文档库 最新最全的文档下载
当前位置:文档库 › 煤沥青的性质及应用

煤沥青的性质及应用

煤沥青的性质及应用
煤沥青的性质及应用

第2期 山西焦煤科技 N o.2 2007年2月 Shanx i Cok i n g Coa l Science&Techno logy Feb.2007 专题综述

煤沥青的性质及应用

常宏宏 魏文珑 王志忠 杨怀旺 姚润生

(太原理工大学化学化工学院)(临汾同世达实业有限公司)(山西金尧焦化有限公司) 摘 要 阐述了煤沥青的性质、组成和种类,介绍了煤沥青在黏结剂、浸渍剂、碳纤维、涂料及燃料油等方面的应用。

关键词 煤沥青;黏结剂;浸渍剂;碳纤维

1 煤沥青的性质与组成

1.1 煤沥青的性质

煤沥青全称为煤焦油沥青(coa l-tar p itch),是煤焦油蒸馏提取馏分(如轻油、酚油、萘油、洗油和蒽油等)后的残留物,煤焦油是生产炼铁用冶金焦或生产民用煤气时,作为煤高温干馏的副产物得到的。煤沥青是煤焦油加工过程中分离出的大宗产品,随蒸馏条件的不同,其产率一般为50%~60%。煤沥青具有稳定的性能,在炼钢、炼铝、耐火材料、炭素工业、筑路及建材等行业日益得到广泛的应用。

煤沥青常温下为黑色固体,无固定的熔点,呈玻璃相,受热后软化继而熔化,密度为1.25~1.35 g/c m3。煤沥青的组成极为复杂,已查明的化合物有70余种,大多数为三环以上的多环芳烃,还含有O、N、S等元素的杂环化合物和少量直径很小的炭粒。煤沥青的分子量在170~2000之间,其C/H原子比约为1.7~1.8,元素组成为C占92%~93%,H占3.5%~4.5%,其余为O、N、S。煤沥青组成既与炼焦煤性质及其杂原子含量有关,又受焦化工艺、煤焦油质量和煤焦油蒸馏条件的影响[1]。

目前,煤沥青资源的加工利用水平和效益对整个煤焦油加工来说至关重要。国内许多煤焦油加工企业,沥青基本不再加工,其价格常低于原料焦油,造成煤焦油加工企业效益不佳甚至于亏损,可见如何对煤沥青进行必要的深加工,提高产品的附加值是煤焦油加工的一个重要问题[2]。1.2 煤沥青的组成[3]

煤沥青是以芳香族为主的结构复杂的高分子化合物混合体,其分子量范围广,常含有不溶于溶剂的碳质成分。根据使用的溶剂种类不同,可将煤沥青分为苯可溶组分(BS)- 树脂、喹啉不溶物(Q I)- 树脂以及甲苯不溶喹啉可溶组分- 树脂。苯可溶组分(BS)相当于沥青中的石油质( 组分)和沥青质( 组分),石油质( 组分)是含有4~6个苯环的芳香族缩聚物,其C/H原子比约为0.68,经轻度加热一段时间后,可以聚合为沥青质,析焦量增大,在沥青中起溶剂作用,其浸渍性强、黏结性极弱,能改善混合条件,适当降低沥青的软化点。沥青质( 组分)是含有7个以上苯环的芳香族缩聚物,其C/H原子比约为1.06,具有极强的黏结性和易石墨化性能,是沥青中起黏合作用的主要成分。而苯不溶物(BI)为 组分,人们常称为游离碳,是一种大分子量的缩聚苯环化合物,C/H原子比约为1.53,对碳没有黏结性与浸润性,因此沥青中苯不溶物含量不宜太高,否则会降低沥青的黏合性,使制品在焙烧时体积胀大。但适量的B I组分有利于促进 、 组分一起焦化,生成强固、致密的黏合焦的作用,它依据实验的溶剂喹啉又可分为喹啉不溶物(Q I)- 树脂和苯不溶、喹啉可溶物- 树脂。喹啉不溶物(Q I)- 树脂是一种悬浮在沥青中的过度相物质,通常可细分为原生Q I、次生Q I、灰分、Q I取代物、焦炭和煤粉。原生Q I是在煤焦炉焦化裂解反应时在焦油中产生的;次生Q I是在

作者简介:常宏宏 男 1977年出生 2004年毕业于太原理工大学 在职博士生 太原 030024

400 以上生产沥青的聚合反应时,少量焦油的蒸馏生成的,它的C/H原子比为2.88,加热时不溶化,所生成的焦炭呈各向同性,石墨化性能差,不利于沥青中间相的成长; 树脂是一种不同于 组分的物质,其C/H原子比为1.92,单独焦化时与Q I一样,不经溶化阶段形成各向同性焦,其石墨化性能差,但与苯可溶物共热时,溶解成具有流体状易石墨化的碳,因此, 树脂含量增加,有利于沥青质量的提高。

从各组分的作用看,沥青中芳香族化合物成分随C/H原子比的增大而升高,固定碳上升,沥青软化点提高,黏结性增强。因此,为了提高沥青黏结剂的质量,要求降低沥青中Q I%的含量,适当提高 树脂的含量,以求沥青获得较高的芳香性与高的碳含量,以及优良的润湿性与黏结力,为此必须对沥青进行改性处理。但在实际生产中,BS%含量增加,则沥青芳香性与碳含量(C/H原子比)降低;Q I%与 树脂含量增加,沥青的浸润性与黏结力下降。为了取得较好的沥青焦化值,获得较好的性能组合,常要求沥青中原生Q I含量在3~4%左右,改性后在7~9%左右,B I 含量在34~38%为宜。

2 煤沥青的种类

煤沥青品种较多,普通煤沥青产品包括低温沥青(lo w te m perat u re p itch,软化点30~75 ),又称软沥青(so ft p itch)、中温沥青(m ediu m p itch,软化点为75 ~95 )、高温沥青(high te m perature pitch,软化点为95~120 ),又称硬沥青(hard pitch)和改质沥青(m odified pitch)。改质沥青是普通煤沥青类型中的高档产品,改质沥青与高温沥青的区别在于:高温沥青仅对软化点有要求,而改质沥青除了软化点与高温沥青相近外,还对沥青组分含量和结焦值等有具体要求,即改质沥青体现在对煤沥青结构组成和质量品级的要求上,而这些要求都是针对炭材料的实际生产需要而设定的。

根据用户要求,煤焦油加工企业也可生产软化点为120~250 的特高温沥青,例如高炉用热压小炭砖就采用软化点高达130 左右的高温沥青,其甲苯不溶物含量达42%,结焦值高达70%,炼钢转炉内衬用镁炭砖采用软化点为150~320 的高温沥青粉,其固定炭含量高达65%~86%, 树脂含量高达30%~60%。含炭耐火材料采用的煤沥青形式有液体(单独或复合)、固体(粉、粒、球)等,球状沥青(ba ll p itch)是近年来生产的沥青新产品,主要用于高炉出铁沟浇注料等的生产,该产品的使用条件不同于液体煤沥青和粉状、粒状煤沥青,要求其具有115~140 的软化点和60%以上的结焦残炭值。

对煤焦油或煤沥青进行净化处理,可制备低杂质含量精制净化沥青(purified pitch),以净化沥青为原料可调制出高性能浸渍剂沥青(i m pregna ti n g pitch)和中间相沥青(m esophase p itch),中间相沥青是生产煤沥青基碳纤维和中间相碳微球等新型炭材料的优质原料,净化沥青是生产煤沥青系针状焦的优质原料[1]。

3 煤沥青的应用[2,4]

3.1 黏结剂沥青

1)炭材料黏结剂。在炭素制品生产中,沥青是不可缺少的黏合剂,尤其是在电极生产过程中用于使粉状固体料成型的黏合剂好坏对电极质量起着至关重要的作用。随着炼铝工业和钢铁工业的发展,铝厂对阳极糊和钢厂对石墨电极的要求越来越高,因此提高黏结剂沥青的质量十分重要。我国自从20世纪50年代前苏联援建吉林炭素厂和哈尔滨电碳厂起,各种炭材料的生产一直选用中温沥青作为黏结剂。20世纪80年代起,贵阳铝厂和青铜峡铝厂引进电解铝装置,需要质量好、软化点高的改质沥青后,焦化工作者开始研制改质沥青。随着沥青种类的增加和质量的提高,我国铝用炭材料生产中逐渐采用改质沥青取代中温沥青作为黏结剂,黑色冶金炭素行业也在着手开展这方面的工作。改质沥青取代中温沥青作为炭材料生产用黏结剂已是必然趋势。但由受我国炭素制品生产技术装备现状的限制,很多炭素厂希望黏结剂沥青有较高的结焦值、T I、 -树脂和适宜的Q I,又不希望软化点太高。面对这种市场需求,研制生产了质量指标各异沥青品种,形成系列产品,有力支持炭素行业的发展。

