文档库 最新最全的文档下载
当前位置:文档库 › 砂型铸造工艺设计说明书

砂型铸造工艺设计说明书

砂型铸造工艺设计说明书
砂型铸造工艺设计说明书

设计说明书

题目:砂型铸造压工艺及模具设计

年级、专业:

姓名:

学号:

指导教师:

完成时间:

目录

第一章、简介 (5)

1.1.我国铸造技术发展现状 (5)

1.2.我国铸造未来发展趋势 (5)

第二章、铸造工艺方案的确定 (6)

2.1.产品的生产条件、结构及技术要求 (6)

2.2.零件铸造工艺性 (6)

2.3.造型,造芯方法的选择 (7)

2.4.浇注位置的确定 (8)

2.5.分型面的确定 (9)

2.6.砂箱中铸件数量及排列方式确定 (9)

第三章、铸造工艺参数及砂芯设计 (11)

3.1.工艺设计参数确定 (11)

3.1.1.铸件尺寸公差 (11)

3.1.2.机械加工余量 (11)

3.1.3.铸造收缩率 (12)

3.1.4.起模斜度 (12)

3.1.5.最小铸出孔和槽 (12)

3.1.6.铸件在砂型内的冷却时间 (13)

3.1.7.铸件重量公差 (13)

3.1.8.工艺补正量 (13)

3.1.9.分型负数 (13)

3.2.砂芯设计 (13)

3.2.1.芯头的设计 (15)

3.2.2.砂芯的定位结构 (16)

3.2.3.芯骨设计 (17)

3.2.4.砂芯的排气 (17)

第四章、浇注系统及冒口、出气孔等设计 (18)

4.1.浇注系统的设计 (18)

4.1.1.选择浇注系统类型 (18)

4.1.2.确定内浇道在铸件上的位置、数目、金属引入方向 (18)

4.1.3.决定直浇道的位置和高度 (19)

4.1.4计算浇注时间并核算金属上升速度 (20)

4.1.5.计算阻流截面积 (20)

4.1.6.计算直浇道截面积 (20)

4.1.7.浇口窝的设计 (21)

4.2.冒口的设计 (22)

4.3.出气孔的设计 (22)

第五章、铸造工艺装备设计 (23)

5.1.模样的设计 (23)

5.1.1.模样材料的选用 (23)

5.1.2.金属模样尺寸的确定 (23)

5.1.3.壁厚与加强筋的设计 (23)

5.1.4.金属模样的技术要求 (23)

5.1.5.金属模样的生产方法 (24)

5.2.模板的设计 (24)

5.2.1.模底板材料的选用 (24)

5.2.2.模底板尺寸确定 (24)

5.2.3.模底板与砂箱的定位 (24)

5.3.芯盒的设计 (25)

5.3.1.芯盒的类型和材质 (25)

5.3.2.芯盒的结构设计 (25)

5.4.砂箱的设计 (25)

5.4.1.砂箱的材质及尺寸 (25)

5.4.2.砂箱型壁尺寸及圆角尺寸 (25)

5.4.3.砂箱排气孔尺寸 (26)

第六章、砂型铸造设备选用 (27)

6.1.造型工部设备选用 (27)

6.2.制芯工部设备选用 (27)

6.3.溶化工部设备选用 (27)

6.4.砂处理工部设备选用 (27)

6.5.清理工部设备选用 (27)

总结 (28)

参考文献 (29)

第一章、简介

1.1.我国铸造技术发展现状

尽管近年来我国铸造行业取得迅速的发展,但仍然存在许多问题。第一,专业化程度不高,生产规模小。我国每年每厂的平均生产量是815t,远远低于美国的4606t和日本的4878t。第二,技术含量及附加值低。我国高精度、高性能铸件比例比日本低约20个百分点。第三,产学研结合不够紧密、铸造技术基础薄弱。第四,管理水平不高,有些企业尽管引进了国外的先进的设备和技术,但却无法生产出高质量铸件,究其原因就是管理水平较低。第五,材料损耗及能耗高污染严重。中国铸铁件能耗比美国、日本高70%~120%。第六,研发投入低、企业技术自主创新体系尚未形成。

1.2.我国铸造未来发展趋势

自中国加入WTO以来,我国铸造行业面临机遇与挑战。其未来发展将集中在以下几方面。第一,鼓励企业重组发展专业化生产,包括铸件大型化和轻量化生产。第二,加大科技投入切实推动自主创新,实现铸件的精确化生产和数字化铸造。第三,培养专业人才加强职工技术培训。第四,大力降低能耗抓好环境保护,实现清洁化铸造。

第二章、铸造工艺方案的确定

2.1.产品的生产条件、结构及技术要求

● 产品生产性质——中批量生产

● 零件材质——HT20-40

● 零件的外型示意图如图2.1所示,外形轮廓尺寸为234×178×225mm ,主要壁厚10-22mm ,最大壁厚22mm ,为一小型铸件;铸件除满足几何尺寸精度及材质方面的要求外,无其他特殊技术要求。

K向旋转旋 转均布

钻孔

均布

图2.1.零件图

2.2.零件铸造工艺性

零件结构的铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸件工艺过程和降低成本。审查、分析应考虑如下几个方面:

1.铸件应有合适的壁厚,为了避免浇不到、冷隔等缺陷,铸件不应太薄。

2.铸件结构不应造成严重的收缩阻碍,注意薄壁过渡和圆角,铸件薄厚壁的相接拐弯等

厚度的壁与壁的各种交接,都应采取逐渐过渡和转变的形式,并应使用较大的圆角相连接,避免因应力集中导致裂纹缺陷。

3.铸件内壁应薄于外壁,铸件的内壁和肋等,散热条件较差,应薄于外壁,以使内、外壁能均匀地冷却,减轻内应力和防止裂纹。

4.壁厚力求均匀,减少肥厚部分,防止形成热节。

5.利于补缩和实现顺序凝固。

6.防止铸件翘曲变形。

7.避免浇注位置上有水平的大平面结构。

对于该产品的铸造工艺性审查、分析如下:

产品轮廓尺寸为234×178×225mm。砂型铸造条件下该轮廓尺寸允许的最小壁厚查《铸造工艺学》表3-2-1得:最小允许壁厚为6~8 mm。而本次设计的产品的最小壁厚为10mm。符合要求。

产品设计壁厚较为均匀,两壁相连初采用了加强肋,可以有效构成热节,不易产生热烈。

2.3.造型,造芯方法的选择

产品轮廓尺寸为234×178×225mm,铸件尺寸较小,属于中型零件,且要大批量生产。采用湿型粘土砂造型灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等,还可延长砂箱使用寿命。因此,采用湿型粘土砂机器造型,模样采用金属模是合理的。

在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。选择使用射芯工艺生产砂芯。采用热芯盒制芯工艺热芯盒法制芯,是用液态固性树脂粘结剂和催化剂制成的一种芯砂,填入加热到一定的芯盒内,贴近芯盒表面的砂芯受热,其粘结剂在很短的时间内硬化。而且只要砂芯表层有数毫米的硬壳即可自芯取出,中心部分的砂芯利用余热可自行硬化。

2.4.浇注位置的确定

铸件的浇注位置是指浇注时铸件在型内所处的状态和位置。确定浇注位置是铸造工艺设计中重要的环节,关系到铸件的内在质量,铸件的尺寸精度及造型工艺过程的难易程度。

初步对本次设计产品的浇注位置的确定有:方案如图2.2

图2.2 浇注位置确定方案

确定浇注位置应注意以下原则:

