支撑辊平衡缸回落,同时支撑辊轨道提升缸升起,碰到机械限位后停止,轨道提升缸锁紧保压,轨道不得下落,并将台车下部挂钩挂在下支撑辊换辊钩上,台车移动缸以“低速”将上下支撑辊一起拉出牌坊约5700mm,手动停止台车,人工摘下挂钩,台车后退约1300mm,以便吊装支撑辊,接近开关发出停止信号,吊走旧支撑辊,换上新支撑辊后,将新辊推回到轧钢位置,完成支撑辊更换。 相反操作程序可以具备轧钢条件。 由于六辊轧机的牌坊是利用原四辊轧机的牌坊,牌坊窗口高度尺寸较小,因此当轧辊直径在不同的范围时,更换工作辊、中间辊的轨道有三个不同的高度,为实现这三个高度,换辊小车有十二种零件,接轴托架和工作辊、中间辊轨道支撑装置分别有一种零件,也有三个高度与之相对应,参见日方提供的相关装配图。既换辊时,如轧辊直径范围变化较大,同时也需要更换上述零件。 北京冶金设备研究设计总院 2003年11月

连铸机扇形段远程自动调节辊缝的液压系统及其控制方案的分析_百(精)

?专题综述? 收稿日期:2006-02-23; 修订日期:2006-04-11 作者简介:谷振云(1940- , 男, 西安重型机械研究所研究员 级高级工程师。 连铸机扇形段远程自动调节辊缝的液压系统及其控制方案的分析 谷振云, 李生斌 (西安重型机械研究所, 陕西西安710032 摘要:分析了近年来从国外引进的板坯连铸机采用液压电气控制实现扇形段辊缝自动调节的基本工作要求, 液压控制原理及各控制方案的特点。开关阀的控制方式已成功用于西安重型机械研究所设计制造的攀钢2#大方坯连铸机的轻压下系统。 关键词:辊缝; 自动调节; 轻压下; 液压控制 中图分类号:TF77711文献标识码:A :1001- -05 Analysis of the control of CCM roll gap adjusting GU Zhen 2yun , L I Sheng 2bin (Xi πan Heavy Machinery Research Institute , Xi πan 710032, China Abstract :The basic requirement , hydraulic control mechanism and features of various solutions of CCM se g 2ment automatic roll gap adjusting hydraulic system introduced from abroad are discussed. The on 2off valve control has been successfully

轧机岗位安全操作规程

轧机岗位安全操作规程 一、交接班安全注意事项 1、交班组在交班前15分钟内仔细点检所属设备状况,将设备异 常情况详细记录。通知整备人员并交待接班组。 2、接班组在接班后10分钟内仔细点检所属设备状况,将设备异 常情况通知机械电气整备人员。 3、交接时要将设备隐患点详细传达到班组每个成员,避免发生 不知情的误操作。而导致安全事故。 4、如果在轧制过程中交接班,交班组必须详细告之接班组钢卷 前面的生产情况尤其是异常情况;而接班组也必须了解钢卷 前面的生产情况,做到心中有数生产。 5、每天的交接班活动必须进行而且以安全为主,向班员宣传安 全生产的意义。 6、交班组要详细向接班组交待前生产形势,上级作业安排,接 班组要严格执行。 二、生产准备安全事项 1、原料吊运首先检查捆带状况,一根或捆带破损未扣牢的严禁 吊运,一定要重新捆好方可吊,其次吊卷人员不得站在钢卷 下或正侧面,防止意外伤人,再次正确执行行车指挥信号, 确认“C”形钩是否完全插入钢卷内径中,防止“C”形钩伤 人。 2、使用相关工具器材前必须检查其完好状况,严重开裂或报废

的工具器材严禁使用,也要小心防止滑落砸坏设备。 3、叉运垫纸注意叉车伤人,吊运垫纸注意吊带十分系好,以防 垫纸滑落伤人,叉车严谨坐闲杂人员。 4、搬运工作辊时两人注意协调,防止辊子伤手、脚,同时一定 要注意爱惜工作辊,不要在搬运中碰伤辊子。 5、准备好生产所需的各类劳保用品,并按标准佩戴使用。 三、机组启动及停止时的安全作业事项 启动前: 1、确认冷却水阀门是否开,压缩空气阀门是否开,电气整备电 是否输上,轧制油、液压油是否可以正常供给,阀门应打开,液位不足应补充。确认各危险部位有无闲杂人员,命其离开 后才能开机。 2、确认电气、机械设备有无异常,如有必须通知有关人员修理 好方可开机生产。确认轧制油、液压油泄露点,有,要通知 整备修理。 3、确认机架下滤网有无堵塞,防止轧制油外溢。 4、检查辊系状态,如支撑装置、悬挂装置,锁紧装置,W/S轴 承的状态,损坏要马上修理或更换,否则不能开机生产。5、检查现场环境卫生,杂物必须清理干净,油污也要清理干净, 防止绊倒、滑倒;检查D/S传动的安全罩是否盖好。