2)耐火材料黏结剂。煤沥青另外一个重要用途是耐火材料工业的黏结剂。镁碳砖的生产,希望黏结剂沥青软化点在180~200 范围内,并有较高的结焦值(65%~70%)。耐火材料以沥青作黏结剂由来已久。沥青的使用形式有液体(单独或复合)、固体(粉、粒、球)等。球状沥青是近几年生产的一个新品

40

山西焦煤科技2007第2期

种,球状沥青是用煤沥青经特殊的成型工艺而制成的一种沥青产品,已广泛用于高炉出铁沟浇铸料中。球状沥青生产希望原料的软化点在115~140 ,结焦值60%以上。

3.2 浸渍剂沥青

浸渍剂沥青是生产电炉炼钢用高功率(H P)、超高功率(UH P)石墨的主要原料之一。发达国家在H P、UH P石墨电极生产中非常重视原料的选择,浸渍工序普遍使用专用浸渍剂沥青,国内一直没有专用浸渍剂沥青,H P、UH P石墨电极生产用浸渍剂以普通中温沥青代替。与国外先进生产工艺相比,存在生产周期长,生产费用高,产品质量差,而且不能生产大直径优质UH P石墨电极,产品在国际市场上无竞争力。在浸渍剂沥青研制开发方面,鞍山热能研究院、武汉科技大学、华东冶金学院和无锡焦化厂等做了大量的实验工作。山东兖矿科蓝煤焦化有限公司采用溶剂沉降法净化煤沥青,在工业装置上试产浸渍剂沥青获得成功,生产的浸渍剂沥青各项质量指标已达到国际先进水平。

3.3 煤沥青针状焦

针状焦是20世纪70年代炭材料中大力发展的一个优质品种,具有低热膨胀系数、低空隙度、低硫、低灰分、低金属含量、高导电率等一系列优点。其石墨化制品化学稳定性好、耐腐蚀、导热率高、低温和高温时机械强度良好,主要用于制造超高功率电极和特种炭素制品,是发展电炉炼钢新技术的重要材料。

根据原料线路不同,针状焦分为油系和煤系2种,其生产方法也有一定差异。世界针状焦年总产量约120万,t主要生产国只有美国和日本等几个国家,长期以来,我国针状焦一直依赖进口。 六五 期间,针状焦被列为国家重点科技攻关项目,经过多家科研院所和企业共同努力,技术上有所突破,并获得了我国自己的专利。 八五 期间,国家安排了4个针状焦试验项目:辽宁鞍山沿海化工厂(原鞍山化肥厂)2万t/年煤系针状焦(改制法)项目、山东兖矿科蓝煤焦化有限公司(原山东济宁煤化公司)2万t/年煤系针状焦(溶剂法)项目、辽宁锦州石化公司3万t/年油系针状焦项目及安徽安庆石化公司油系针状焦项目。后来山东海化集团又建设了2万t/年油系针状焦装置。目前生产的针状焦已经用于H P电极的生产,但是不能满足UH P电极生产的质量要求,生产UH P的针状焦仍然全部依靠进口。

3.4 中间相沥青

中间相沥青是经热处理后含有相当数量中间相的沥青,在常温下中间相沥青为黑色无定形固体。中间相沥青的中间相组分具有光学各向异性的特征,中间相在形成初期呈小球状,称中间相小球体。中间相沥青的密度为1.4~1.5g/c m3,中间相沥青的软化点和黏度都随中间相含量的增加而提高,如中间相含量为57%的中间相沥青,其软化点为288 ,当中间相含量增加到80%以上时,其软化点为345 。中间相沥青的黏度与温度有密切关系,同一种中间相沥青的黏度随温度升高明显下降。

中间相沥青主要用于制备中间相沥青碳纤维,还可以用于制备针状焦,以及碳-碳复合材料的基体材料和提取中间相碳微球等,利用中间相沥青制得的沥青碳纤维具有很高的弹性模量,因此中间相沥青作为一种新材料,具有广阔的发展前景。

3.5 碳纤维

碳纤维属于高科技产品,按原料分类可分为聚丙烯腈基(P AN)碳纤维、沥青基碳纤维、胶黏基和酚醛树脂碳纤维。目前主要以PAN碳纤维、沥青基碳纤维为主,其他碳纤维极少。碳纤维既具有炭素材料的固有本性,又具有金属材料的导电和导热性、陶瓷材料的耐热和耐腐蚀性、纺织纤维的柔软可编性以及高分子材料的轻质、易加工性能,是一材多能和一材多用的功能材料和结构材料,目前几乎没有什么材料具有这种多方面的特性。

碳纤维的比强度、比模量都相当高,而且具有耐高温、耐腐蚀、耐冲击、热膨胀系数接近零等特性,能与树脂、金属陶瓷、水泥等材料广泛地复合,一直是增强复合材料领域的佼佼者。高性能沥青碳纤维主要应用于飞机或汽车刹车片、增强混凝土或耐震补强材料、密封填料、摩擦材料、增强热塑性树脂、电磁波屏蔽材料和锂电池的负极材料,另外也正在开拓高尔夫球杆等体育器材的用途,今后最大的市场将是土木建筑用于包括修补和加固材料。通用级低性能沥青碳纤维主要用于幕墙混凝土的增强。

目前,世界沥青基碳纤维生产主要集中在美国和日本。国内碳纤维还处于开发研制阶段,到2000年

41

2007年第2期常宏宏等:煤沥青的性质及应用

已建3套百吨级通用沥青基碳纤维生产线,总设计能力为400~500,t但运行状况都不太好,科研单位和生产厂在优化工艺条件、改进技术装备方面作了大量工作,碳纤维的研制和生产将会发生突破性进展。

我国碳纤维的应用领域涉及航空航天、文体器材、纺织机械、医疗机械、电子工程、汽车、冶金、石油化工、环境工程、劳动保护、土木建筑和原子能等行业,但使用的数量、应用的深度与世界其他国家和地区还有差距。随着我国经济的发展和应用领域的不断开发,碳纤维的需求量会进一步增加,生产能力将随之进一步提高。虽然PAN碳纤维仍是今后发展的主流,但沥青碳纤维因成本低、价廉,加上新用途的开发,需求量也将相应增加,市场将进一步扩大。

3.6 煤沥青涂料

煤沥青具有良好的耐水、耐潮、防霉、防微生物侵蚀、耐酸性气体等特性,对盐酸和其它稀酸均有一定的抵抗作用,被广泛应用于涂料的生产。国内外生产煤沥青涂料已有几十年的历史,由于沥青在生产涂料方面具有价格低廉、性能优良的特点,煤沥青涂料发展很快。根据用途不同,煤沥青涂料有很多种类。最具有代表性的是环氧煤沥青涂料,利用煤沥青改性环氧树脂制成的环氧煤沥青,综合了煤沥青和环氧树脂的优点,得到耐酸、耐碱、耐水、耐溶剂、耐油和附着性、保色性、热稳定性、抗微生物侵蚀、电绝缘良好的涂层。这种涂料应用领域非常广,在码头、港口、采油平台、矿井下的金属构筑、油轮的油水舱、埋地管道、化工建筑及设备、贮池、气柜、凉水塔、污水处理水池等广泛采用。煤沥青涂料还有无溶剂环氧煤沥青涂料、沥青清漆、沥青烘干漆、沥青瓷漆等。由于煤沥青具有抗微生物侵蚀的特性,用煤沥青制造船底防污漆得到了应用。

3.7 煤沥青配制燃料油

我国石油资源比较紧缺,2003年进口原油9000多万,t成为石油净进口国。为了节约资源,石油加工厂近几年在重油加工方面开展了大量工作,力图在炼油厂把石油 吃干榨净 。造成了市场重油供应十分紧张,价格上扬,迫使一些以重油为燃料的企业寻找新的资源。以煤沥青回兑黏度较小的焦油馏分生产煤沥青燃料油已获得成功,并有逐渐推广的趋势。近几年来,煤沥青燃料油已在玻璃窑炉、耐火材料和铝用阳极炭块焙烧窑等行业代替重油使用。煤沥青燃料油在配制时,可使其黏度和热值与重油接近,只是密度比石油重油大,在燃烧操作时须做适当调整。

3.8 筑路及建筑用煤沥青

随着我国城乡道路建设特别是高等级公路的发展,对道路沥青的数量和质量提出了更高的要求。我国主要用于筑路材料的石油沥青供应紧张,而近几年国内才开发出高等级公路石油沥青。煤焦油沥青的组成和结构与石油沥青不同,它们的路用性能有较大差别。煤沥青的路用优点为:有较好的润湿和黏附性能、抗油侵蚀性能好、所筑路面摩擦系数大,但其具有热敏性高、延展性差、易老化、易污染环境等弱点,在应用上受到限制。石油沥青与煤沥青相比,其优点是热敏性低,黏弹性温度范围较宽,抗老化性较好,但其主要缺点是对碎石的黏附性能较差。研究表明,若将两种沥青共混改性制成煤-石油基混合沥青(简称混合沥青),其综合性能比单-沥青更为优异,是最好的筑路沥青。