1.铸件的重要部分应尽量置于下部

2.重要加工面应朝下或直立状态

3.使铸件的答平面朝下,避免夹砂结疤内缺陷

4.应保证铸件能充满

5.应有利于铸件的补缩

6.避免用吊砂,吊芯或悬臂式砂芯,便于下芯,合箱及检验

综合以上原则,本设计中的方案合理,科学,可行。

2.5.分型面的确定

分型面是指两半铸型相互接触的表面。分型面的优劣在很大程度上影响铸件的尺寸精度、成本和生产率。

初步对产品图进行分型有:方案如图2.3: B A

C

C

旋 转K向旋转

B - B

C - C

图2.3 分型面确定方案一

而选择分型面时应注意一下原则:

应使铸件全部或大部分置于同一半型内

应尽量减少分型面的数目

分型面应尽量选用平面

便于下芯、合箱和检测

不使砂箱过高

受力件的分型面的选择不应削弱铸件结构强度

注意减轻铸件清理和机械加工量

2.6.砂箱中铸件数量及排列方式确定

产品单件质量约为16.5kg ,因此看铸件为中小型简单件。考虑到年产量不是很高,

因此采用一箱一件结构,减少模具成本。

初步选取砂箱尺寸由《铸造实用手册》查表1.5-45得:

上箱为500×400×357mm 下箱为500×400×347mm

铸件在砂箱中排列最好放模具中心,这样金属液作用于上砂型的抬芯力均匀,也有利于浇注系统安排,在结合已经确定分型面及浇注位置以及砂箱尺寸,基本确定铸件在砂箱内的位置。

第三章、铸造工艺参数及砂芯设计

3.1.工艺设计参数确定

铸造工艺设计参数通常是指铸型工艺设计时需要确定的某些数据,这些工艺数据一般都与模样及芯盒尺寸有关,及与铸件的精度有密切关系,同时也与造型、制芯、下芯及合箱的工艺过程有关。这些工艺数据主要是指加工余量、起模斜度、铸造收缩率、最小铸出孔、型芯头尺寸、铸造圆角等。工艺参数选取的准确、合适,才能保证铸件尺寸精确,使造型、制芯、下芯及合箱方便,提高生产率,降低成本。

3.1.1.铸件尺寸公差

铸件尺寸公差是指铸件公称尺寸的两个允许的极限尺寸之差。在两个允许极限尺寸之内,铸件可满足机械加工,装配,和使用要求。

本次产品为砂型铸造机器造型中批量生产,由《铸造工艺设计》查表1-10得:

尺寸公差为CT8~12级,取CT9级。

轮廓尺寸为234×178×225mmmm,由《铸造工艺设计》查表1-9得:

尺寸公差数值为2mm。

3.1.2.机械加工余量

机械加工余量是铸件为了保证其加工面尺寸和零件精度,应有加工余量,即在铸件工艺设计时预先增加的,而后在机械加工时又被切去的金属层厚度。

由《铸造工艺设计》查表1-13得:加工余量为E~G级,取G级。轮廓尺寸为φ234×178×225mm,由《铸造工艺设计》查表1-12得:加工余量数值为2-2.25m,取2mm。

但在分型面及浇注系统设置中,不得已将重要加工面底面朝上放置,这样使其容易产生气孔、非金属夹杂物等缺陷,所以将采取适当加大加工余量的方法使其在加工后不出现缺陷。将底面的加工余量调整为0.5mm,可以忽略不计。

3.1.3.铸造收缩率

铸造收缩率又称铸件线收缩率,用模样与铸件的长度差除以模样长度的百分比表示:ε=[(L1-L2)/L1]*100%

ε—铸造收缩率

L1—模样长度

L2—铸件长度

产品受阻收缩率由《铸造工艺设计》查表1-14得:

受阻收缩率为0.9-0.95%。

3.1.

4.起模斜度

为了方便起模,在模样、芯盒的出模方向留有一定斜度,以免损坏砂型或砂芯。这个斜度,称为起模斜度。起模斜度应在铸件上没有结构斜度的,垂直于分型面的表面上应用。

初步设计的起模斜度如下:

外型模的边高357mm的起模斜度由《铸造工艺设计》查表1-15得:

粘土砂造型外表面起模斜度为а=0°15',a=1.2mm

3.1.5.最小铸出孔和槽

零件上的孔、槽、台阶等,究竟是铸出来好还是靠机械加工出来好,这应该从品质及经济角度等方面考虑。一般来说,较大的孔、槽等应该铸出来,以便节约金属和加工工时,同时还可以避免铸件局部过厚所造成热节,提高铸件质量。较小的孔、槽或则铸件壁很厚则不易铸出孔,直接依靠加工反而方便。

根据产品轮廓尺寸,由《铸造工艺设计》查表1-5得:

最小铸出孔约为15mm

产品的最小孔Φ36,考虑加工余量后直径为40mm,厚度为22mm。该孔直径比较大,高径比也不大,则应该铸出。同样,Φ52,Φ47的孔,都可以直接铸出。而且能保证精度。

3.1.6.铸件在砂型内的冷却时间

铸件在砂型内的冷却时间短,容易产生变形,裂纹等缺陷。为使铸件在出型时有足够的强度和韧性,铸件在砂型内应有足够的冷却时间。由《铸造工艺设计》查表1-25得:本次产品铸造冷却时间为50~80min。

3.1.7.铸件重量公差

铸件重量公差是以占铸件公称重量的百分比表示的铸件重量变动的允许范围。本次产品的公称重量约为16.5kg,尺寸公差为CT9级。由《铸造工艺设计》查表1-57得:重量公差为MT14级。

3.1.8.工艺补正量

在单件小批量生产中,由于选用的缩尺与铸件的实际收缩率不符,或由于铸件产生了变形等原因,使得加工后的铸件某些部分的壁厚小于图样要求尺寸,严重时会因强度太弱而报废。因此工艺需要在铸件相应的非加工壁厚上增加层厚度称为工艺补正量。但本次设计零件在大批量生产前的小批量试产过程中将进行调整,所以设计中不考虑工艺补正量。

3.1.9.分型负数

干砂型、表面烘干型以及尺寸较大的湿砂型,分型面由于烘烤,修整等原因一般都不很平整,上下型接触面很不严。为了防止浇注时炮火,合箱前需要在分型面之间垫以石棉绳、泥条等,这样在分型面处明显增加了铸件的尺寸。为了保证铸件尺寸精确,在拟定工艺时为抵掉铸件增加的尺寸而在模样上减去相应的尺寸称为分型负数。而本次设计零件是湿型且是中小型铸件,故不予考虑分型负数。