四辊与六辊轧机的比较

比较四辊和六辊轧制技术在冷轧机上的应用 Dr.mont.Dipl.Ing.Gerhard Finstermann,冷轧部和带钢加工厂的首席经理; Dipl.Ing.Alois Seilinger,轧制技术的仿真的首席专家;Dipl.Ing.Gregor Nopp,冷轧部门经理;Dipl.Ing.Gerlinde Djumlija,澳大利亚,林茨,西门子奥钢联冶金技术冷 轧的部门经理 摘要:通过西门子奥钢联模拟冷轧过程,得出四辊轧制技术和六辊轧制技术在冷连轧应用上关键轧制参数的不同。这涉及到研究不同的轧机的性能。 本文全面讨论了Smart Crown 系统,在连轧控制下通过条形过渡区的平直度表现,轧机的刚度,厚度方面及边降控制对平直度的影响。 制造出平直度完美,厚度不变的板带是每一个轧制工作者的追求。这就要求轧制设备不仅能制造出在质量和尺寸精度方面满足市场需求的带钢,而且也要满足轧制工作者对产品的灵活和产品 组合的广泛性的要求。近年来,一些 新的冷连 轧生产线已经使用了可靠的四辊和 六辊轧制技术(图一)。然而,我们 并不知道到底是四辊轧机还是六辊 轧机能够满足市场对厚度公差和平 直度公差的进一步要求,甚至要求更 宽的产品组合。 板带的强度等级越高,冷轧就越 困难。新的连续冷连轧机应该能够轧制抗拉强度达1300MPa 的钢材,因为将来需要这些设备去轧制范围更加宽广的钢种并且很大一部分是先进的高强钢包括汽车用的多相特种钢和高硅钢片。同时板带的表面质量(对所有的产品尤其是用于汽车工业的产品是一个关键的特征)和保持板带的边降在允许的公差带范围内是至关重要的。边降对于晶粒取向的电工用钢尤为重要。 为了能够更好的比较四辊和六辊轧机的性能,采用了五台相同混合型轧机,其中一号和二号轧机采用六辊配置,三到五号轧机采用四辊配置,并且要求得到以下结果:厚度变化的范围,平直度的控制和边降控制的能力。 图 1

板材轧机安全操作规程标准范本

操作规程编号:LX-FS-A70170 板材轧机安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

板材轧机安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、上岗开机前,作业员工按规定穿戴好劳保用品,带上安全帽。准备好生产时使用的工具,如千分尺、锯切机。机组工作记录台账及作业必备用品。 2、认真检查交接班记录,积极处理待办事宜。检查清理上料架、轧辊、夹板、辊道等凡是料板通过处的卫生。认真检查轧辊系统的润滑状况,充分做好润滑保养。 3、根据车间下达的指令进行作业。对料卷应认真核对合金牌号、规格、状态,检查工艺卡片,确保料、卡一致后再行加工。 4、使用行车上料、卸料时,必须两人操作,一

六辊轧机轧辊装置的设计

毕业设计 题目:六辊轧机轧辊装置的设计 学生: 学号: 院(系): 专业: 指导教师: 2011 年 6 月 3日

目录 摘要 (1) ABSTRACT (2) 1.概述 (4) 1.1国内外发展现状及特点 (4) 1.2 轧辊装置的组成和工作原理 (4) 2.方案设计 (5) 2.1轧辊传动方案的设计 (5) 2.2压下量调整机构的设计 (5) 2.3中间辊横移机构的结构设计 (6) 2.4轧件宽度调整机构的设计 (7) 3.零件结构和尺寸的设计 (9) 3.1工作辊 (9) 3.1.1工作辊的设计 (9) 3.1.2工作辊轴承的选用 (11) 3.2中间辊 (12) 3.2.1中间辊的设计 (12) 3.2.2中间辊轴承的选用 (14) 3.2.3中间辊横移机构 (14) 3.3支承辊 (16) 3.3.1支承辊的设计 (16) 3.3.2支承辊轴承的选用 (18) 3.4轧件宽度调整机构 (19) 4.校核 (20) 4.1轧制力计算 (20) 4.2轧辊强度分析 (22) 4.3支承辊弯曲强度的验算 (25) 4.4轧辊辊面接触强度的验算 (26) 4.4.1 工作辊与中间辊之间的辊面接触强度 (26) 4.4.2 中间辊与支撑辊之间的辊面接触强度 (27) 5安装与调试 (29) 5.1维护和保养 (29) 5.2液压系统维护 (29)

5.3润滑系统维护 (29) 6.总结 (30) 7.致谢 (31) 参考文献 (32)