混合沥青有下列许多优点:与石料的黏附性能好,可改善路面的坚固性,黏度随温度的变化有利,能降低混合料生产、摊铺和压实的操作温度,抗油侵蚀性能好,路面抗荷载性能高,即抗塑性变形,路面摩擦系数大。1970年以来,德国、瑞士、法国、波兰等许多国家开始生产石油沥青为主要成分的混合沥青,用于铺设最高负荷的公路。混合沥青中石油沥青的比例各国都有所不同,一般在65%~85%。国外混合沥青铺路材料已有多年的生产与公路应用的实际经验,并且用于高等级公路建设,足以表明煤沥青与石油沥青共混生产混合筑路沥青是有前途的。国内在混合沥青开发方面还处于试验阶段,没有工业化生产。

4 结 论

随着煤焦化工的发展,我国将成为煤沥青生产和出口大国。作为炭素制品生产的黏结剂仍然是煤沥青的最重要用途。但随着炭素生产技术装备的发展和炭素制品性能的不断提高,目前国内中温沥青和改质沥青的标准已不能完全满足国内外沥青用户的要求,应开发生产各种规格的沥青品种,形成沥青系列产品;近几年国内开发的煤沥青燃料油用量不断增加,将成为煤沥青的一个重要应用途径;煤沥青与石油沥青为原料生产筑路混合沥青,(下转第46页)

参 考 文 献

[1] 郭达志,盛业华,等.矿区环境灾害动态检测与分析评价[M].徐州:中国矿业大学出版社,1998.

[2] 吴 侃,周 明.矿区预测预报系统[M].徐州:中国矿业大学出版社,1998.

[3] 刘传正.地质灾害防治工程的理论与技术[J].工程地质学报,2000(8).

[4] 施龙青,韩 进.地板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004.

[5] 陈明智.我国煤矿水资源保护开发与利用[J].煤矿环境保护,1997(1).

Possi bility Analysis on Ordovician Li m estoneW ater-bursti ng of

11105W W orki ng Face in X iez huang CoalM i ne i n Shandong

W ang Jingping

Abst ract A ccord i n g to geophysi c al prospecti n g data o f11105W w orking face i n X iezhuang coalfield and drilli n g data of ne i g hborhood,eva l u ates and forecasts the gro w t h degree and w ater abundance of ordov ician li m estone kars,t at last analyses and eva l u ates the possibility of ordov ic i a n li m estone wa ter-bursti n g of bo tto m in the w or k i n g face.

K ey w ords Ordov ician li m estone;Karstw ater;W ater abundance character;W ater-bursting character

(上接第42页)

不仅可以消耗大量煤沥青,还可以生产出高质量重交筑路沥青,解决我国重交筑路沥青供应不足的矛盾,因此,应加快筑路混合沥青在国内的工业化生产。

煤焦油加工的快速发展导致煤沥青产量的增加,因此,通过对煤沥青进行深加工,以提高其产品的附加值、扩大应用领域,将是新世纪煤焦油加工中的重要课题。

收稿日期 2006-11-15

参 考 文 献

[1] 许 斌,潘立慧.煤沥青资源、应用和制备[J].炭素科技,2003,13(2):30-41.

[2] 高碧霞.煤沥青高附加值产品开发的探讨[J].上海化工,2000(19):20-23.

[3] 陈壹华.煤沥青的改质及其制品应用特性[J].炭素,2004(2):30-42.

[4] 李玉财,齐书奎,高 云.煤沥青的生产及应用[J].炭素科技,2004,14(2):19-26.

Properties and Applicati on of Coal P itc h

Chang Honghong W e iW enl o ng W ang Zhizhong Y ang Huai w ang Y ao Runsheng Abst ract This paper d iscribes properties,cpmposition and kinds of coal pitch,i n addition,e m phati c ally coal pitch applicati o n such as b i n der,dipping agen,t car bon fi b er,coati n g and f u el o il etc..

K ey w ords Coa l pitch;B i n der;D i p pi n g agen;t C ar bon fiber

沥青的介绍、分类、标准、用途

沥青材料 沥青材料是由一些极其复杂的高分子碳氢化合物和这些碳氢化合物的非金属(氧、硫、氮)衍生物所组成的黑色或黑褐色的固体、半固体或液体的混合物,憎水性材料,结构致密,几乎完全不溶于水、不吸水,具有良好的防水性,因此广泛用于土木工程的防水、防潮和防渗;沥青属于有机胶凝材料,与砂、石等矿质混合料具有非常好的粘结能力,所制 石油沥青的组成与结构 1.元素组成 石油沥青是由多种碳氢化合物及非金属(氧、硫、氮)衍生物组成的混合物,其元素组成主要是碳(80%~87%)、氢(10%~15%);其余是非烃元素,如氧、硫、氮等(<3%);此外,还含有一些微量的金属元素。 2.组分组成 通常将沥青分离为化学性质相近、与其工程性能有一定联系的几个化学成分组,这些组就称为“组分”。我国现行规程中有三组分分析法和四组分两种分析法两种。 石油沥青的三组分分析法将石油沥青分离为油分、树脂和沥青质三个组分。 1)油分为淡黄色透明液体,赋予沥青流动性,油分含量的多少直接影响着沥青的柔软性、抗裂性及施工难度。我国国产沥青在油分中往往含有蜡,在分析时还应将油、蜡分离。蜡的存在会使沥青材料在高温时变软,产生流淌现象;在低温时会使沥青变得脆硬,从而造成开裂。由于蜡是有害成分,故常采用脱蜡的方法以改善沥青的性能。 2)树脂为红褐色粘稠半固体,温度敏感性高,熔点低于100℃,包括中性树脂和酸性树脂。中性树脂使沥青具有一定塑性、可流动性和粘结性,其含量增加,沥青的粘结力和延伸性增加;酸性树脂含量不多,但活性大,可以改善沥青与其它材料的浸润性、提高沥青的可乳化性。 3)沥青质为深褐色固体微粒,加热不熔化,它决定着沥青的粘结力、粘度和温度稳定性,以及沥青的硬度、软化点等。沥青质含量增加时,沥青的粘度和粘结力增加,硬度和温度稳定性提高。 石油沥青的技术性质

沥青混合料及其力学性能分析

沥青混合料及其力学性能分析 摘要:目前我国高等级公路主要采用沥青路面结构形式,沥青混合料性能的好 坏直接影响到公路的服务功能和使用年限。现代重载交通要求沥青混合料具有优 良的高温稳定性和其它性能;为提高沥青混合料的性能、实现混合料性能的优化,近年来先后出现了大量的新材料和新理论。本文首先对沥青混合料的级配构成原 理进行了分析,其次对其力学性能做出了分析。 关键词:沥青混合料力学性能级配构成 1引言 随着生产力的发展,现代道路工程的特点反映出愈来愈鲜明的功能化。为了 满足日趋复杂、高效的现代化生产过程和日益上涨的生活水平所提出的各种功能 要求,道路工程的使命愈来愈艰难。从这个意义上看,现代道路工程面临着一场 革命作为道路工程中广泛使用的一种复合材料,沥青混合料是由沥青、矿粉、集料、等多种具有不同力学特性、不同几何形状尺寸的材料所构成的具有多相结构 的非各向同性材料。本文主要对沥青混合料及其力学性能进行了研究,希望能够 为沥青混合料的技术发展提供帮助。 2新型沥青混合料的级配构成原理分析 2.1沥青玛蹄脂碎石混合料(SMA) 沥青玛蹄脂碎石(简称SMA)是一种由沥青、矿粉及纤维稳定剂组成的沥青 玛蹄脂混合料填充于间断级配的矿料骨架中所形成的沥青混合料。其4.75mm以 上的集料含量在70%-80%左右,同时小于0.075mm的填料含量通常达到10%,而0.6-4.75mm的颗粒通常仅有10%左右,而AC-I型混合料的0.6-4.75mm的颗粒通 常达30%。因此SMA混合料是典型的由填料填充在粗集料形成的骨架空隙中形成的骨架密实结构。 2.2多碎石沥青混凝土(SAC) 多碎石沥青混凝土(SAC;)是由我国沙庆林院士于1988年提出的一种沥青 混凝土结构形式。其定义为;4.75mm以上的碎石含量占主要部分的密实级配沥 青混凝土。 SAC是在总结我国传统的工型和II型沥青混凝土的有缺点的基础上提出的。 我国传统的工型沥青混凝土空隙率为设计3-6%,因此耐久性好、透水性小,但表面构造深度较小;同时由于细集料试用较多,粗集料悬浮于沥青和细集料所组成 的密实体系中,因此混合料的稳定性随温度的增加下降明显,从而易出现车辙等 病害。 2.3大粒径沥青混凝土(LSAM) 根据以有的研究成果,LSAM的的典型特点是颗粒尺寸大、粗集料含量高、粗集料接触程度高和主骨架稳定性高。LSAM中粗集料的排列特征和级配对混合料 的体积特征有着较大的影响,甚至起着决定性的作用,也即粗集料间必须充分形 成石一石接触的骨架特征。对于LSAM的骨架特征有两个重要指标;骨架稳定度 和骨架接触度。 2.4SuperPAVE沥青混合料 SuperPAVE推荐的级配采用了0.45次方级配图,此级配图是以Fuller最大密 实度理论(n=0.45)为基础,即此图的对角线即为最大密实度线,级配曲线越靠 近对角线,混合料的密实度越大。为便于级配的选择和创新,SuperPAVE摒弃了 传统的对各个筛孔的通过率都严格控制的方法,而改为仅对关键筛孔(如公称最