3.2.砂芯设计

砂芯的功用是形成铸件的内腔、孔和铸件外型不能出砂的部分。砂型局部要求特殊

性能的部分有时也用砂芯。砂芯的外型如图3.3所示。

图3.3 砂芯外型示意图

3.2.1.芯头的设计

砂芯主要靠芯头固定在砂型上。对于垂直芯头为了保证其轴线垂直、牢固地固定在砂型上,必须有足够的芯头尺寸。

根据实际设计量取计算砂芯高度:L=70mm

芯头长度初步选取由《铸造工艺设计》查表1-31得:h=20~35mm 取h=30mm

出于考虑分型面的选取等因素综合芯头选用垂直芯头并且不能做出上芯头,只设计下芯头并且加大下芯头。

下芯头长度设计修正为:h=70×(1+10%)=77mm

芯头间隙初步选取由《铸造工艺设计》查表1-31得:s=0.3mm

但考虑砂芯为垂直的湿型小砂芯且不设置上芯头,所以使用过盈的芯头,过盈量为0.2mm 芯头斜度选取由《铸造工艺设计》查表1-32得:а≤7 取а=7

3.2.2.砂芯的定位结构

砂芯要求定位准确,不允许沿芯头轴向移动或绕芯头轴线转动。对于形状不对称的砂芯,为了定位准确,需要做出定位芯头。定位芯头结构如图3.4

图3.4 定位芯头结构图

3.2.3.芯骨设计

为了保证砂芯在制芯、搬运、配芯和浇注过程中不开裂、不变形、不被金属液冲击折断,生产中通常在砂芯中埋置芯骨,以提高其刚度和强度。

因为砂芯尺寸中等,而且采用树脂砂,故砂芯强度较好,砂芯内不用放置芯骨。3.2.4.砂芯的排气

砂芯在浇注过程中,其粘结剂及砂芯中的有机物要燃烧(氧化反应)放出气体,砂芯中的残余水分受热蒸发放出气体,如果这些气体排不出型外,则要引起铸件产生气孔。

本次设计产品的砂芯采用热芯盒造芯,故不用有意设置排气道、排气孔等排气。

第四章、浇注系统及冒口、出气孔等设计

4.1.浇注系统的设计

浇注系统是铸型中引导液体金属进入型腔的通道,它由浇口杯,直浇道,横浇道和内浇道组成。

4.1.1.选择浇注系统类型

浇注系统分为封闭式浇注系统,开放式浇注系统,半封闭式浇注系统和封闭-开放式浇注系统。因为封闭式浇注系统控流截面积在内浇道,浇注开始后,金属液容易充满浇注系统,呈有压流动状态。挡渣能力强,但充型速度快,冲刷力大,易产生喷溅,金属液易氧化。适用于湿型铸件小件。本次设计的产品是采用湿型的铸件,所以选择封闭式浇注系统。

4.1.2.确定内浇道在铸件上的位置、数目、金属引入方向

零件结构较为简单且是中等型件,铸造时采取一箱一件,故只需要一个浇道。为了方便造型,浇道开设在分型面上。因为铸件采用底座朝上且铸件全部位于下箱的方式进行铸造,这样铸件凝固顺序为由下至上凝固,这样有利于产品的重要部分先凝固并得到补缩,如此内浇道则设置在底部侧面引入金属液,如图4.1所示。

图4.1 内浇道位置示意图

4.1.3.决定直浇道的位置和高度

实践证明,直浇道过低使充型及液态补缩压力不足,容易出现铸件棱角和轮廓不清晰、浇不到上表面缩凹等缺陷。初步设计直浇道高度等于上沙箱高度357mm。但应检验该高度是否足够。

检验依据为,剩余压力头应满足压力角的要求,如下式所列:

H M≥Ltgа

式中 H M——最小剩余压力头

L——直浇道中心到铸件最高且最远点的水平投影距离

а——压力角

由《铸造工艺学》查表3-4-11得:а为9~10 取10

Ltgа=90×tg10≈15.87mm

因为铸件全部位于下箱,所以剩余压力头H M等于上箱高度100mm

经过验证剩余压力头满足压力角的要求。

4.1.4计算浇注时间并核算金属上升速度

根据铸件图计算单个铸件的体积V≈2.10212cm3

儒墨铸铁密度由《铸造实用手册》查表1.1-90得:7.5~7.9

取密度为7.85

一箱一件质量为m=2.10212×7.85=16501.642g≈16.5kg

零件大批量生产的工艺出品率约为85%,可估计铸型中铁水总重量G

G=16.5/85%≈19.412kg

初步计算浇注时间由《铸造实用手册》查表1.4-61得:

T=S√G=2.5√19.41≈12.8s

计算铁水液面上升速度 v=C/t=2.10/12.8=16.4mm/s

校核铁水上升速度,一般允许铁水的最小上升速度范围由《铸造实用手册》查表1.4-62得:上升速度v=10~30s

通过比对16.4mm/s的上升速度符合实际,不必调整经验系数。

4.1.

5.计算阻流截面积

根据水力学近似计算公式:

F内= m/[ρtμ(2gH p)0.5] cm2

式中m—流经阻流的金属质量kg

t—充满行腔总时间s

ρ—金属液密度kg/cm3

μ—浇注系统阻流截面的流量系数

H p—充填型腔时的平均计算压力头cm

F内=19.41/[0.00785*11*0.5*(2*1000*20)0.5]≈2.5cm2

4.1.6.计算直浇道截面积

直浇道的功用是从浇口杯引导金属液向下,进入横浇道、内浇道或直接进入型腔。并提供足够的压力头,使金属液在重力作用下能克服各种流动阻力充型。

(工艺技术)第章铸造工艺设计基础

第1章铸造工艺设计基础 § 1-1零件结构的铸造工艺性分析 § 1-2铸造工艺方案的确定 § 1-3铸造工艺参数的确定 § 1-4砂芯设计 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的 前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知 识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 § 1-1零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化 铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1 .铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1 )壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1?表7-5 表1-1砂型铸造时铸件最小允许壁厚(单位:mm) 合金种类铸件最大轮廓尺寸为下列值时/ mm

泵盖铸造工艺设计说明书

课程设计说明书 泵盖铸造工艺设计 院系:机械工程学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导老师: 时间:

目录 1.铸造工艺分析 (1) 1.1零件介绍 (1) 1.2零件生产方式选择 (1) 1.3技术要求分析 (1) 1.4 合金铸造性能分析 (2) 2.确定铸造工艺方案 (2) 2.1确定铸造方法 (2) 2.2确定浇注位置和分型面 (2) 2.3确定型内铸件数目 (3) 2.4不铸出孔及槽的确定 (3) 2.5机械加工余量和铸造圆角的确定 (3) 2.6起模斜度和分型负数的确定 (5) 2.7砂芯的确定 (7) 2.8铸造收缩率的确定 (7) 2.9冒口的确定 (7) 2.10浇注系统的确定 (8) 3.芯盒的设计 (9) 3.1芯盒材质和分盒方式的确定 (9) 4.总结 (9) 参考资料 (10)

1.铸造工艺分析 零件简介: 1.1零件介绍: 零件名称:泵盖 零件材料:HT200 1.2零件生产方式选择: 大批量生产,零件图如下:

1.3技术要求分析 按照国家标准,对于HT200,其抗拉强度应达到200Mpa。铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。除此外无特殊技术要求。 注:其中φ21H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。 1.4 合金铸造性能分析 灰铸铁具有良好的铸造性能: (1)流动性。灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。 (2)收缩性。灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。 (3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。 2.确定铸造工艺方案 2.1确定铸造方法 铸件材质为HT200,,其轮廓尺寸25×φ110,属中小件,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。采用湿砂型机器造型大批量生产。 采用湿砂型机器脱箱造型,热芯盒水玻璃砂射芯机制芯。 2.2确定浇注位置和分型面 浇注位置选择原则: (1)重要加工面应朝下或呈直立状态; (2)铸件的大平面应朝下; (3)应有利于铸件的补缩; (4)应保证铸件有良好的金属液导入位置,保证铸件能充满; (5)应尽量少用或不用砂芯; (6)应使合型、浇注和补缩位置一致。