六辊轧机轧辊装置的设计 摘要 国产六辊冷轧机从上世纪80年代起就在国内成功运行,但只是一些单机架的 中小型冷轧机。进入21世纪以来,经济快速发展,对高质量板(带)材的需求也 在迅速增长。具有国际先进水平的高速现代化冷轧机的开发和研制成为当务之急。 采用辊缝连续可变凸度控制技术的六辊冷轧机在生产实践中不断的凸显出它 的优点:由于辊缝断面可以连续调整,对规定的轧制参数具有高度适应性;由于 使用经过优选的工作辊,压下量可以很大;轧出的带材,有良好的平直度和表面 质量;轧件边部减薄明显改善;由于轧辊的库存量可以明显减少,即整个产品范 围可以用同一个辊轧制,因而降低了轧辊的成本。目前,具有板形控制功能的轧 机有日立HITACHI的HC(UC)、德国SMS公司的CVC轧机、法国CLECM公司开发 的DSR轧机、以北科大为代表的VCL以及依靠鞍钢和一重等国内力量自主开发的VCMS新一代六辊冷轧机。 为了满足对冷轧机高速、高效、高质量、低成本、低能耗、易维护等一些生 产要求,经过对比,我们发现采用辊缝连续可变凸度控制技术的六辊冷轧机可以 兼顾满足我们的生产需求。所以高速现代化的六辊冷轧机必是目前以及将来的重 点发展方向。 通过六辊轧机轧辊装置的设计,使我在结构设计和装配、制造工艺以及零件 设计计算、机械制图和编写技术文件等方面得到综合训练;并对已经学过的基本 知识、基本理论和基本技能进行综合运用。从而培养我具有结构分析和结构设计 的初步能力;使我树立正确的设计思想、理论联系实际和实事求是的工作作风。 本装置主要由五个部分组成。第一部分是工作辊;第二部分是中间辊及其横移机构;第三部分是支承辊;第四部分是压下量调整机构;第五部分是机架。 关键字:六辊冷轧机,中间辊横移,凸度控制

轧机安全操作规程完

轧机安全操作规程 轧机车间通用安全规程 1、严格遵守冷轧生产线安全规程总则。 2、禁止在运转设备及危险区域穿行。 3、乳化液操作站、原油站、地下油库、各操作控制站,严禁吸烟,严禁携入火种。 4、所使用的电动工具及其插头、插座电缆线必须绝缘良好。 5、维护人员进入机架内,必须通知轧机主操人员并挂牌警示,禁止启动一切设备。 6、使用磨光机时,应清除周边易燃易爆物,且必须装防护罩和佩带防护眼镜及劳保用品。 7、在正常轧制时严禁进入运卷小车运行区域,异常作业时必须通知所属区域内的操作人员停止工作,并挂牌警示。 8、检修时必须贯彻双方挂牌确认,在检修、定修、抢修前必须先挂警示牌,严格遵守谁挂牌,谁摘牌的制度。 9、处理操作故障或突发故障时,应悬挂牌警示,关闭相应气阀、液压阀,乳化液系统,并派人监护,由专人操作。液压卸荷和高压电荷释放工作,应通知有关各方面到现场共同配合处理。 10、发生断带事故时,当班班长到现场指挥,并通知轧机相关岗位,并准备好处理断带的工具,通知有关人员到现场。 11、严禁徒手或戴手套时,锤打钢带、废料丝、边、废料头等,以免扎伤手部。 12、禁止用手直接接触运行中的钢带。 13、注意本责任区内消防器材使用情况,做到更换及时,做好记录,并做好日常巡检和保洁工作。 14、废弃棉纱必须放入垃圾箱,严禁乱堆乱放。 15、设备运行前,必须对全线设备进行认真检查,确认无事故隐患方准开车。严格按工艺操作规程操作,严禁违章作业。 16、设备运行时,非操作人员不得随意触动设备开关和手柄。 17、处理设备故障时,必须停车进行,并由1人统一指挥,防止无人指挥和多人指挥发生误操作。 18、开好班前班后会并做好安全交接班记录。 辅助工岗位 1、上班前必须穿戴好劳动防护用品,接班认真查阅交接班本,确认所辖区域的 设备安全状况。 2、按照“一看、二试、三运行”标准启动运行天车。 3、钢卷吊放时,必须平稳,不得随意晃动,钢卷吊放在上料鞍座上,剪捆带时 人要侧身,以防捆带伤人。

VC轧机板形控制技术的发展

VC轧机板形控制技术的发展 本文详细阐述了VC轧机的结构原理和设计特点,并分析了该轧辊系统板形控制的基本原理。 标签:VC轧机结构特点板形控制 随着国内外冶金工业的发展,在我国的板带材生产中已经广泛应用四辊板带轧机,为了最大限度地提高轧制成材率,一方面采用合理的轧制工艺,通过将轧机工作辊、支承辊与原始磨削辊型进行配合;另一方面轧机还应具备一定的辊型调整手段。由于工作辊面所形成的有载辊缝形状决定了实际轧件的截面形状,而这又受到轧制时轧制力、轧辊配置、弯辊力等因素的影響和制约。因此,在板带轧制中如何根据产品的平直度原则进行四辊板带轧机的辊型的辊型设计及辊型调整越发重要。 1 冷轧板形缺陷与控制 所谓板形,就是轧制后带材所产生的波浪和瓢曲。实际上就是指板带材的翘曲程度。由于各种因素的影响,带材在辊缝中的纵向延伸方向往往是不均匀的。通过对板形进行检测进而实现板形自动控制,只有连续不断地、准确地将板形状况及时地反馈给控制系统,板形控制系统才能以此为依据向执行机构发出正确的调节指令,实现板形闭环自动控制。 2 控制板形问题的基本方法 2.1 HC轧机 在普通四辊冷轧机的基础上对HC轧机进行处理,通过在工作辊和支承辊之间设置可以进行轴向移动的中间辊,采用更小的直径的工作辊。主要特点是:①中间辊的位置可根据板宽调整,可以减小工作辊的弯曲挠度和工作辊与支撑辊的弹性压扁,因此可以显著地减小带钢边缘减薄现象;②中间辊的轴向移动在一定程度上减小了工作辊与支承辊的有害接触区,使有害接触区不再阻碍液压弯辊,液压弯辊的板形控制功能得到明显改善;③采用了较小的工作辊直径,减小了轧制力和轧制力矩。 2.2 CVC轧机 CVC轧制采用S型轧辊,上下轧辊的辊型相反布置,调节轧辊的轴向位置可以获得不同的辊缝形状,以满足轧制带钢的板凸度和板形要求。CVC轧机的特点主要表现在:①多组原始辊型不同的轧辊可以通过一组S型曲线轧辊进行代替,在一定程度上减少了轧辊的备用数量;②通过调整无级辊缝进而适应不同产品规格的变化;③辊缝调节范围大。