沥青混合料(题)

沥青混合料 一、填空题 1、沥青混合料是经人工合理选择组成的矿质混合料,与适量拌和而成的混合料的总称。 2、沥青混合料按公称最大粒径分类,可分为、、 、、。 3、沥青混合料按矿质材料的级配类型分类,可分为和。 4、沥青混合料按矿料级配组成及空隙率大小分类,可分为、、和。 5、沥青混合料按沥青混合料制造工艺分类可分为、、 ,目前公路工程中最常用的是。 6、目前沥青混合料组成结构理论有和两种。 7、沥青混合料的组成结构有、、三个类型。 8、沥青与矿料之间的吸附作用有与。 9、沥青混合料的强度主要取决于与。 10、根据沥青与矿料相互作用原理,沥青用量要适量,使混合料中形成足够多的沥青,尽量减少沥青。 11、沥青混合料若用的是石油沥青,为提高其粘结力则应优先选用矿料。 12、我国现行国标规定,采用试验和试验来评价沥青混合料高温稳定性,其技术指标项目包括、和。 13、沥青混合料配合比设计包括、和三个阶段。 14、在AC—25C中,AC表示;25表示;C表示。 15、沥青混合料悬浮—密实结构中的粗集料数量比较,不能形成骨架。它的粘聚力比较,内摩阻角比较,因而高温稳定性。 16、标准马歇尔试件的直径为mm,高度为mm。 17、目前最常用的沥青路面包括、、和等。 18、沥青混合料按施工温度可分为和。 19、沥青混合料按混合料密实度可分为、和。 20、沥青混合料是和的总称。

21、沥青混合料的强度理论是研究高温状态对的影响。 22、通常沥青-集料混合料按其组成结构可分为、和三类。 23、沥青混合料的抗剪强度主要取决于和两个参数。 24、我国现行标准规定,采用、方法来评定沥青混合料的高温稳定性。 25、我国现行规范采用、、和等指标来表征沥青混合料的耐久性。 26、沥青混合料配合比设计包括、和三个阶段。 27、沥青混合料试验室配合比设计可分为和两个步骤。 28、沥青混合料水稳定性如不符合要求,可采用掺加的方法来提高水稳定性。 29、马歇尔模数是和的比值,可以间接反映沥青混合料的能力。 30、沥青混合料的主要技术性质为、、、和。 二、选择题 1、特粗式沥青混合料是指()等于或大于31.5mm的沥青混合料。 A、最大粒径 B、平均粒径 C、最小粒径 D、公称最大粒径 2、在沥青混合料AM—20中,AM指的是() A、半开级配沥青碎石混合料 B、开级配沥青混合料 C、密实式沥青混凝土混合料 D、密实式沥青稳定碎石混合料 3、关于沥青混合料骨架—空隙结构的特点,下列说法有误的是() A、粗集料比较多 B、空隙率大 C、耐久性好 D、热稳定性好 4、关于沥青混合料骨架—密实结构的特点,下列说法有误的是() A、密实度大 B、是沥青混合料中差的一种结构类型 C、具有较高内摩阻角 D、具有较高粘聚力 5、关于沥青与矿料在界面上的交互作用,下列说法正确的是() A、矿质集料颗粒对于包裹在表面上的沥青分子只具有物理吸附作用 B、矿质集料颗粒对于包裹在表面上的沥青分子只具有化学吸附作用 C、物理吸附比化学吸附强 D、化学吸附比物理吸附强; 6、关于沥青与矿粉用量比例,下列说法正确的是() A、沥青用量越大,沥青与矿料之间的粘结力越大

石油沥青期货相关知识

石油沥青期货相关知识 概述 众所周知,沥青是最古老的石油产品,人类在认识石油之前便开始使用沥青了。早在5000多年前人们发现了天然沥青,并且利用其良好的黏结能力、防水特性、防腐性能等特征,以不同的形式用作铺筑石块路的黏结剂,为宫殿等建筑物作防水处理,作为船体填缝料等。21世纪的今天,沥青作为工程材料在国民经济各部门有广泛的用途,在许多领域仍然是不可替代的产品,而且应用领域还在不断拓宽。 沥青是经过简单加工就可以生产出来的石油产品。早期沥青来自天然沥青矿,其大规模生产和使用是在大约100年前利用原油作为原料之后。只要原油选择合适,通过常减压蒸馏就可以得到铺路用的沥青,或再经过吹风氧化提高沥青的硬度就可得到屋面防渗、防水用沥青。 石油沥青经过一百多年的生产和发展,已经出现道路沥青、防水防潮、油漆涂料、绝缘材料等数十个品种和上百个牌号的产品。目前石油沥青已被广泛用于国民经济各个领域,特别是随着公路交通事业的发展,使用高等级道路沥青铺筑的路面越来越多。沥青的生产和使用已成为一个国家公路建设、房屋建筑等发展水平的主要标志。我国是发展中的第一大国,公路建设和建筑业持续高速发展,特别是近年来提出加大基础设施的建设,西部大开发等,对石油沥青的需求愈发强劲,市场容量很大。自1988年我国首条高速公路——沪嘉高速建成,高等级公路建设在我国迅猛发展。2011年高速公路通车里程达8.5万公里,截止“十二五”末期我国高速公路规划总里程将达到13.9万公里,成为世界高速公路总里程第一的国家。伴随着公路建设的飞速发展,石油沥青市场方兴未艾,我国无疑已经成为全球最大、最活跃的沥青市场。 沥青的概念及分类 尽管早在20世纪初,人们就企图将沥青做一个统一的定义,但是,迄今为止还没有定论。在国外关于沥青的名词有:bitumen,asphalt,asphaltic bitumen等。在国内一般将bitumen,asphalt,asphaltic bitumen均译为沥青,而在使用上,bitumen常常指天然沥青,asphalt常常指石油炼制所得的沥青。这里需要说明的是:在文献与著作中,美国习惯把来自石油加工所得渣油或由渣油氧化所得产物叫做“asphalt”,而欧洲则习惯地称之为“bitumen”。 沥青主要是指由高分子的烃类和非烃类组成的黑色到暗褐色的固态或半固态粘稠状物质,它全部以固态或半固态存在于自然界或由石油炼制过程制得。 沥青按其在自然界中获得的方式可分为地沥青和焦油沥青两大类。地沥青又分为天然沥青和石油沥青,天然沥青是石油在自然界长期受地壳挤压并与空气、水接触逐渐变化而形成

JTGF40-2004《公路沥青路面施工技术规范》资料

1 总则 1.0.1 为贯彻“精心施工,质量第一”的方针,保证沥青路面的施工质量,特制定本规范。 1.0.2 本规范适用于各等级新建和改建公路的沥青路面工程。 1.0.3 沥青路面施工必须符合国家环境和生态保护的规定。 1.0.4 沥青路面施工必须有施工组织设计,并保证合理的施工工期。沥青路面不得在气温10C(高速公路和一级公路)或5C(其他等级公路),以及雨天、路面潮湿的情况下施工。 1.0.5 沥青面层宜连续施工,避免与可能污染沥青层的其他工序交叉干扰,以杜绝施工和运输污染。 1.0.6 沥青路面施工应确保安全,有良好的劳动保护。沥青拌和厂应具备防火设施,配制和使用液体石油沥青的全过程严禁烟火。使用煤沥青时应采取措施防止工作人员吸入煤沥青或避免皮肤直接接触煤沥青造成身体伤害。 1.0.7 沥青路面试验检测的实验室应通过认证,取得相应的资质,试验人员持证上岗,仪器设备必须检定合格。 1.0.8 沥青路面工程应积极采用经试验和实践证明有效的新技术、新材料、新工艺。 1.0.9 沥青路面施工除应符合本规范外,尚应符合国家颁布的现行有关标准、规范的规定。特殊地质条件和地区的沥青路面工程,可根据实际情况,制订补充规定。各省、市、自治区或工程建设单位可根据具体情况,制订相应的技术指南,但技术要求不宜低于本规范的规定。