砂型铸造工艺设计说明书

设计说明书 题目:砂型铸造压工艺及模具设计 年级、专业: 姓名: 学号: 指导教师: 完成时间:

目录 第一章、简介 (5) 1.1.我国铸造技术发展现状 (5) 1.2.我国铸造未来发展趋势 (5) 第二章、铸造工艺方案的确定 (6) 2.1.产品的生产条件、结构及技术要求 (6) 2.2.零件铸造工艺性 (6) 2.3.造型,造芯方法的选择 (7) 2.4.浇注位置的确定 (8) 2.5.分型面的确定 (9) 2.6.砂箱中铸件数量及排列方式确定 (9) 第三章、铸造工艺参数及砂芯设计 (11) 3.1.工艺设计参数确定 (11) 3.1.1.铸件尺寸公差 (11) 3.1.2.机械加工余量 (11) 3.1.3.铸造收缩率 (12) 3.1.4.起模斜度 (12) 3.1.5.最小铸出孔和槽 (12) 3.1.6.铸件在砂型内的冷却时间 (13) 3.1.7.铸件重量公差 (13) 3.1.8.工艺补正量 (13) 3.1.9.分型负数 (13) 3.2.砂芯设计 (13) 3.2.1.芯头的设计 (15) 3.2.2.砂芯的定位结构 (16) 3.2.3.芯骨设计 (17) 3.2.4.砂芯的排气 (17) 第四章、浇注系统及冒口、出气孔等设计 (18) 4.1.浇注系统的设计 (18) 4.1.1.选择浇注系统类型 (18) 4.1.2.确定内浇道在铸件上的位置、数目、金属引入方向 (18) 4.1.3.决定直浇道的位置和高度 (19) 4.1.4计算浇注时间并核算金属上升速度 (20) 4.1.5.计算阻流截面积 (20) 4.1.6.计算直浇道截面积 (20) 4.1.7.浇口窝的设计 (21) 4.2.冒口的设计 (22) 4.3.出气孔的设计 (22) 第五章、铸造工艺装备设计 (23) 5.1.模样的设计 (23) 5.1.1.模样材料的选用 (23) 5.1.2.金属模样尺寸的确定 (23)

铸造工艺学设计说明书

铸造工艺设计说明书 零件名称:联轴器 指导老师:范宏训 设计人:邱满元 学号:T833-1-34

目录 1零件概述 (1) 1.1零件信息 (1) 1.2技术要求 (2) 2铸造工艺方案拟定 (2) 2.1 分型面选择 (3) 2.2浇注位置选择 (4) 3铸造主要参数 (4) 4 浇注系统设计计算 (4) 5 冒口设计 (5) 6砂芯设计 (6) 7模板 (7) 8 参考文献 (9) 9总结 (9)

1零件概述 1.1零件信息 名称:联轴器材料:球墨铸铁 外形尺寸:φ120X80 体积: 298.4cm2 质量: 2.16kg 生产批量:大批量生产零件二位图如下图所示 零件三维图如图1.1所示 图1.1 联轴器三维图

1.2技术要求 (1)铸件加工后,加工面不得有任何的铸造缺陷,非加工表面不得有明显 的夹渣、凹陷、砂眼和裂纹;。 (2)该零件配合方式为过盈配合; (3)保证该件受力较大的工作部分的力学性能。 2铸造工艺方案拟定 1 、铸造工艺图如图所示,分型面、加工余量、拔模斜度如图所示 对于单个零件,其冒口及浇注系统初步定为如下图所示,浇注位置和冒 口正好选在热节最大的地方 冒口 浇注系统

选择分型面的理由:1、保证铸件大部分位于下箱,温度分布较为合理,冒口 位置设计较为方便,便于补缩; 2、有要求的加工面都位于下型腔,其质量得到保证 3、铸件主要工艺参数的选择 加工余量——根据零件服役条件及加工部位精度要求,该零件主要工作面及尺寸有配合要求的部位是零件中间的连接孔,取加工余量3mm ,其他部位无; 收缩率——球墨铸铁,查表得收缩率为0.8%-1.2%,取ε=1.0% 拔模斜度——便于铸件从型腔中取出,取各处拔模斜度为1° 铸件质量——在增加铸件拔模斜度等工艺参数后计算的铸件体积为 298.4cm2,质量为2.16kg 4 浇注系统设计计算 铁液经球化,孕育处理后,温度下降,易氧化。因此要求浇注系统能大流量输送铁液,又有一定的挡渣能力。故薄壁小型球墨铸铁常用的封闭式浇注方式,它充型速度较快,又有挡渣能力,充型平稳。 用奥赞公式如公式4.1可计算阻流截面积: p L g H ut A 31.0G =∑ Gl 为浇注重量,该铸件质量Gc ≈2.16kg 出品率 %75~60=η,估算Gl=Gc/η≈2.5kg u 浇注系统流量损耗因素,查表得干型中小铸型阻力5.0≈u t 浇注时间 ,由 t=s √Gl 取=t 3s p H 为平均静压力头高度。 该方案可近似认为是中间浇注式,Hp ≈Ho-C/8。 式中C 为零件高度C ≈80cm ,0H 取140mm 得p H =130mm 。 故最小面积: 21335.031.0.5x82411.9cm A g ==???∑

铸造工艺课程设计课程教学改革研究

铸造工艺课程设计课程教学改革研究 结合《铸造工艺课程设计》实践教学的实际教学中存在的问题,采取及时更新工艺设计题目、增设工艺设计方案验证环节、引入任务驱动型自主学习模式、强化教师实践教学能力以及改善考核方法等一系列措施,从而有效提高学生的工程实践能力和自主学习能力,以适应铸造行业对人才的需求。《铸造工艺课程设计》作为材料成型及控制工程专业的重要实践教学环节,其教学目标是能够运用所学铸造理论及工艺设计知识比较系统地学习掌握铸造工艺及工装设计方法,使学生能够制定出比较合理的铸造工艺,并设计出结构合理的工装模具;同时通过课程设计,也使学生进一步提高设计绘图能力、查阅工艺设计资料的基本技能以及分析解决铸造工程实际问题的能力,以满足铸造行业用人需求。然而在《铸造工艺课程设计》实践教学过程中还存在一些不足之处。(1)课程设计题目陈旧且数量较少现有题目陈旧,缺乏时效性,与铸造生产实际脱节,致使学生的专业素质很难达到铸造行业的需求。图纸数量较少,难以满足1人1题,甚至需要多人共用1题或每年重复使用,这就导致存在学生之间相互抄袭或抄袭往届学生作品的现象,不利于培养学生具备独立自主从事铸造工艺设计工作的能力。(2)缺乏工艺验证环节课程设计通常只包括工艺设计、工装设计以及设计说明书的撰写等内容,而不进行实际生产验证,这就导致学生无法判断工艺设计方案的合理性及可行性。(3)教师指导不足通常1名老师指导1个班级的课程设计工作,人数在40人左右,这就导致指导教师无法详细指导每位学生。(4)考核评价机制不够全