轧机液压辊缝控制系统的原理及应用

轧机液压辊缝控制系统的原理及应用 许战军 (河北钢铁集团 邯钢公司 西区冷轧厂 河北 邯郸 056002) 摘 要: 介绍邯宝公司2080冷轧酸轧联合机组轧机液压辊缝控制,通过分析HGC液压缸可以在位置控制模式和轧制力控制模式下运行的模式,由液压辊缝控制(HGC)系统调节轧机对带钢的压下量,直接影响到板型效果。 关键词: 轧机;液压辊缝控制;压下量 中图分类号:TG333 文献标识码:A 文章编号:1671-7597(2012)1110010-02 用。在咬钢的瞬间从位置控制转换到轧制控制,反过来也一 0 前言 样。由于控制模式转换必须在任何时候都可用,所以控制回路邯钢新区冷轧厂采用德国SMS集团最新的轧制技术,5架串 必须时刻调整输出来平衡设定值和实际值。位置控制和轧辊轧列式6辊轧机,通过弯辊系统、窜辊系统和螺旋压下系统来轧制 制力控制从属于更高一级的控制如厚度控制或秒流量控制。 带钢改善板型。螺旋压下系统主要靠液压辊缝控制(HGC)系 同步/倾斜控制系统是建立在位置控制和轧制力控制上统来调节轧机对带钢的压下量。冷轧就是带钢在再结晶温度进 的,以确保两个调节液压缸平行动作,这样可使轧机的上支承行轧制,所以液压辊缝控制的精度直接影响产品的厚度,液压 辊保持在轧机中心线上,并可变化。伺服阀的电源由UPS来提辊缝控制的倾斜控制配合弯辊和窜辊直接影响板型效果。 供,下表是伺服阀在各种模式下的电流值。 1 液压辊缝机械和液压系统结构 轧机机架配备了两个HGC液压缸。液压缸安装在轧机机架 上部。 HGC液压缸是用伺服阀进行闭环控制的,伺服阀仅控制液 压缸塞侧的压力。其中液压缸的油压必须是由轧机区高压液压 系统提供的。轧机机架的畜能器,直接在伺服阀之前,确保持 续的缓冲油量。 液压缸的杆侧是用一个独立的低压缓冲畜能器管路联结 的,可以尽心润滑并且避免真空。做打开动作时,例如当换辊 时HGC液压缸打开,杆侧管路压力会上增加,以提升辊缝开张 速度。 HGC液压系统图如下: 2.1 位置控制系统 位置控制用来控制液压缸位置,在操作侧和驱动侧都有位 置控制和倾斜控制。位置控制的输出限制值是可调节的,其大 小随倾斜量变化,最大约为伺服阀全开度的70%。 位置实际值是由2个HGC缸上的2个位置传感器(sony磁 尺)测量的,其精度可达1μm。每个传感器都安装在每个液压缸 中心,测量的是液压缸中心的高度。 当传感器错误时,HGC缸将停止运动。“传感器错误”信 号是通过对传感器系统里面的传感信号实时监测,监测电源和 位置差最大差异位置检测来实现的。液压缸完全收回的缸程是 由位置传感器侧量得。 2.2 轧制力控制 轧制压力控制是对驱动侧和操作侧的单独轧制力进行求和 并通过倾斜控制来修正而得来的。轧制力控制的输出限制值是 2 液压辊缝电气控制原理 可调节的,其大小随倾斜量变化,最大约为伺服阀全开度的HGC液压缸可以在位置控制模式和轧制力控制模式下运 70%。 行,当辊缝张开时液压缸一般是在位置控制模式下运行的。 轧制力是由安装在HGC缸塞侧的压力传感器测量得。一旦HGC缸的轧制力控制模式只有在辊缝关闭时才有可能 使