2 术语、符号、代号 术语 2.1.1 沥青结合料asphalt binder ,asphalt cement 在沥青混合料中起胶结作用的沥青类材料(含添加的外掺剂、改性剂等)的总称。 2.1.2 乳化沥青emulsified bitumen(英), asphalt emulsion ,emulsified asphalt(美) 石油沥青与水在乳化剂、稳定剂等的作用下经乳化加工制得的均匀的沥青产品,也称 沥青乳液。 2.1.3 液体沥青liquid bitumen(英), cutback asphalt(美) 用汽油、煤油、柴油等溶剂将石油沥青稀释而成的沥青产品,也称轻制沥青或稀释沥 青。 2.1.4 改性沥青modified bitumen(英) , modified asphalt cement(美) 掺加橡胶、树脂、高分子聚合物、天然沥青、磨细的橡胶粉或者其他材料等外掺剂(改性剂),使沥青或沥青混合料的性能得以改善而制成的沥青结合料。 2.1.5 改性乳化沥青modified emulsified bitumen (英), modified asphalt emulsion(美) 在制作乳化沥青的过程中同时加入聚合物胶乳,或将聚合物胶乳与乳化沥青成品混合,或对聚合物改性沥青进行乳化加工得到的乳化沥青产品。 2.1.6 天然沥青natural bitumen (英)natural asphalt(美) 石油在自然界长期受地壳挤压、变化,并与空气、水接触逐渐变化而形成的、以天然状态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可以分为湖沥青、岩沥青、海底沥青、油页岩等。 2.1.7 透层prime coat 为使沥青面层与非沥青材料基层结合良好,在基层上喷洒液体石油沥青、乳化沥青、 煤沥青而形成的透入基层表面一定深度的薄层。 2.1.8 粘层tack coat 为加强路面沥青层与沥青层之间、沥青层与水泥混凝土路面之间的粘结而洒布的沥青材料薄层。 2.1.9 封层seal coat 为封闭表面空隙、防止水分侵入而在沥青面层或基层上铺筑的有一定厚度的沥青混合料薄层。铺筑在沥青面层表面的称为上封层,铺筑在沥青面层下面、基层表面的称为下封层。稀浆封层slurry seal 用适当级配的石屑或砂、填料(水泥、石灰、粉煤灰、石粉等)与乳化沥青、外掺剂 和水,按一定比例拌和而成的流动状态的沥青混合料,将其均匀地摊铺在路面上形成的沥青 封层。 2.1.11 微表处micro-surfacing 用适当级配的石屑或砂、填料(水泥、石灰、粉煤灰、石粉等)采用聚合物改性 乳化 沥青、外掺剂和水,按一定比例拌和而成的流动状态的沥青混合料,将其均匀地摊铺在路面上形成的沥青封层。 2.1.12 沥青混合料bituminous mixtures(英),asphalt(美) 由矿料与沥青结合料拌和而成的混合料的总称。按材料组成及结构分为连续级配、间断级配混合料,按矿料级配组成及空隙率大小分为密级配、半开级配、开级配混合料。按公 称最大粒径的大小可分为特粗式(公称最大粒径等于或大于31.5mm)、粗粒式(公称最大粒径26.5mm)、中粒式(公称最大粒径16或19mm、细粒式(公称最大粒径或13.2mm)、砂粒式(公

石油沥青

石油沥青 摘要:石油沥青是原油馏分之一,常温下呈黑色的无定型固体。性质特殊,生产工艺复杂,用途广泛。市场需求大。是不可多得的宝贵资源。 目录 第1节石油沥青性质 (1) 第2节石油沥青生产 (2) 第3 节常用石油沥青的用途 (6) 第4节石油沥青市场展望 (7) 姓名:戚本杨 班级序号: 30 学号: 201100961 班级:储运11101班 院系:石油工程学院 日期: 2013 -11-13

(一)石油沥青性质 石油沥青约占石油产品总量的3%,。具有很好的粘结性, 绝缘性和不渗水性,并能抵抗多种化学药物的侵蚀,石油沥青是石油中最重,组成结构最复杂的组分,除乳化沥青外,常温下沥青是黑色无定型固体,具有脆性,断面有光泽。具有以下性质: 一、黏滞性(黏性):石油沥青的黏滞性是反映材料内部阻碍其相对流动的一种特性,是划分沥青牌号的主要性能指标。沥青的黏滞性与其组分及所处的温度有关。当地沥青质含量较高、又有适量的树脂、且油分含量较少时,黏滞性较大。在一定的温度范围内,当温度升高,黏滞性随之降低,反之则增大。建筑工程中多采用针入度来表示石油沥青的黏滞性,其数值越小,表明黏度越大,沥青越硬。针入度是以250C时100g重的标准针经5s沉入沥青试样中的深度表示,每深1/10 mm,定为1度。 二、塑性:塑性是指石油沥青受外力作用时产生变形而不破坏,除去外力后仍保持变形后形状性质,它是石油沥青的主要性能之一。石油沥青的塑性用延度表示。延度越大,塑性越好,柔性和抗断裂性越好。延度是将沥青试样制成∞字形标准试件,在25t水中以5cm/min的速度拉伸,直至试件断裂时的伸长值,以“cm”为单位。 三、温度稳定性:温度稳定性是指石油沥青的黏滞性和塑性随温度升降而变化的性能,是沥青的重要指标之一。在工程中使用的沥青,要求有较好的温度稳定性,否则容易发生沥青材料夏季流淌或冬季变脆甚至开裂等现象,使防水层失效。通常用软化点来表示石油沥青的温度稳定性,即沥青受热由固态转变为具有一定流动态时的温度。软化点越高,表明沥青的耐热性越好,即温度稳定性越好。沥青的软

石油沥青的分类技术标准及应用

石油沥青的分类技术标准 及应用 The Standardization Office was revised on the afternoon of December 13, 2020

石油沥青的分类、技术标准及应用 一、石油沥青的分类 按用途分: 道路石油沥青; 建筑石油沥青; 防水防潮石油沥青。 二、技术标准 道路石油沥青、建筑石油沥青和防水防潮石油沥青都是按针入度指标来划分牌号的。在同一品种石油沥青材料中,牌号愈小,沥青愈硬;牌号愈大,沥青愈软,同时随着牌号增加,沥青的粘性减小(针入度增加),塑性增加(延度增大),而温度敏感性增大(软化点降低)。 三、石油沥青的选用 在选用沥青材料时,应根据工程性质(房屋、道路、防腐)及当地气候条件、所处工程部位(屋面、地下)来选用不同品种和牌号的沥青。 1、道路石油沥青牌号较多,主要用于道路路面或车间地面等工程,一般拌制成沥青混凝土、沥青拌合料或沥青砂浆等使用。道路石油沥青还可作密封材料、粘结剂及沥青涂料等。此时宜选用粘性较大和软化点较高的道路石油沥青,如60甲。 2、建筑石油沥青粘性较大,耐热性较好,但塑性较小,主要用作制造油毡、油纸、防水涂料和沥青胶。它们绝大部分用于屋面及地下防水、沟槽防水、防腐蚀及管道防腐等工程。对于屋面防水工程,应注意防止过分软化。据高温季节测试,沥青屋面达到的表面温度比当地最高气温高25℃~30℃,

为避免夏季流淌,屋面用沥青材料的软化点应比当地气温下屋面可能达到的最高温度高20℃以上。例如某地区沥青屋面温度可达65℃,选用的沥青软化点应在85℃以上。但软化点也不宜选择过高,否则冬季低温易发生硬脆甚至开裂对一些不易受温度影响的部位,可选用牌号较大的沥青。 3、防水防潮石油沥青的温度稳定性较好,特别适用做油毡的涂覆材料及建筑屋面和地下防水的粘结材料。其中3号沥青温度敏感性一般,质地较软,用于一般温度下的室内及地下结构部分的防水。4号沥青温度敏感性较小,用于一般地区可行走的缓坡屋面防水。5号沥青温度敏感性小,用于一般地区暴露屋顶或气温较高地区的屋面防水。6号沥青温度敏感性最小,并且质地较软,除一般地区外,主要用于寒冷地区的屋面及其它防水防潮工程。 4、普通石油沥青含蜡较多,其一般含量大天5%,有的高达20%以上(称多蜡石油沥青),因而温度敏感性大,故在工程中不宜单独使用,只能与其它种类石油沥青掺配使用。 石油沥青的技术标准见表11-5。