面课程考核更侧重于图纸质量以及设计说明书的规范性,而忽略了对设计过程中学生的自主性、创新性及工程实践应用能力的考核与评价。鉴于此,以《铸造工艺课程设计》核心课程建设为契机,本文归纳总结了铸造工艺课程设计实践教学中所采取的的改革与实践方法。 1.及时更新工艺设计题目 铸造工艺课程设计题目要做到推陈出新,以激发学生的设计热情。为此建立了以企业实际在生产零件为主的课程设计零件图纸库,且图纸数量要多于专业人数,且要保证每年有10%以上的题目更新,以保证课程设计与企业生产实际接轨。图纸库的建立与更新由教研室每年定期审核通过,以保证图纸的规范性及零件结构复杂程度适中。课程设计分配设计任务时,保证1人1题,且指导教师要综合考虑所带学生的设计基础差异问题,题目的选择与分配要有难度区分,并在课程设计任务分配时给出明确说明及评分标准。 2.增设工艺设计方案验证环节 本课程增设了工艺设计方案验证环节,有两种不同方式可供学生自主选择。第一种验证方法是引入Procast及AnyCasting等铸造模拟软件对铸件充型、铸造温度场以及铸造缺陷出现的位置和数量等进行模拟分析,进而优化工艺设计方案。模拟仿真环节的引入有利于学生发现和解决工艺设计中存在的问题,使铸造工艺设计更符合铸造生产实际,同时也提高了学生学习与应用软件的能力。第二种验证方法则是按照其工艺设计方案进行实际铸造生产,铸造生产可直接在校内铸造生产实训中心进行,该中心不仅有砂型铸造所需设备及原材料,且

支座铸造工艺课程设计3

2.1 确定零件材料及牌号 零件的支座的零件图如图所示,其轮廓尺寸为Φ80×200×110,平均壁厚30,支座底部需螺栓固定,留有2个螺栓孔,尺寸Φ15,可在铸件完成后切削加工,且有一定的表面精度要求。 支架在铸造过程中,应该选用灰铸铁作为材料。灰铸铁流动性好,易浇注,且收缩率最小,并且随着含碳量的增加而减少,使铸件易于切削加工。采用砂型铸造,简单而且工艺性好。 此铸铁为200×110mm的灰铸铁件,其型号应为HT150。

2.2 铸造方案的拟定 2.2.1 铸型种类的选择 支座零件具有内腔,小孔,圆角,凸台以及锥角,形状较为复杂,表面质量无特殊要求,最大轮廓尺寸为200mm,应选用砂型铸造成形。又采用小批量生产,所以铸件类型应使用湿砂型铸造。这样灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等。模样采用金属模是合理的。 2.2.2 画出零件图 图2 零件图

2.3 分型面的确定 2.3.1分型选择原则 分型面是指两半铸型相互接触的表面。分型面的优劣在很大程度上影响铸件的尺寸精度、成本和生产率。应满足以下要求 1.应使铸件全部或大部分置于同一半型内 2.应尽量减少分型面的数目 3.分型面应尽量选用平面 4.便于下芯、合箱和检测 5.不使砂箱过高 6.受力件的分型面的选择不应削弱铸件结构强度 7.注意减轻铸件清理和机械加工量 2.3.2 几种分型方案 初步对支座进行分析,有以下四种方案Ⅰ,Ⅱ,Ⅲ,Ⅳ,如图3所示

图3 分型方案图 2.3.3 分析各个方案的优缺点 Ⅰ方案以支架的底面为分型面在分型面少而平的原则中,其分型面数量不仅少而且还平直,铸件全部放在下型,既便于型芯安放和检查,又可以使上型高度减低而便于合箱和检验壁厚,还有利于起摸及翻箱操作。 Ⅱ方案铸件没有能尽可能的位于同一半型内,这样会因为合箱对准误差使铸件产生偏错。也有可能因为合箱不严在垂直面上增加铸件尺寸。

铸造工艺设计说明书

铸造工艺设计说明书 课程设计:机械工艺课程设计 设计题目:底座铸造工艺设计 班级:机自1103 设计人: 学号: 指导教师:张锁梅、贾志新

前言 学生通过设计能获得综合运用过去所学过的全部课程进行机械制造工艺及结构设计的基本能力,为以后做好毕业设计、走上工作岗位进行一次综合训练和准备。它要求学生全面地综合运用本课程及有关选修课程的理论和实践知识,进行零件加工工艺规程的设计和机床夹具的设计。其目的是: (1)培养学生综合运用机械制造工程原理课程及专业课程的理论知识,结合金工实习、生产实习中学到的实践知识,独立地分析和解决机械加工工艺问题,初步具备设计中等复杂程度零件工艺规程的能力。 (2)培养学生能根据被加工零件的技术要求,运用夹具设计的基本原理和方法,学会拟订夹具设计方案,完成夹具结构设计,进一步提高结构设计能力。 (3)培养学生熟悉并运用有关手册、图表、规范等有关技术资料的能力。 (4)进一步培养学生识图、制图、运算和编写技术文件的基本技能。 (5)培养学生独立思考和独立工作的能力,为毕业后走向社会从事相关技术工作打下良好的基础。

目录 一、工艺审核 (1) 1.数量与材料 (1) 2.图样 (1) 3.零件的结构性 (1) 二、成形工艺设计 (1) 1.确定工艺方案 (1) (1)浇注位置的选择 (2) (2)分型面的选择 (2) 2.确定铸造工艺参数 (4) (1)机械加工余量和铸出孔 (4) (2)浇注位置的选择 (5) (3)拔模斜度 (5) (4)铸造收缩率 (6) 3.砂芯设计 (6) 4.浇注系统的设计 (6) 5. 冷铁的设置 (6) 三、心得体会 (7)

支座铸造工艺课程设计-2

热加工工艺课程设计支座铸造工艺设计 院系:工学院机械系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 指导老师: 时间:

黄河科技学院课程设计任务书 工学院机械系机械设计制造及其自动化专业 2011级 1班 学号姓名指导教师 设计题目: 支座铸造工艺设计 课程名称:热加工工艺课程设计 课程设计时间:5 月 22 日至 6 月 6 日共 2 周 课程设计工作内容与基本要求(已知技术参数、设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1、已知技术参数 图1 支座零件图 2、设计任务与要求 1)设计任务 1 选择零件的铸型种类,并选择零件的材料牌号。 2 分析零件的结构,找出几种分型方案,并分别用符号标出。 3 从保证质量和简化工艺两方面进行分析比较,选出最佳分型方案,标出浇注位 置和造型方法。 4 画出零件的铸造工艺图(图上标出最佳浇注位置与分型面位置、画出机加工余 量、起模斜度、铸造圆角、型芯及型芯头,图下注明收缩量) 5 绘制出铸件图。

2)设计要求 1设计图样一律按工程制图要求,采用手绘或机绘完成,并用三号图纸出图。 2 按所设计内容及相应顺序要求,认真编写说明书(不少于3000字)。 3、工作计划 熟悉设计题目,查阅资料,做准备工作 1天 确定铸造工艺方案 1天 工艺设计和工艺计算 2天 绘制铸件铸造工艺图 1天 确定铸件铸造工艺步骤 2天 编写设计说明书 3天 答辩 1天 4.主要参考资料 《热加工工艺基础》、《金属成形工艺设计》、《机械设计手册》 系主任审批意见: 审批人签名: 时间:2013年月日