板形控制

板形控制作业实现板形控制的主要方法及原理 李艳威机电研一班s2*******

实现板形控制的主要方法及原理 李艳威1, (1. 太原科技大学研1201班太原) 摘要:介绍了六种类型的实现板形控制方法,包括热轧过程中对板形的控制;采用液压AGC系统控制板厚及板形;通过轧辊有载辊缝的控制,进行板形控制;通过选择机型实现板形控制;采用板形控制新技术以及控制策略和控制系统的结构对板形控制的影响。每个类型的方法中列举了具体实现的技术,并简要介绍了该技术的基本原理。 关键词:板形控制方法原理 The Method of Achieving Plate-shaped Control and Principle LI Yanwei1 (1. Taiyuan University Of Science And Technology,The graduate class of 1201,Taiyuan) Abstract:Introduced six types of shape control method , Including the plate-shaped control in the hot rolling process;Adopt Hydraulic AGC System to control the shape of plate;Through the roll-load roll gap control the shape of plate;By selecting models to achieve plate-shaped control;Adopt new technologies plate-shaped control. Listed for each type of method to achieve technical, and briefly describes the basic principles of the technology. Keyword: plate-shaped control method principles 0 前言 为了说明金属纵向变形不均的程度,引入了板形(Shape)这个概念。板形是板带的重要指标,包括板带的平直度、横截面凸度(板凸度)、边部减薄三项内容。直观说来,所谓板形是指板材的翘曲程度;就其实质而言,是指带钢内部残余应力的分布。作为带材重要的质量指标之一,板形已越来越受到生产厂商与用户的重视,其好坏直接影响到带材对市场的占有率。下面介绍几种常见的板形控制技术及其简单原理。 热轧过程中带钢的板形及带钢性能在 宽度方向上和轧制方向上的控制、酸洗的拉矫过程、冷轧过程的板形控制、连续退火时温度和张力的控制、乎整机的板形控制及涂层前的拉矫等构成了一个全过程的复杂的 冷轧板形控制系统.在这个系统中,前一个工序的出口板形影响后一个工序的板形.所以,带钢的最终板形不可能单独由系统中的某一个工序或某一设备所决定,而由整个系统决定。 1 热轧过程中对板形的控制 热轧过程中,根据钢种不同,设定热轧目标终轧温度.必要时还要提高钢坯的出炉温度,确保热轧带钢的边部终轧温度控制晶粒均匀成长,尽量消除硬度沟的影响,为冷轧提供较为合适的板形.尤其是热轧后部设立平整机,通过在热状态下,平整机的拉伸矫平,消化板形缺陷。 2 采用液压AGC系统 为了实现轧件的自动测厚控制(简称AGC),使得纵向板形得以实现平直度,在现代板带轧机上一般装有液压压下装置.采用液压压下的自动厚度控制系统,通常称为液压AGC.AGC系统包括:(1)测厚部分,

轧机系统安全操作规程(最新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 轧机系统安全操作规程(最新版)

轧机系统安全操作规程(最新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 一、加热炉操作规程经常检查导骨口是否松动。 严格遵守安全守则及各项管理规定。 工作前必须穿好规定的防护用具。 工作前应检查炉门升降机构及配重是否牢靠;检查炉子各烧嘴、风阀及烟道闸门的装置是否灵活、可靠。 新砌的炉子应按烘炉工艺技术要求进行,烘炉后方可使用。 操作人员必须随时按要求对设备进行维护和检查。 在使用火钩、夹钳、撬棍等工具时,应观察身后是否有人,不得随手扔工具。 炉中加热坯料应该做好记录,交接班必须清楚,经常保持炉子周围的清洁卫生。 二、型钢轧钢安全管理规定: 1、对弯曲坯料,严禁使用吊车喂入轧机。 2、轧机轧制时,不得用人工在线检查和调整导卫板、夹料机

3、小型轧机尾部机架的输出辊道,应有高度不小于0.3米的栏板,在通过轧件的一面应有的坡度。 4、经常检查导喂口是否松动。 5、工作中人员不得横跨辊道。 6、轧机工作中不得有闲杂人员入内。 三、煤气发生炉点火前的检查工作: 检查各管道是否畅通,各阀门是否灵活,各种零件是否齐全,位置是否正确,能否正常使用; 检查各种电器、仪表是否指示准备,开关是否良好; 检查自来水及蒸汽压力是否正常; 检查各部位的安全防爆装置是否有效; 点火前的准备工作: 加煤斗内放满煤,所有水封部位灌满水; 打开放气烟囱(把水放旧) 准备好点火用的木柴、刨花等引火材料,准备好封炉门的耐火泥; 6、选用充分燃烧过的30mm—100mm炉渣铺炉。炉渣高出风帽150mm —200mm左右以防护风帽; 7、近风帽处座铺些块度较大的灰渣,以利于均匀的鼓风,铺好后