浅析沥青混合料的技术性能和标准

2011年第8期(总第210期) 黑龙江交通科技 HEILONGJIANG JIAOTONG KEJI No.8,2011(Sum No.210) 浅析沥青混合料的技术性能和标准 攸立准 (衡水公路工程总公司) 摘 要:在工程实践中,会出现各项性能要求之间的矛盾情况,有时会顾此失彼,因此在设计和施工过程中要因地制宜,抓住主要矛盾,深入细致地对各项性能指标的影响因素按照工艺施工阶段进行质量控制。下面简要对沥青混合料的技术性质和标准进行阐述。关键词:沥青混合料;技术性质;标准;要求中图分类号:U416.217 文献标识码:C 文章编号:1008-3383(2011)08-0069-01 收稿日期:2011-04-28 1高温稳定性 1.1车辙的形成机理及影响因素 (1)失稳型车辙 这类车辙是由于沥青路面结构层在车轮荷载作用下,内部材料流动,产生横向位移而发生,通称集中在轮迹处。 (2)结构型车辙 这类车辙是由于路面结构在交通荷载作用下产生整体 永久变形而形成, 主要是由于路基变形传递到面层而产生。(3)磨耗型车辙 由于沥青路面结构顶层的材料在车轮磨耗和自然环境匀 速下持续不断的损失而形成。分析以上原因, 影响沥青路面车辙的因素主要有集料、结合料、混合料类型、荷载、环境等。此 外,压实方法会直接影响混合料的内部结构,从而产生车辙。1.2混合料稳定性的评价方法 影响沥青混合料高温稳定性的主要因素有沥青的用量、沥青的粘度、矿料的级配、矿料的尺寸、形状等。提高路面的高温稳定性,可采用提高沥青混合料的粘结力和内摩擦阻力的方法,增加粗骨料含量可以提高沥青混合料的内摩阻力。适当提高沥青材料的粘度,控制沥青与矿料比值,严格控制 沥青用量,均能改善沥青混合料的粘结力。这样可以增强沥 青混合料的高温稳定性。 1.3沥青路面车辙的防治措施 对于失稳型车辙,可以通过以下方法减缓:确保沥青混合料中含有较高的经过破碎的集料;集料中要含有足够的矿粉;大尺寸集料要具有较好的表面纹理和粗糙度;集料级配中要含有足够的粗颗粒;沥青结合料要有足够的粘度;集料颗粒表面的沥青膜要具有足够厚度,确保沥青与集料间的粘聚力。 对于结构型车辙通过以下方法可以减缓:确保基层设计满足工程实践要求;基层材料满足规范要求,含有较多经破碎的颗粒;混合料内含有足够的矿粉;基底应充分的压实,工后不产生附加压密;路基压实后应满足规范要求;磨耗型车辙可通过交通管制、改善混合料级配来防治。2低温抗裂性 沥青混合料随着温度的降低,变形能力下降。路面由于低温而收缩以及行车荷载的作用,在薄弱部位产生裂缝,从而影响道路的正常使用。因此,要求沥青混合料具有一定的低温抗裂性。 沥青混合料的低温裂缝是由混合料的低温脆化、低温缩裂和温度疲劳引起的。混合料的低温脆化是指其在低温条 件下, 变形能力降低;低温缩裂通常是由于材料本身的抗拉强度不足而造成的;对于温度疲劳,因温度循环而引起疲劳破坏。 沥青路面低温开裂受多种因素制约,就沥青材料选择和 沥青混合料设计而言,应注意以下几点:注意沥青的油源,在 严寒地区采用针入度较大, 粘度较低的沥青,但同时也应满足夏季的要求;选用温度敏感性小的沥青有利于减少沥青路面的温度裂缝;采用吸水率低的集料,粗集料的吸水率应小于2%;采用100%轧制碎石集料拌制沥青混合料;控制沥青用量在马歇尔最佳用量0.5%范围内对裂缝影响小,但同时也应保证高温稳定性;采用应力松弛性能好的聚合物改性沥 青;掺加纤维, 使用改性沥青。3耐久性 3.1沥青路面的水稳定性 经常会看到,路面在水损害后会出现松散、剥离、坑洞等病害,严重影响路面的使用。沥青路面的耐久性主要依靠沥青与集料之间的粘附程度,水和矿料的作用破坏了沥青与集料之间的粘附性,是影响沥青路面耐久性的主要因素之一。而影响沥青与集料间粘结力的因素包括沥青与集料表面的界面张力、沥青与集料的化学组成、沥青粘性、集料的表面构造、集料的空隙率、集料的清洁度及集料的含水量、集料与沥青拌和的温度。 3.2沥青路面的耐老化性 另一个影响沥青混合料耐久性的是热老化。沥青材料在拌和、摊铺、碾压过程中以及沥青路面的使用过程中都存在老化问题。老化过程可分为施工中的短期老化和道路使用中的长期老化。 (1)沥青短期老化 沥青短期老化可分为三个阶段。 ①运输和储存过程的老化。沥青从炼油厂到拌和厂的热态运输一般在170?左右,进入储油罐,温度有所降低。 调查资料表明,这一过程中沥青老化非常小 。②拌和过程的热老化。加热拌和过程中,沥青是在薄膜 状态下受到加热,比运输过程中的老化条件严酷的多。沥青混合料拌和后,沥青针入度降低到拌和前沥青针入度的 80% 85%。因此,拌和过程引起的沥青老化是严重的,是沥青短期老化的最主要阶段。 ③施工期的老化。沥青混合料运到施工现场摊铺、碾压完毕,降温至自然温度,这一过程中裹覆石料的沥青薄膜仍处于高温状态。沥青混合料在摊铺、碾压和降温期间,沥青热老化进一步发展。 (2)长期老化 混合料中的沥青长期老化是一个漫长而复杂的过程,具有如下特点。 ①沥青路面在使用早期针入度急剧变小,随后变化缓慢,大体发生在 1 4年之间。②沥青老化主要发生在路表与大气接触部分,在深度0.5cm 左右的沥青针入度降低幅度相当大。 ③沥青混合料的空隙率是影响沥青老化的主要原因。④当路面中的针入度减小到35 50之间时,路面容易产生开裂,针入度小于25时路面容易产生龟裂。4抗滑性 用于高等级公路沥青路面的沥青混合料,其表面应具有一定的抗滑性,才能保证汽车高速行驶的安全性。 沥青混合料路面的抗滑性与矿质集料为表面性质、混合料的级配组成以及沥青用量等因素有关。为提高路面抗滑性,配料时应特别注意矿料的耐磨光性,应选择硬质有棱角 的矿料。沥青用量对抗滑性影响也非常敏感, 沥青用量超过最佳用量的0.5%, 即可使抗滑系数明显降低。另外,含蜡量对沥青混合料行滑性有明显影响,我国 《公路工程沥青及沥青混合料试验规程》(JTJ052-93)的《重交通量道路路用石油沥青技术要求》提出,含蜡量应不大于3%,在沥青来源有困难时对下面层路面可放宽至4% 5%。 · 96·

JTG F 《公路沥青路面施工技术规范》

1 总则 1.0.1为贯彻“精心施工,质量第一”的方针,保证沥青路面的施工质量,特制定本规范。 1.0.2 本规范适用于各等级新建和改建公路的沥青路面工程。 1.0.3沥青路面施工必须符合国家环境和生态保护的规定。 1.0.4沥青路面施工必须有施工组织设计,并保证合理的施工工期。沥青路面不得在气温10℃(高速公路和一级公路)或5℃(其他等级公路),以及雨天、路面潮湿的情况下施工。1.0.5沥青面层宜连续施工,避免与可能污染沥青层的其他工序交叉干扰,以杜绝施工和运输污染。 1.0.6沥青路面施工应确保安全,有良好的劳动保护。沥青拌和厂应具备防火设施,配制和使用液体石油沥青的全过程严禁烟火。使用煤沥青时应采取措施防止工作人员吸入煤沥青或避免皮肤直接接触煤沥青造成身体伤害。 1.0.7沥青路面试验检测的实验室应通过认证,取得相应的资质,试验人员持证上岗,仪器设备必须检定合格。 1.0.8沥青路面工程应积极采用经试验和实践证明有效的新技术、新材料、新工艺。 1.0.9沥青路面施工除应符合本规范外,尚应符合国家颁布的现行有关标准、规范的规定。特殊地质条件和地区的沥青路面工程,可根据实际情况,制订补充规定。各省、市、自治区或工程建设单位可根据具体情况,制订相应的技术指南,但技术要求不宜低于本规范的规定。