支座铸造工艺设计 摘要 铸造是指将液态金属或合金浇注到与零件尺寸、形状相适应的铸型型腔里,待其冷却凝固后获得毛坯或零件的方法。铸造成形是机械类零件和毛坯成形的重要工艺方法之一,尤以适合于制造内腔和外形复杂的毛坯或零件。 本文主要分析了支座的结构,并根据其结构特点确定了它的砂型铸造工艺。支座是支撑其他零部件的重要承力零件,主要承受着径向压缩及轴向摩擦的作用,它具有结构稳定、形状简单、廉价实用等特点,故在机械零件的设计、加工制造中支座都起着不可替代的作用。 本文设计了支座的砂型铸造工艺,包括铸型(型芯)及造型方法的选择、分型面选择和浇注位置的确定、浇注系统及冒口的设置、落砂清理及检验等。绘制了铸件的零件图及铸造工艺图。本文还对支座的铸造质量指标(包括加工余量、拔模斜度、收缩率及变形等)进行了分析与评估,以便于工艺更好的完善。 关键词:砂型铸造,浇注,加工余量,拔模斜度,收缩率

铸造工艺设计说明书

目录 一、工艺分析 (1) 1、审阅零件图 (1) 2、零件的技术要求 (1) 3、零件的技术要求 (1) 4、确定毛坯的具体生产方法 (1) 5、审查铸件的结构工艺性 (1) 二、工艺方案的确定 (1) 1、铸造方法的选择 (1) 2、造型、造芯方法的选择 (2) 3、浇注位置的确定 (2) 4、确定毛坯的具体生产方法 (2) 5、砂箱中铸件数目的确定 (2) 三、砂芯设计 (2) 1、水平砂芯设计 (3) 2、凹槽处采用自带型芯 (3) 四、工艺参数的确定 (3) 1. 加工余量 (3) 2.起模斜度 (4) 3. 铸造圆角 (4) 4. 铸造收缩率 (4) 5. 最小铸出孔 (4) 6、机械加工余量的选取 (4) 五、浇注系统设计 (4) 六、冒口及冷铁设计 (5) 七、铸造工艺图和铸件图 (6) 八、小结 (7) 九、参考文献 (8)

一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 套筒座 工艺方法:铸造 零件材料:HT250 零件重量:3.1955kg 毛坯重量:4.3303kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:未铸造圆角半径:R=2~3 mm;时效处理。 3、选材的合理性 套筒座选用的材料是HT250,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,选择材料HT250可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属中型零件小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造,采用砂型铸造具有生产周期短,灵活性大、成本低的优点。 5、审查铸件的结构工艺性 铸件轮廓尺寸为162x134x133mm,查表得砂型铸造的最小壁厚为6mm,套筒座的壁厚符合其要求。在套筒座中最小壁厚为6mm,最大铸造壁厚为15mm。 二、工艺方案的确定 1、铸造方法的选择 由于套筒座的年产量为100件,属小批量生产,且零件结构简单,所以确定毛坯的生产方法为砂型铸造,由于铸件的高度为133mm,浇注位置上没有较大的壁厚、材料为HT250不需要冷铁。所以砂型种类为湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。

铸造工艺学课程设计案例

前言 铸造工艺学课程就是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法与步骤以及掌握铸造工艺与工装设计的基本技能的一门主要专业课。课程设计则就是铸造工艺学课程的实践性教学环节,同时也就是我们铸造专业迎来的第一次全面的自主进行工艺与工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点: 通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程与其她先修课程的的理论与实际知识去分析与解决实际问题的能力。 通过制定与合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺与工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析与解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量与尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料与手册等。 目录 第一章零件铸造工艺分析 (4) 1、1零件基本信息 (4) 1、2材料成分要求 (4) 1、3铸造工艺参数的确定 (4) 1、3、1铸造尺寸公差与重量公差 (5) 1、3、2机械加工余量 (5) 1、3、3铸造收缩率 (5) 1、3、4拔模斜度 (5) 1、4其她工艺参数的确定 (5) 1、4、1工艺补正量 (5) 1、4、2分型负数 (5) 1、4、3非加工壁厚的负余量 (5)

端盖零件铸造工艺课程设计说明书

课程设计说明书(论文)课程名称:成型工艺及模具课程设计II 设计题目:端盖零件铸造工艺设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间:

1、设计任务 1.1、设计零件的铸造工艺图 1.2、设计绘制模板装配图 1.3、设计并绘制所需芯盒装配图 1.4、编写铸造工艺设计说明书 2、生产条件和技术要求 2.1、生产性质:大批量生产 2.2、材料:HT200 2.3、零件加工方法: 零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。 造型方法:机器造型 造芯方法:手工制芯 2.4、主要技术要求: 满足HT200的机械性能要求,去毛刺及锐边,未注明圆角为R3-R5,未注明的筋和壁厚为8,铸造拔模斜度不大于2度,铸造表面不允取有缺陷。 3、零件图及立体图结构分析 3.1、零件图如下: 图1.零件主视图图2.零件左视图 3.2三维立体图如下: 图3.三维图(1) 图4.三维图(2) 4、工艺设计过程 4.1、铸造工艺设计方法及分析 4.1.1铸件壁厚 为了避免浇不到、冷隔等缺陷,铸件不应太薄。铸件的最小允许壁厚与铸造的流动性密切相关。在普通砂型铸造的条件下,铸件最小允许壁厚见表1。 表1. 铸件最小允许壁厚引【1,表1-3】

查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。 4.1.2造型、制芯方法 造型方法:该零件需批量生产,为中小型铸件,应创造条件采用技术先进的机器造型,暂选取水平分型顶杆范围可调节的造型机,型号为Z145A。 制芯方法:由生产条件决定,采用手工制芯。 4.1.3砂箱中铸件数目的确定 当铸件的造型方法、浇注位置和分型面确定后,应当初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。 本铸件在一砂箱中高约52mm,长约130mm,宽约100mm,重约2.75Kg。这里选用一箱四件,根据本铸件分型面的确定,可以先确定下箱的尺寸。根据铸件重量在<5kg时,查得模型的最小吃砂量a=20mm, h=30mm, c=40mm,d或e=30mm, f=30mm, g=200mm,其中各字母所代表的含义如图5所示。先确定下箱的尺寸,再根据表格可以选择标准的砂箱。选用Z145A顶杆式起模的震实式造型机,砂箱最大内尺寸为500mm X 400mm X 300mm。根据本铸件的大概尺寸,在设计中采用一箱四件,因为浇注系统位于上箱,所以上砂箱的高度我们还要考虑到浇注系统才可以确定。铸件在砂箱中的放置方式初步设计为图6所示方式。 图5. 最小吃砂量示意图图6. 铸件排布的初步设计 4.2、铸造工艺参数的确定 4.2.1铸件尺寸公差和重量公差 在实际生产中,铸件的实际尺寸和重量与设计图纸所规定的尺寸和重量相比,总会有一些偏差,这种偏差愈小,铸件的精度也愈高。但铸造过程中影响铸件精度的因素很多,如铸造收缩率等工艺参数的选择,分型面、浇冒口系统和砂芯的设计,造型和制芯的工艺操作以及工艺装备本身的精度等。如果其中某个因素处理不当,就会降低铸件的精度。也不应该不顾铸件的要求和具体生产条件,盲目提高对铸件的精度要求,否则会导致铸件成本的提高和使工艺复杂化,造成不必要的浪费。二级精度灰铸铁铸件的尺寸偏差如表2所示,重量偏差如表3所示。