板形控制技术发展

板形控制技术发展 板形控制技术在不同的发展阶段,各国先后开发出了许多先进的控制手段和相关的轧机形式。其中具有重要意义的控制技术和先进轧机小结如下: (1) 垂直平面(VP)工作辊弯辊系统 垂直平面(Vertical Panel)弯辊系统是最早的轧机控制带材板形的重要而有效的手段之一,包括单缸工作辊正弯,双缸工作辊正弯,单缸工作辊负弯,以及支撑辊正弯。到目前为止,垂直平面弯辊系统仍然是板形调整的重要技术之一。广泛应用于各类轧机中[21]。 (2) 连续可变凸度(CVC)系统 基于连续可变凸度(Continuously Variable Crown)系统的CVC轧机主要是由两个可移动的瓶形辊身组成。瓶形辊的辊径差和普通辊的凸度值大小相似,安装相反,互补成对称辊缝,辊缝略微呈S形。通过特殊S形工作辊的轴向窜动,来达到连续变化空辊缝正、负凸度(等效于工作辊正、负凸度)的目的。缺点是辊型复杂,磨削精度高而且困难,辊型互换性差,辊耗增加,轧辊接触压力大。在一个轧制单位过程中,如工作辊出现较大的磨损和变形,则将影响其调控性能偏离设定的要求,并且由于工作辊与支撑辊之间接触压力的分布呈S形,使磨损后的支撑辊也成S形,如不及时换辊,将影响其设定的调控性能,为此,CVC支撑辊需采用较短的换辊周期[22]。但由于CVC轧机控制板凸度的能力极强,操作方便且易改造,所以发展较快,世界各国普遍采用。我国宝钢在2050热连轧精轧机组七个机架上均采用了此项技术[23]。 (3) HC控制轧机 HC(High Crown)轧机是为了克服阶梯支撑辊不能随板宽变化而改变其支撑辊与工作辊接触长度的缺点以及提高工作辊弯辊效果而开发的。HC轧机是中间辊横移的六辊轧机,通过中间辊的相反方向横移来改变中间辊与工作辊的接触长度,以适应其板宽的变化。HC轧机具有工作辊直径小、板形控制稳定、改善边部减薄、同宽度轧制数量多以及可实现自由程序轧制的优点。但HC轧机也具有结构复杂、机架高、设备投资大、轧辊易剥离、操作维修难的缺点。尽管这样,HC轧机仍旧属于高精度板形,板凸度控制的轧机,不失为具有划时代意义的新型轧机。所以HC轧机发展迅速,世界各国均广泛采用。我国也研制成功了HC冷轧机[23]。

板形控制的发展及其应用

龙源期刊网 https://www.wendangku.net/doc/2b3246483.html, 板形控制的发展及其应用 作者:李坤 来源:《硅谷》2011年第06期 摘要:板形是板带的重要质量指标够。随着仪表、电器、汽车及轻工业的发展,对板带 板形的要求日趋严格。但在我国,带钢板形的自动控制还是一个相当薄弱的环节,每年由板形不良所造成的经济方面的损失十分严重,了解和解决我国板带生产中板形质量问题是一项具有巨大经济意义的课题。 关键词:板形控制;轧机;板形预测;变形 中图分类号:TG335文献标识码:A文章编号:1671-7597(2011)0320140-01 金属在轧辊作用下经过一系列的变形过程轧成需要的板材。最终产品的板形受到许多因素的影响,总括起来,这些因素可以分为内因(金属本性)和外因(轧制条件)两个方面。轧制条件的影响更为复杂,它包括更为广泛的内容。凡是能影响轧制压力及轧辊凸度的因素(例如摩擦条件、轧辊直径、张力、轧制速度、弯辊力、磨损等)和能改变轧辊间接触压力分布的因素(例如轧辊外形、初始轧辊凸度)都可以影响板形。 1 板形控制的发展 1.1 板形理论的发展。板形理论的发展可以分成三个阶段,第一阶段是以轧辊弹性变形为基础的理论;第二阶段是日本新日铁和美国为代表的以轧件为基础的动态遗传理论;第三阶段为钢铁研究总院建立的轧件轧辊统一的板形理论。 1.1.1 轧辊弹性变形的板形理论。最初的轧辊弹性变形研究是在二辊轧机L门上,并假设轧制力沿辊身全长均匀分布,也没有考虑轧件和轧辊之间的弹性压扁。由于物理模型过于简单,处理方法也十分粗糙,对要求处理的四辊和六辊轧机,并要求给出精确的轧后端面分布,这种简单方法不能胜任。自20世纪60年代,轧辊弹性变形的研究发展很快,其方法主要是以M.D.Stone为代表的弹性基础梁理论和以K.N.Shohet为代表的影响函数法以及有限元方法。我国轧钢界从20世纪70年代起对轧制理论与技术的研究大都集中在轧辊弹性变形的理论方面。这种理论对轧制过程主要起到分析指导作用,不能直接用于在线控制。 1.1.2 轧件连轧过程的板形理论。20世纪70年代末,日本新日铁与日立、三菱合作在HCPC等板形控制轧机的开发过程中,提出了以实验为基础的板形理论研究新思路,得到了板形于扰系数和遗传系数为基本参数的板形向量模型,直接应用于生产。20世纪80年代,美国阿姆柯钢铁公司提出影响矩阵方法,提出前面机架改变弯辊力或轧辊凸度不仅影响本机架板

连轧机组液压辊缝控制系统的设计

连轧机组液压辊缝控制系统的设计 (内蒙古科技大学信息工程学院,内蒙古包头 014010) 摘要:通过对连轧机组液压辊缝控制系统的研究,推理其数学模型并进行仿真,了解了PID参数对系统的影响,近而掌握了伺服阀、PID控制及系统软件在该系统中所起的 关键词:连轧HGC系统;仿真;伺服阀;PID;系统软 中图分类号:TG333 文献标识码:A 文章编号:1007—6921(XX)20—0075—02 包钢无缝钢管厂ф180机组连轧机辊缝控制,采用当今世界先进的液压伺服控制系统,电气控制采用INNSE公司基于X-Pact ProBAS结构的新CARTA MPM-HGC系统。该系统的核心是液压辊缝控制(HGC),本设计通过对HGC系统的研究,推理数学模型并仿真,了解了伺服阀及P ID控制在该系统中的影响和应用,加强了对该系统薄弱环节的预防和改造,提高了产品质量和轧制节奏,对该厂有着重要的意义。 1 HGC HGC是一种闭环控制功能,提供液压缸的快速和精确定