2 术语、符号、代号 术语 2.1.1沥青结合料 asphalt binder,asphalt cement 在沥青混合料中起胶结作用的沥青类材料(含添加的外掺剂、改性剂等)的总称。 2.1.2乳化沥青emulsified bitumen(英), asphalt emulsion,emulsified asphalt(美) 石油沥青与水在乳化剂、稳定剂等的作用下经乳化加工制得的均匀的沥青产品,也称沥青乳液。 2.1.3液体沥青 liquid bitumen(英), cutback asphalt(美) 用汽油、煤油、柴油等溶剂将石油沥青稀释而成的沥青产品,也称轻制沥青或稀释沥青。 2.1.4改性沥青 modified bitumen(英) , modified asphalt cement(美) 掺加橡胶、树脂、高分子聚合物、天然沥青、磨细的橡胶粉或者其他材料等外掺剂(改性剂),使沥青或沥青混合料的性能得以改善而制成的沥青结合料。 2.1.5 改性乳化沥青modified emulsified bitumen (英), modified asphalt emulsion(美) 在制作乳化沥青的过程中同时加入聚合物胶乳,或将聚合物胶乳与乳化沥青成品混合,或对聚合物改性沥青进行乳化加工得到的乳化沥青产品。 2.1.6 天然沥青 natural bitumen (英)natural asphalt(美) 石油在自然界长期受地壳挤压、变化,并与空气、水接触逐渐变化而形成的、以天然状态存在的石油沥青,其中常混有一定比例的矿物质。按形成的环境可以分为湖沥青、岩沥青、海底沥青、油页岩等。 2.1.7透层 prime coat 为使沥青面层与非沥青材料基层结合良好,在基层上喷洒液体石油沥青、乳化沥青、煤沥青而形成的透入基层表面一定深度的薄层。 2.1.8粘层 tack coat 为加强路面沥青层与沥青层之间、沥青层与水泥混凝土路面之间的粘结而洒布的沥青材料薄层。 2.1.9封层 seal coat 为封闭表面空隙、防止水分侵入而在沥青面层或基层上铺筑的有一定厚度的沥青混合料薄层。铺筑在沥青面层表面的称为上封层,铺筑在沥青面层下面、基层表面的称为下封层。 2.1.10稀浆封层 slurry seal 用适当级配的石屑或砂、填料(水泥、石灰、粉煤灰、石粉等)与乳化沥青、外掺剂和水,按一定比例拌和而成的流动状态的沥青混合料,将其均匀地摊铺在路面上形成的沥青封层。 2.1.11微表处 micro-surfacing 用适当级配的石屑或砂、填料(水泥、石灰、粉煤灰、石粉等)采用聚合物改性乳化沥青、外掺剂和水,按一定比例拌和而成的流动状态的沥青混合料,将其均匀地摊铺在路面上形成的沥青封层。 2.1.12沥青混合料bituminous mixtures(英), asphalt(美) 由矿料与沥青结合料拌和而成的混合料的总称。按材料组成及结构分为连续级配、间断级配混合料,按矿料级配组成及空隙率大小分为密级配、半开级配、开级配混合料。按公

石油沥青

石油沥青 石油沥青是石油原油(或石油衍生物)分馏出汽油、煤油、柴油及润滑油后的残留,再经过氧化处理而得到的产品。 8.1.1石油沥青的组分 石油沥青的化学组成和结构甚为复杂,常按其化学组成和物理力学性质比较接近的成分划分为若干组,称为组分。石油沥青的组分主要有以下几种: 1.油分 油分为淡黄色至红褐色的油状液体,是沥青中分子量最小和密度最小的组分,其分子量为100~500,密度为0.70~1.00g/cm3,能溶于大多数有机溶剂,但不溶于酒精。在石油沥青中,油分的含量为40%~60%。油分赋予沥青以流动性。 2.树脂(沥青脂胶) 沥青脂胶为黄色至黑色半固体粘稠物质,分子量为600~1000,密度为1.0~1.1g/cm3,熔点低于100oC。沥青脂胶中绝大部分属中性树脂,其含量增加,沥青的品质就好。在石油沥青中,沥青脂胶的含量为15%~30%,它使石油沥青具有良好的塑性和粘结性。 3.地沥青质(沥青质) 地沥青质为深褐色至黑色固态无定形的固体粉末,分子量为2000~6000,密度大于1.0 g/cm3。地沥青质是决定石油沥青温度敏感性和粘性的重要组分。沥青中地沥青质含量在10%~30%,其含量愈多,则软化点愈高,粘性愈大,也愈硬脆。 此外,石油沥青中还含2%~3%的沥青碳和似碳物,它会降低石油沥青的粘结力。石油沥青中还含有蜡,它会降低石油沥青的粘结性和塑性及温度稳定性。所以,蜡是石油沥青中的有害成分。 8.1.2石油沥青的结构 在石油沥青中,油分和树脂可以互溶,而树脂能浸润地沥青质,并在地沥青质的表面形成薄膜,构成以地沥青质为核心,周围吸附部分树脂和油分的胶团,无数胶团分散在油分中,形成胶体结构。在此分散体系中,分散相为吸附部分树脂的地沥青质,分散介质为溶有树脂的油分,地沥青质和树脂之间无明显界面。 石油沥青的性质随各组分的数量比例不同而变化。油分和树脂较多时,胶团外膜较厚,胶团间相对运动较自由,沥青的流动性、塑性较好,开裂后有一定的自行愈合能力,但温度稳定性差。当油分和树脂含量较少时,胶团外膜较薄,胶团彼此靠拢,相互间的引力增大,沥青的弹性、粘性和温度稳定性较高,但流动性和塑性较低。 8.1.3石油沥青的技术性质 1.粘滞性 粘滞性,又称粘性,是指石油沥青在外力作用下,抵抗变形的性能。当地沥青质含量较高,有适量树脂,但油分含量较少时,则粘滞性较大。在一定温度范围内,当温度升高时,粘性随之降低;反之,则增大。 粘稠石油沥青的粘滞性用针入度值来表示。其测定方法是:在25℃的温度下,用质量

道路沥青混合料的种类与性质

第七章沥青混合料的组成设计 沥青混合料从颗粒均匀预涂沥青的沥青涂层碎石(coated stone)到沥青玛碲脂(mastic asphalt)其成分变化无穷。然而,沥青混合料大体上可以分为沥青混凝土(asphalt)和沥青碎石(macadam)两大类。 沥青混凝土与碎石的主要区别如下: ●沥青混凝土的集料级配一般由颗粒大致均匀的粗集料加上大量的细集料和很 少量的中等大小的集料组成。 ●沥青混凝土的强度与砂/填料/沥青成份的劲度即沥青砂浆有关;为了砂浆 要有足够的劲度,制造沥青混凝土时要用比较硬的沥青和含量高的填料;至于沥青碎石的强度,主要是依靠摩擦和集料颗粒间的机械互锁力,因此可以用较软等级的沥青。 ●由于沥青混凝土含的填料比例很大,也即是集料有大幅的表面积要用沥青裹 覆,因而沥青用量较高;而沥青碎石含细小的集料少,因此用以裹覆集料的沥青少量也够了;沥青碎石内的沥青主要功能是在压实时作为润滑剂和在使用过程中粘结着集料颗粒。 ●沥青混凝土的空隙率低,基本上不透水并且用予繁重交通的道路上非常耐 久;沥青碎石的空隙率相对较高而具透水性,并不如前者耐久。从沥青涂层碎石到沥青玛蹄脂各种沥青合料中,使用的沥青等级愈来愈硬,沥青、矿料和砂的含量增加,粗集料含量减少。 图7-1 各种沥青混合料的典型级配曲线

§7.1道路沥青混合料的种类与性质 7.1.1沥青混凝土 用不同粒径的碎石、天然砂、矿粉和沥青按一定比例以及最佳密实级配原则设计、在拌和机中热拌所得的混合料称沥青混凝土混合料。这种混合料的矿料部分应有严格的级配要求。它们经过压实后所得的材料具有规定的强度和孔隙率时称作沥青混凝土。沥青混凝土的强度和密实度是一般沥青混合料中最大的,但它们在常温或高温下都具有一定的塑性。沥青混凝土的高密实度使得它水稳性好,因此有较强的抗自然侵蚀能力,故寿命长、耐久性好,适合作为现代高速公路的柔性面层。从国外以及国内的工程实践来看,以沥青混凝土作为高等级公路或城市道路的路面材料已经相当普遍。 由于沥青混凝土的胶结料主要为沥青,沥青是一种对温度十分敏感的材料,这就导致了沥青混凝土的性质(主要为力学性能)受温度的影响十分突出(这也是沥青混合料最大的特点),如它们的劈裂强度随温度的变化可从零下温度的几兆帕到高温的零点几兆帕而不同。 沥青混凝土的分类从广义来说,可包括沥青玛碲脂(MA)、热压式沥青混凝土(HRA)、传统的密级配沥青混凝土(HMA)、多空隙沥青混凝土(PA)、沥青玛碲脂碎石(SMA)以及其它新型的沥青混凝土。 传统沥青混凝土、SMA和多空隙沥青混凝土典型级配曲线的比较见下图: 图7-2 三种典型混凝土级配比较 上图中,曲线1为传统沥青混凝土,孔隙率3%;曲线2为SMA,孔隙率3%;曲线3为多孔沥青混凝土、孔隙率20%。就孔隙率而言,当马歇尔设计孔隙率小于4%(或路面实际孔隙率小于8%)时,它已形成较为密实的结构,水不易进入沥青混凝土,整个结构的耐久性较好;或者路面实际孔隙率大于15%