铸造工艺学课程设计案例

前言 铸造工艺学课程是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法和步骤以及掌握铸造工艺和工装设计的基本技能的一门主要专业课。课程设计则是铸造工艺学课程的实践性教学环节,同时也是我们铸造专业迎来的第一次全面的自主进行工艺和工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点:通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程和其他先修课程的的理论与实际知识去分析和解决实际问题的能力。 通过制定和合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺和工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析和解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量和尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料和手册等。

目录 零件铸造工艺分析 (4) 零件基本信息 (4) 材料成分要求 (4) 铸造工艺参数的确定 (4) 铸造尺寸公差和重量公差 (5) 机械加工余量 (5) 铸造收缩率 (5) 拔模斜度 (5) 其他工艺参数的确定 (5) 工艺补正量 (5) 分型负数 (5) 非加工壁厚的负余量 (5) 反变形量 (5) 分芯负数 (6) 铸造三维实体造型 (6) 上冠件图纸技术要求 (6) 上冠件结构工艺分析 (6) 基于UG零件的三维造型 (6) 软件简介 (6) 零件的三维造型图 (6) 第三章铸造工艺方案设计 (7) 工艺方案的确定 (7) 铸造方法 (7) 型(芯)砂配比 (8) 混砂工艺 (8) 铸造用涂料、分型剂及修补材料 (8) 铸造熔炼 (8) 熔炼设备 (9) 熔炼工艺 (9) 分型面的选择 (9) 砂箱大小及砂箱中铸件数目的确定 (10) 砂芯设计及排气 (11) 芯头的基本尺寸 (11) 芯撑、芯骨的设计 (12) 砂芯的排气 (12) 第四章浇冒系统的设计及计算 (12) 浇注系统的类型及选择 (12) 浇注位置的选择 (12)

铸造工艺设计说明书(1)

材料成型过程控制 院系:材料科学与工程学院 专业:材料成型与控制工程 姓名: 学号: 指导老师: 日期:2012.9.19至2012.10.15

目录 一、铸造工艺分析 (1) 二、砂芯设计 (3) 三、冒口设计 (5) 四、浇注系统的设计及计算 (7) 五、沙箱铸件数量的确定 (10) 六、参考数目、资料 (11)

图1所示的事U型座,主要用于拆卸主轴上的皮带轮。 材料为ZG25(主要元素含量:W C%=0.22~0.32%,W Mn%=0.5~0.8%,W Si%=0.2~0.45%)。 技术要求:①未标示的铸造圆角半径R=3~5。②未标铸造倾斜度按工厂规格H59~21。③铸件应仔细地清理去掉毛刺及不平处。 图1

一、铸造工艺分析 1.确定铸型种类和造型、制芯方法 此铸件是铸钢件,铸件最大三维尺寸270x110x220 mm,为中小型铸件,铸件结构简单,仅有两个加工面,其他非加工面表面光洁度要求不高,采用温型普通机器造型,砂芯外形简单,采用热芯盒射芯机制芯。 2.确定浇注位置和分型面 方案1:将铸件放置于下箱,分型面选取如图2所示,采用顶注式浇注,此方案浇注系统简单,不用翻箱操作;但是浇注时金属液对型腔冲刷力大,难以下芯,不便设置冒口进行补缩。容易产生夹砂、结疤类缺陷,补缩困难会形成缩孔、缩松结晶等缺陷。 方案2:将铸件放于上箱,分型面选取如图3所示,采用底注式浇注,此方案浇注系统相对复杂,下芯方便,可以将冒口设计在顶部,补缩效果好。 综合以上两种方案考虑,选择方案2较为合理。 图2 图3 铸件全部位于上箱,下表面为分型面 上 下 上 下

铸造工艺学课程设计

铸造工艺学课程设计

题目:工艺学课程设计 学院: 专业:材料成型机控制工程班级: 学号: 姓名: 指导老师:

前言 铸造工艺学课程是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法和步骤以及掌握铸造工艺和工装设计的基本技能的一门主要专业课。课程设计则是铸造工艺学课程的实践性教学环节,同时也是我们铸造专业迎来的第一次全面的自主进行工艺和工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点: 通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程和其他先修课程的的理论与实际知识去分析和解决实际问题的能力。 通过制定和合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺和工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析和解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量和尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料和手册等。 目录 1

第一章零件铸造工艺分析 (4) 1.1零件基本信息 (4) 1.2材料成分要求 (4) 1.3铸造工艺参数的确定 (4) 1.3.1铸造尺寸公差和重量公差 (5) 1.3.2机械加工余量 (5) 1.3.3铸造收缩率 (5) 1.3.4拔模斜度 (5) 1.4其他工艺参数的确定 (5) 1.4.1工艺补正量 (5) 1.4.2分型负数 (5) 1.4.3非加工壁厚的负余量 (5) 1.4.4反变形量 (5) 1.4.5分芯负数 (6) 第二章铸造三维实体造型 (6) 2.1上冠件图纸技术要求 (6) 2.2上冠件结构工艺分析 (6) 2.3基于UG零件的三维造型 (6) 2.3.1软件简介 (6) 2.3.2零件的三维造型图 (6) 第三章铸造工艺方案设计 (7) 3.1工艺方案的确定 (7) 3.1.1铸造方法 (7) 3.1.2型(芯)砂配比 (8) 3.1.3混砂工艺 (8) 3.1.4铸造用涂料、分型剂及修补材料 (8) 3.2铸造熔炼 (8) 3.2.1熔炼设备 (9) 3.2.2熔炼工艺 (9) 3.3分型面的选择 (9) 3.4砂箱大小及砂箱中铸件数目的确定 (10) 3.5砂芯设计及排气 (11) 3.5.1芯头的基本尺寸 (11) 3.5.2芯撑、芯骨的设计 (12) 3.5.3砂芯的排气 (12) 第四章浇冒系统的设计及计算 (12) 4.1浇注系统的类型及选择 (12) 4.2浇注位置的选择 (12) 2

铸造工艺总汇-砂型铸造工艺设计

图1 流涂装置示意图 1一泄流阀, 2一涂料罐, 3一电动机, 4一搅拌杆, 5一滤网, 6一回收槽 7一砂型, 8一流涂杆头, 9一控制开关, 10一软管, 11一泵 5)静电喷涂法采用粉末涂料,借高压直流电形成强大静电场使粉末涂料微粒在喷枪头部的电晕放电区带电,在电场力和风力作用下向异极性砂芯(型)表面迅速集积成涂层,然后加热使涂料中粘结剂软化重熔建立涂层强度。此法适用于尺寸较狭小的凹坑或狭缝不易徐敷上涂料的场合。 3.6 工艺分析与设计(工艺分析与参数查询) 3.6.1浇注位置的确定 根据对合金凝固理论的研究和生产经验,确定浇注位置时应考虑以下原则: 1.铸件的重要部分应尽量置于下部。 2.重要加工面应朝下或呈直立状态。 3. 使铸件的大平面朝下,避免夹砂结疤类缺陷。 对于大的平板类铸件,可采用倾斜浇注,以便增大金属液面的上升速度,防止夹砂结疤类缺陷(见图1、2)。倾斜浇注时,依砂箱大小,H值一般控制在200~400mm范围内。 图1具有大平面的铸件正确的浇注位置图2 大平板类铸件的倾斜浇注 4.应保证铸件能充满。 对具有薄壁部分的铸件,应把薄壁部分放在下半部或置于内浇道以下,以免出现浇不到、冷却等缺陷。图3为曲轴箱的浇注位置。