位。位置控制环给出伺服阀的给定,接收位置传感器和压力传感器来的反馈信号,每个缸都有一套独立的液压位置调节[1 ]。为了保护系统,当出现轧制过载或操作员干预的主机停车时,控制系统立即将辊缝打开到安全位置,在轧制过程中,如果控制系统检测到报警,通过电磁阀锁定当前液压缸位置,直到完成当前钢管的轧制。当轧制力超过设定极限时,系统产生报警提醒操作员注意,并且通过调整液压缸位置来防止轧制力继续增大。高速控制器将执行以下功能:①缸位置控制;②轧制力计算;③自动流量补偿控制;④位置同步控制;⑤自动辊缝控制;⑥伺服阀漂移调节; ⑦自动缸位置传感器归零;⑧报警程序;⑨和一级自动化 2 2.1 连轧液压辊缝控制的电气控制原理框图 740)this.width=740" border=undefined> 2.2 在HGC系统中,调整压下是厚度控制的主要方式,它通过改变辊缝的大小来保证轧机出口钢管的壁后。液压缸自动位置闭环控制系统作为HGC系统的核心,其性能指标直接决定HGC的指标。在对HGC系统的研究中,对轧机APC系统 2.2.1

1450六辊轧机技术方案30万吨

宝生工程科技有限公司 1450六辊冷轧机组项目 技术方案 宝生工程科技有限公司. 电话:0316-******* 传真:0316-******* 地址:中国·河北大厂回族自治县工业园区 邮编:065301 一、机组工艺参数 1.来料规格 材质:普碳钢 σ=360Mpa 机械性能:最大屈服极限s3.0mm 厚度:1000-1250mm 宽度:900)mm Φ1800~Φ卷径(内/外):Φ610/(25-30吨最大卷重:2.成品规格

厚度:0.15-0.6mm 宽度:1000-1250mm 卷径(内/外):Φ610/(Φ1800~Φ900)mm 最大卷重:25-30吨 3.成品精度 0.5mm以上纵向厚度偏差≤2%h,0.5mm以下纵向厚度公差±0.01mm. 板型精度:产品最大不平度允许值≤20I. 主要技术参数4. 1)轧制规格:1050/370/330*1450mm 2)最大轧制压力:15000KN 3)最大轧制力矩:100KN.m 4)穿带速度:18m/min 5)轧制速度:450m/min 6)开卷张力:60-6KN 7)卷取张力: 150-15KN 8)最大卷取速度:480m/min 9)工作辊单边弯辊力:350/210KN 10)中间辊单边弯辊力: 350KN 11)中间辊横移力: 550/350KN 12)工作辊直径: 330-300 mm 13)工作辊辊身长度: 1450 mm 14)中间辊直径: 370-340 mm

15)中间辊辊身长度: 1470 mm 16)支承辊直径: 1050-980 mm 17)支承辊辊身长度: 1300 mm 18)中间辊横移量: 250 mm 19)工作辊最大开口度: 20 mm 20)开卷机卷筒轴向浮动量:±75 mm 21)轧制线标高: +1000 mm 115 mm 轧制线标高调整行程:22). 23)工艺润滑流量: 4500 L/min 24)液压系统工作压力:平衡、弯辊、横移:12-15Mpa 25)一般液压传动:10-12Mpa 26)机组机械设备电器装机总容量:直流:4300KW;交流:260KW 27)年产量:20万吨 28)机架断面积:630mmX550mm 29)机组机械设备外形尺寸(长*宽*标高)21*28*12m 二、生产工艺流程 原料→称重→上料→展卷→矫直→切头→牵引→对中→穿带→卷取→轧制→反向卷取→可逆轧制→切尾→卸卷→打包→运输→称重→入库 三、机组设备组成及技术特征 1、机组设备组成:机组设备由开卷机、上卷车、开头矫直机,

辊缝控制

辊缝控制 文章来源:钢铁E站通https://www.wendangku.net/doc/2b3246483.html,/dict/detail.php?id=389 辊缝控制是冷轧板带加工的核心控制技术之一,近年来随着科学技术的不断进步,先 进的辊缝控制技术不断涌现,并日臻完善,辊缝控制技术的发展,促进了冷轧板带工 业的装备进步和产业升级,生产效率和效益大幅提升。 概念: 辊缝直观来说是指板带材的翘曲度,其实质是板带材内部残余应力的分布。只要板带材内部存在残余应力,即为辊缝不良。如残余应力不足以引起板带翘曲,称为“潜在”的辊缝不良;如残余应力引起板带失稳,产生翘曲,则称为“表观”的辊缝不良。 缺陷及分析: 常见的辊缝缺陷有边部波浪、中间波浪、单边波浪、二肋波浪和复合波浪等多种形式,主要是由于轧制过程中带材各部分延伸不均,产生了内部的应力所引起的。 为了得到高质量的轧制带材,必须随时调整轧辊的辊缝去适合来料的板凸度,并 补偿各种因素对辊缝的影响。对于不同宽度、厚度、合金的带材只有一种最佳的凸度,轧辊才能产生理想的目标辊缝。因此,辊缝控制的实质就是对承载辊缝的控制,与厚 度控制只需控制辊缝中点处的开口精度不同,辊缝控制必须对轧件宽度跨距内的全辊 缝形状进行控制。 主要因素: 影响辊缝的主要因素有以下几个方面∶ (1)轧制力的变化; (2)来料板凸度的变化;