改性石油沥青

改性石油沥青机理和材料 改性石油沥青是掺加橡胶、树脂、高分子聚合物、磨细的橡胶粉或其他填料等外掺剂(改性剂),或采取对沥青轻度氧化加工等措施,使沥青或沥青混合料的性能得以改善制成的沥青结合料。 改性沥青其机理有两种,一是改变沥青化学组成,二是使改性剂均匀分布于沥青中形成一定的空间网络结构在土木工程中使用的沥青应具有一定的物理性质和粘附性。在低温条件下应有弹性和塑性;在高温条件下要有足够的强度和稳定性;在加工和使用条件下具有抗“老化”能力;还应与各种矿物料和结构表面有较强的粘附力;以及对变形的适应性和耐疲劳性。 一、橡胶改性沥青 橡胶是沥青的重要改性材料,它和沥青有较好的混溶性,并能使沥青具有橡胶的很多优点,如高温变形小,低温柔性好。 1.氯丁橡胶改性沥青 沥青中掺入氯丁橡胶后,可使其气密性、低温柔性、耐化学腐蚀性、耐气候性等得到大大改善。 2.丁基橡胶改性沥青 丁基橡胶改性沥青具有优异的耐分解性,并有较好的低温抗裂性能和耐热性能,多用于道路路面工程和制作密封材料和涂料。 3.热塑性弹性体改性沥青 热塑性弹性体改性沥青兼有橡胶和树脂的特性,常温下具有橡胶的弹

性,高温下又能像树脂那样熔融流动,成为可塑的材料。 4.再生橡胶改性沥青 再生橡胶掺入沥青中以后,可提高沥青的气密性,低温柔性、耐光、热、臭氧性,耐气候性。 二、树脂改性沥青 用树脂改性石油沥青,可以改进沥青的耐寒性、耐热性、粘结性和不透气性这一方法得到越来越多的应用。由于石油沥青中含芳香性化合物很少,故树脂和石油沥青的相容性较差,而且可用的树脂品种也较少,常用的树脂改性沥青有:古马隆树脂改性沥青、聚乙烯改性沥青、乙烯-乙酸乙烯共聚物改性沥青等,可选择杜邦或塑泰接枝PE、接枝SEBS、接枝POE等做不同树脂的相容剂。 三、橡胶和树脂改性沥青 橡胶和树脂同时用于改善沥青的性质,使沥青同时具有橡胶和树脂的特性。且树脂比橡胶便宜,橡胶和树脂又有较好的混溶性,故效果较好。 四、矿物填充料改性沥青 为了提高沥青的粘结能力和耐热性,降低沥青的温度敏感性,经常加入一定数量的矿物填充料。 1.矿物填充料的品种 常用的矿物填充料大多是粉状和纤维状的,主要有滑石粉、石灰石粉、硅藻土和石棉等。 2.矿物填充料的作用机理

沥青混合料力学性能指标2

10.2 沥青路面材料的力学特性与温度稳定性——这三个你仔细看一下吧 10.2.1 沥青混合料的强度特性 表征沥青混合料力学强度的参数是:抗压强度、抗剪强度和抗拉(包括抗弯拉)强度。一般沥青混合料均具有较高的抗压强度,而抗剪和抗拉强度则较低。因此,沥青路面的损坏,往往是由拉裂或滑移开始而逐渐扩展。 1、抗剪强度(shearing strength) 沥青混合料的剪切破坏可按摩尔一库仑原理进行分析。材料在外力作用下如不产生剪切破坏,则应具备下列条件: τmax< σ tg φ+c (2-4) 式中:τmax — 在外荷载作用下,某一点所产生最大的剪应力; σ — 在外荷载作用下,在同一剪切面上的正应力; c — 材料的粘结力; φ — 材料的内摩阻角; 在沥青路面的最不利位置取一单元体,设其三个方向的主应力为σ1、σ2和σ3,且σ1>σ2>σ3。由于单元体中最不利的剪切条件取决于σ1和σ3,故仅根据σ1和σ3分析单元体的应力状况。图2-17为单元体应力状况的摩尔圆。 图2-17 应力状况摩尔圆图 图2-18 三轴剪切实验装置 1-压力环;2-活塞;3-出水口;4-保温罩;5-进水口;6-接压力盒;7-试件;8-接水银压力计 从图2-17可得: ()φσστcos 2131-= (2-5) ()φφφσσσ2231sin cos 21tg c -+= (2-6)

将式(2-5)、(2-6)代人式(2-4)得: ()()[]c ≤+--φσσσσφsin cos 213131 (2-7a ) ()c tg ≤--φτσφτmax max cos (2-7b) 式(2-7a)或(2-7b)为沥青路面材料强度的判别式。 式左端称为活动剪应力,当活动剪应力等于粘结力c 时,材料处于极限平衡,若大于粘结力c ,材料出现塑性变形。 根据式(2-7a)或(2-7b)可求得沥青路面材料应具有的c 和Φ值。 c 和Φ值可通过三轴剪切试验取得。三轴剪切试验的装置如图2-18所示。 三轴剪切试验所用试件的直径应大于矿料最大粒径的4倍,试件的高与直径之比应大于 2。矿料最大粒径小于25cm 时,试件直径为10cm ,高为20m 。试验时,将一组试件分别在不同侧压力下以一定加荷速度施加垂直压力,直至试件破坏。此时测得的最大垂直压力,即为沥青混合料的最大主应力σ1 ,侧压力即为最小主应力σ3(σ1=σ3)。根据各试件的侧压力和最大垂直压力给出相应的摩尔圆,这些圆的公切线称为摩尔包线,切线与τ轴相交的截距即为粘结力,切线的斜率即为内摩阻角Φ(见图2-19)。 由于温度对沥青混合料的抗剪强度有很大的影响,故试件应在高温条件(65℃或50℃)下进行测试。 粘结力c 和内摩阻角Φ值,也可根据无侧限抗压和轴向拉伸试验取得的抗压强度和抗拉强度来计算: 抗压强度 ??? ??+=242φπctg R (2-8) 抗拉强度 ??? ??+= 242φπtg c r (2-9) 从式(2-8)或(2-9)可得: ??? ??+-=r R r R -1sin φ (2-10) Rr c 5.0= (2-11)

四组分对沥青性能的影响(建文)

.沥青的化学组成对石油沥青性质的影响 沥青的化学组成与沥青的胶体性能的关系 ?沥青中的饱和分含量不能过多,饱和分过多,将使沥青中分散介质的芳香度降低,不能形成稳定的胶体分散体系。 ?沥青中芳香分的存在是必需的,它的存在提高了沥青中分散介质的芳香度,使胶体体系易于稳定。 ?胶质本身具有较好的塑性和粘附性,是沥青中必不可少的组分,它能使沥青质稳定的交融于体系中。 沥青的化学组成与沥青的胶体性能联系 ?需要指出的是沥青质对沥青性能的影响不仅与沥青质的数量有关系,同时还与沥青质与可溶质的组成结构有关。但沥青质本身的/比较低,相对分子量较大时,他就较难于溶胶中分散,也就更容易析出。当可溶质的芳香度较小时,胶质的含量不足,则沥青的胶束稳定性就会下降。由此可见沥青中各个组分之间的相互关系是比较复杂的,必须在数量上和性质上都能很好的保证沥青胶体体系的稳定,沥青才能具有良好的使用性能。 四组分对沥青性质针入度、软化点、粘度的影响 ?日本公司的田中晴等人对沥青的化学组成与沥青物理性质的影响进行深入的研究,考察沥青的针入度、软化点、高温粘度等指标与沥青组成及相对平均分子量的关系得出下表中的关系: 指标回归关系式相关系数 针入度 - 软化点 = =-= ℃粘度η(η ) (η) 注:代表饱和分。代表芳香分。代表胶质。代表沥青质。平均相对分子量 由表中的内容可以看出:沥青中重质成分(沥青质、胶质)使针入度变小、软化点增加、高温粘度增加。轻质成分(饱和分、芳香分)使针入度增加、软化点降低、高温粘度降低。而对于针入度和高温粘度来说它与沥青的组成之间是指数关系,沥青组成发生很小变化就会对针入度和高温粘度产生很大的影响。大量研究显示,沥青质的存在可以改善沥青的高温性质,但沥青质含量过多,会使沥青的延度大大降低,易于脆裂。 饭岛通过对大约种沥青的研究得出: ?软化点=-*××-××+ ?由此可以看出沥青质对软化点的影响最大,随着沥青质含量的增加软化点增加。而胶质和芳香分增加时软化点稍有下降,饱和分含量增加软化点稍有降低。 ?从上面的分析可以看出沥青质降低针入度,增加软化点,增加高温粘度,芳香分和饱和分增加针入度,降低软化点,降低高温粘度。 四组分对沥青延度的影响 ?随着大量研究显示芳香分有助于改善沥青的延度。沥青质含量的增加会降低和度延度。 四组分对沥青老化性质的影响

相关文档
相关文档 最新文档