5.应有利于铸件的补缩。 6. 避免用吊砂、吊芯或悬臂式砂芯,便于下芯、合箱及检验。 7. 应使合箱位置、浇注位置和铸件冷却位置相一致这样可避免变合箱后或于浇注后再次翻转铸型。 此外,应注意浇注位置、冷却位置与生产批量密切相关。 图 3 曲轴箱的浇注位置 a)不正确b)正确 3.6.2 分型面的选择 分型面是指两半铸型相互接触的表面。除了地面软床造型、明浇的小件和实型铸造法以外,都要选择分型面。 分型面一般在确定浇注位置后再选择。但分析各种分型面方案的优劣之后,可能需重新调整浇注位置。生产中,浇注位置和分型面有时是同时确定的。分型面的优劣,在很大程度上影响铸件的尺寸精度、成本和生产率。应仔细地分析、对比,慎重选择。 分型面的选择原则如下: 1. 应使铸件全部或大部分置于同一半型内; 2. 应尽量减少分型面的数目; 分型面数目少,铸件精度容易保证,且砂箱数目少。 3. 分型面尽量选用平面; 平直分型面可简化造型过程和模底版制造,易于保证铸件精度。 4. 便于下芯、合箱和检查型腔尺寸; 5. 不使砂箱过高; 分型面通常选在铸件最大截面上,以使砂箱不致过高。 6. 受力件的分型面选择不应削弱铸件结构强度; 7. 注意减轻铸件清理和机械加工量。 一个铸件应以哪几项原则为主来选择分型面,需要进行多方案的对比,根据实际生产条件,并结合经验来作出正确的判断,最后选出最佳方案。 3.6.3浇注系统设计(浇注系统设计参数查询) 浇注系统是铸型中液态金属流入型腔的通道之总称。铸铁件浇注系统的典型结构如图4所示,它由浇口杯(外浇口)、直浇道、直浇道窝、横浇道和内浇道等部分组成。广义地说,浇包和浇注设备也可认为是浇注系统的组成部分,浇注设备的结构、尺寸、位置高低等,对浇注系统的设计和计算有一定影响;此外,出气孔也可看成是浇注系统的组成部分。

铸造工艺设计基础

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 合金种类铸件最大轮廓尺寸为下列值时/㎜ ﹤200200-400400-800800-12501250-2000﹥ 2000 碳素铸钢 低合金钢 高锰钢 不锈钢、耐热钢灰铸铁 孕育铸铁 (HT300以上)球墨铸铁8 8-9 8-9 8-11 3-4 5-6 3-4 9 9-10 10 10-12 4-5 6-8 4-8 11 12 12 12-16 5-6 8-10 8-10 14 16 16 16-20 6-8 10-12 10-12 16~18 20 20 20-25 8-10 12-16 12-14 20 25 25 - 10-12 16-20 14-16铸件最大轮廓为下列值时mm

端盖铸造工艺设计说明

科技大学 课程设计 课程设计名称:端盖铸造工艺设计学生姓名: 学院: 专业及班级: 学号: 指导教师: 2015 年7 月7 日

铸造工艺课程设计任务书 一、任务与要求 1.完成产品零件图、铸件铸造工艺图各一,铸造工艺图需要三维建模(完成3D图)。 2.完成芯盒装配图一。 3.完成铸型装配图一。 4. 编写设计说明书一份(15~20页),并将任务书及任务图放置首页。 二、设计容为2周 1. 绘制产品零件图、铸造工艺图及工艺图的3D图(2天)。 2. 铸造工艺方案设计:确定浇注位置及分型面,确定加工余量、起模斜度、铸造圆角、收缩率,确定型芯、芯头间隙尺寸。(1天)。 3. 绘制芯盒装配图(1天)。 4. 绘制铸型装配图、即合箱图(包括流道计算共2天)。 5. 编制设计说明书(4天)。 三、主要参考资料 1. 亮峰主编,材料成形技术基础[M],高等教育,2011. 2. 丁根宝主编,铸造工艺学上册[M] ,机械工业,1985. 3. 铸造手册编委会,铸造手册:第五卷[M] ,机械工业,1996. 4. 其文主编, 材料成形工艺基础(第三版)[M],华中科技大学,2003.

摘要 本设计是端盖的铸造工艺设计。端盖的材料为QT400-15,结构简单,无复杂的型腔。根据端盖的零件图进行铸造工艺性分析,选择分型面,确定浇注位置、造型、造芯方法、铸造工艺参数并进行浇注系统、冒口和型芯的设计。在确定铸造工艺的基础上,设计模样、芯盒和砂箱,并利用CAD、Pro/E等设计软件绘制端盖零件图、芯盒装配图。 关键词:铸造;端盖;型芯

ABSTRACT This design is about the casting process of end cap. The material of end cap is QT400-15. The end cap without complex cavity owns simple structures. Select the right parting line, pouring position, modeling method ,core making method, parameters of casting by analyzing the part drawing, then design gating system, riser, core. After the design of casting process, accomplish the part drawing of end cap and assembly drawing of core box with the aid of design software such as CAD and Pro/E. Keywords:Cast; End cap; Core

昆明理工大学-扁叉铸造工艺设计说明书

扁叉铸造工艺设计说明书 一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 扁叉 工艺方法:铸造 零件材料:HT150 零件重量:0.4066kg 毛坯重量:0.6720kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:铸造圆角半径不得超过1mm;在铸造时不允许有气孔、砂眼、缩孔、缩松和夹杂等缺陷;铸件应进行时效处理;铸件应进行清理,保证表面平整;零件加工完后所有棱边应去除毛刺;不加工表面先涂以防锈漆,再涂以绿色油漆。 3、选材的合理性 扁叉选用的材料是HT150,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,又是中等静载,选择材料HT150可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造。 5、审查铸件的结构工艺性 铸件轮廓尺寸为159*59.5*24,查表得砂型铸造的最小壁厚为6mm,扁叉的壁厚符合其要求。铸件质量为0.6720kg,材料为HT150,查表得砂型铸造铸件的临界壁厚为

18mm。壁厚越大,圆角尺寸也相应增大。 二、工艺方案的确定 1、铸造方法的选择 由于扁叉的年产量为100件,属小批量生产,且零件结构简单,所以确定毛坯的生产方法为砂型铸造,砂型种类为湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。 3、浇注位置的确定 根据计算机辅助铸造工艺设计中关于浇注位置的确定原则(浇注位置应选在铸件最大截面处,应使合箱位置、浇注位置和位置相一政),所以确定浇注位置为铸件中间对称的最大截面--此截面为最大截面、上下对称、且便于充型和起模。 4、分型面的确定 根据计算机辅助铸造工艺设计中关于分型面的确定原则(分型面应选在铸件最大截面处;分型面应尽量选用平面),所以确定分型面为铸件中间对称的最大截面--以便于起模、下芯和检验;分模面与分型面一致。 5、砂箱中铸件数目的确定 扁叉的重量为0.6720 kg,"铸件质量"选择≤5kg,对应的"砂箱尺寸"为"≤ 400mm","最小吃砂量"分别为"a=20mm,b=30mm,c=40mm,d或e=30mm,f=30mm,g=20mm"。铸件本身的尺寸为159*59.5*24mm,因此在"400mm"的砂箱中只能放置二个铸件(如图所示)(注:砂箱尺寸=(A+B)/2, A、B分别为砂箱内框长宽及宽度)。

相关文档
相关文档 最新文档