(3)原始轧辊的凸度; (4)板宽度; (5)张力; (6)轧辊接触状态; (7)轧辊热凸度的变化。 先进技术: 改善和提高辊缝控制水平,需要从两个方面入手,一是从设备配置方面,如采用先进的辊缝控制手段,增加轧机刚度等;二是从工艺配置方面,包括轧辊原始凸度的给定、变形量与道次分配等。 常规的辊缝控制手段主要有弯辊控制技术、倾辊控制技术和分段冷却控制技术等。近年来,一些特殊的控制技术,如抽辊技术(HC轧机和UC系列轧机)、涨辊技术(VC 轧机和IC轧机)、轧制力分布控制技术(DSR动态辊缝辊)和轧辊边部热喷淋技术等先进的辊缝控制技术,得到日益广泛的应用。在此,分别就其中几种典型技术作以简单介绍。 优点: 下文请咨询钢铁E站通

轧辊装配工安全操作规程示范文本

轧辊装配工安全操作规程 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

轧辊装配工安全操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.上岗前穿戴好劳保用品,开好班前会,讲当班工作 的安全注意事项。 2.拆装过程中注意做好确认制、联保制、必须有专人 负责指挥天车,防止违章指挥。 3.所使用的工具、用具、吊具完好无损,不得有油 污,防止使用过程中或吊运过程中滑落伤人。 4.工作现场必须用锯末铺撒,防止拆装过程中油污滴 落到工作现场滑倒伤人。注意箱体的油渍必须及时回收到 专用油桶内。 5.装配过程中,必须按章操作,各部部件必须坚固到 位,防止运转过程中甩击,发生设备及人身伤亡事故。 6.拆卸各轴承套箱部件,不许乱摆乱放,必须摆放整

齐,防止绊倒伤人。 7.检查轧机运转轧辊时,要站在机侧,不许戴手套触摸轴头,防止绞入伤人。 8.加油装配轴承套时,地面不许有油污和杂物,不许有易燃易爆物品。 9.修磨各种配件时,要遵守相关安全规程。 10.撞接手、轧辊、轴承箱时,操作者要站在轧辊运行方向两侧安全的地方。 11.轧辊堆放时,不准超过轧辊架高度,临时堆放不准堆两层,要单放,两侧用木头挤好。 12.拆装轧辊时不要站在轴承移动方向,以免挤伤撞伤。 13.使用电感应加热器时,应严格执行其操作规程,并找有关人员对加热器要定期检查,发现问题及时处理。 14.拆装现场,如必须动火,采取防火措施后,方可

轧辊安全操作规程

轧辊安全操作规程 第一节车工安全操作规程 1.上岗前必须穿戴好劳动保护用品,长发必须盘在工作帽内,操作时严禁戴手套。 2.必须熟悉机床的构造、性能、特点及操作方法方可操作,徒工操作时师傅要监护。 3.工作前详细检查机床各转动部位的安全防护及保险装置是否安全可靠。工作中机械或电气部位发生故障时,应立即停机断电,找有关人员处理。 4.工作中严禁用手触摸旋转的工件及其它转动部分,以防发生事故。 5.更换齿轮,上下工件及测量工件时,要停机处理。 6.切削时,头部不能离卡盘、刀具太近,以防卡盘爪、切屑伤人。 7.加工脆性材料或高速切削时,要设防护挡板,并戴防护眼镜。 8.使用锉刀或砂布抛光时,身体要平稳,用力不要过猛,同时不要把砂布缠在工件或手指上。 9.清除切屑时要用专用的钩子,严禁用手直接清除。及时处理机床周围的切屑,防止滑伤。工件转动时,不准用棉砂擦拭工件。

10.严禁在开机状态下上车,使用天车吊工件时,要把工件吊平稳,防止砸伤手脚和砸坏设备。并严格执行有关天车、起重等相关安全规程。 11.工件、车刀必须装牢固,以防发生事故。 12.工件装卸后,卡盘扳手应立即取下,加工细长轴时,应用中心架或跟刀架,加工的棒料如伸出主轴后端过长,应有明显的标志,并用安全支架,以防转速高时,工件弯曲伤人。13.夹持工件的卡盘、拨盘、鸡心夹等突出的部分,身体不要靠近,以防绞住衣服。 14.加工形体不规则的工件时,应安装平衡块,并低速试转平衡后再切削。 15.使用砂轮磨刀时,要遵守砂轮机安全操作规程。16.离开机床时要切断电源。 第二节刨床安全操作规程 1.工作前要穿戴好劳动保护用品,长发必须盘在工作帽内,操作中不许戴手套。 2.工作时要站在工作台的侧面,同时在滑枕最大行程内不得站人,防止切屑和工件掉下伤人。 3.机床运转时,禁止变速,清除切屑要用刷子或钩子,不能直接用手操作或用嘴吹。 4.工作中发现设备有故障时要停机,通知有关人员排除。5.工件、刀具要装卡牢固。小刀架进刀后锁紧螺丝钉要及

相关文档