文档库 最新最全的文档下载
当前位置:文档库 › 探讨基坑抗隆起稳定性验算

探讨基坑抗隆起稳定性验算

探讨基坑抗隆起稳定性验算
探讨基坑抗隆起稳定性验算

探讨基坑抗隆起稳定性验算

张耀年(福建省建筑科学研究院, 福州, 350025)

[摘要] 本文探讨新颁布规范中基坑抗隆起稳定性验算的方法和规定。 [关键词] 基坑,抗隆起稳定性,地基极限承载力模式,圆弧滑动模式

Discussion on Basal Stability Analysis against Upheaval in Excavation

Abstract: The method and regulation of new issued building code for basal stability against upheaval in excavation are discussed. Keywords: Excavation, basal stability against upheaval, the ultimate bearing capacity method, circle slip method

1 前言

基坑抗隆起稳定性验算是基坑支护设计中一项重要的内容,我国现行建筑规范中基坑抗隆起稳定性验算主要采用两种分析模式:地基极限承载力模式和圆弧滑动模式。近三十年来,大量的基坑工程实践使支护结构设计日臻完善,新修订的基坑支护设计规范反映了基坑工程实践中积累的经验。基坑支护结构设计具有很强的地区性,我国地域辽阔,各地工程地质的差异较大,因此,各行业和各地方的规范对基坑支护结构设计的方法和规定都稍有差别。本文对2000年以后新修订的基坑支护设计规范中隆起稳定性验算的方法和规定作一点分析和比较,因为,在使用新规范的设计过程中大家发现在软土地基中抗隆起稳定性验算是基坑支护结构设计的控制因素。 2 国标《建筑地基基础设计规范》

在国标《建筑地基基础设计规范》(GB50007-2012) (以下简称规范A )中,基坑抗隆起稳定性验算采用地基极限承载力和圆弧滑动两种模式,极限承载力模式的计算简图如图1所示:

q

图1 规范A 极限承载力模式的计算简图 基坑底下部土体的强度稳定性应满足下式规定:

q

D H D N K +++=

)(0C D γγτ 式中:K D ——抗隆起稳定安全系数,K D ≥1.6;

N C ——承载力系数,N C =5.14; τ0——由十字板试验确定的总强度; γ——土的重度;

D ——支护结构入土深度; H ——基坑开挖深度;

q ——地面荷载。

圆弧滑动模式的计算简图如图2所示:

基坑底下部土体的强度稳定性应满足下式规定:

2

/)(20

0p D D H q td M K γθτπ

++=

?

式中:M p ——支护桩、墙横截面抗弯强度标准值;

K D ——抗隆起稳定安全系数,K D ≥1.4。 规范A 中基坑抗隆起稳定性验算方法与《建筑基坑工程

技术规范》(YB9258-97) 的计算方法完全相同, 只是稳定安全系数稍有提高,原稳定安全系数分别为1.4和1.3。

图2 规范A 圆弧滑动模式的计算简图

3 建设部《建筑基坑支护技术规程》

在新颁布的建设部行规《建筑基坑支护技术规程》(JGJ120-2012)(以下简称规范B )中,基坑抗隆起稳定性验算

式验算:

b m c

q m K q D h cN DN ≥+++0

12)(γγ

?π?tan 2)2/45(e tg N q +=? ?tan /)1(-=q c N N

式中:K b ──抗隆起安全系数;

γm1——基坑外挡土构件底面以上土的重度; γm2——基坑内挡土构件底面以上土的重度; D ——基坑底面至挡土构件底面的土层厚度; h ──基坑开挖深度; q 0──地面均布荷载;

N c 、N q ——承载力系数;

c 、?──挡土构件底面以下土的粘聚力、内摩擦角。 安全等级为一级、二级、三级的支护结构,抗隆起安全系数K b 分别不应小于1.8、1.6、1.4;

规范B 还规定:锚拉式支挡结构和支撑式支挡结构,当坑底以下为软土时, 其嵌固深度应符合以最下层支点为转动轴心的圆弧滑动稳定性要求(本规程报批稿电子文档这段文字是这样表述的:尚应以最下层支点为转动轴心的圆弧滑动模式按下列公式验算抗隆起稳定性):

()[]()r

j

j j

j

j j j j j j

j K

G b

q G b

q l c ≥?+?++∑∑θ?θsin tan cos

式中:K r ──以最下层支点为轴心的圆弧滑动稳定安全系数;

c j 、?j ──第j 土条在滑弧面处土的粘聚力、内摩擦角; l j ──第j 土条的滑弧段长度,取l j =b j /cos θj ; q j ──作用在第j 土条上的附加分布荷载标准值; b j ──第j 土条的宽度;

θj ──第j 土条滑弧面中点处的法线与垂直面的夹角;

ΔG j ──第j 土条的自重(kN),按天然重度。

安全等级为一级、二级、三级的支挡式结构,抗隆起安全系数K r 分别不应小于2.2、1.9、1.7。

圆弧滑动模式的计算简图如图4所示:

图4 规范B 圆弧滑动模式的计算简图

4 上海市《基坑工程技术规范》

上海市《基坑工程技术规范》(DG T J08-61-2010 ) (以下简称规范C )基坑抗隆起稳定性验算采用地基极限承载力和圆弧滑动两种模式,极限承载力模式的计算方法与规范B 基本相似,但对于安全等级为一级、二级、三级的支护结构规定:稳定安全系数γRL 分别不应小于2.5、2.0、1.7。

规范C 圆弧滑动模式的计算简图如图5所示:

规范C 规定:板式支护体系按圆弧滑动模式验算绕最下道内支撑点的抗隆起稳定性时,应符合下列公式要求:

s RLK SLK

RL

M M γγ≤

3

2

1

1

n n RLK sk RLkj RLkm j m M M M M ===++∑∑

14

1

1

n n SLK SLkq SLki SLkj i j M M M M ===++∑∑

式中:γRL ──抗隆起安全系数;

M RLK ──抗隆起力矩标准值 M SLK ──隆起力矩标准值

M sk ──围护墙的容许力矩标准值

M RLkj ──坑外最下道支撑以下第j 层土产生的抗隆起力矩

标准值

M RLkm ──坑内开挖面以下第m 层土产生的抗隆起力矩标

准值

M SLkq ──坑外地面荷载产生的隆起力矩标准值

M SLki ──坑外最下道支撑以上第i 层土产生的隆起力矩标

准值 M SLkj ──坑外最下道支撑以下、开挖面以上第j 层土产生的隆起力矩标准值

规范C 规定:安全等级为一级、二级、三级的支挡式结构,抗隆起安全系数γRL 分别不应小于2.2、1.9、1.7。

图5 规范C 圆弧滑动模式的计算简图

5上海市《城市轨道交通设计规范》

上海市《城市轨道交通设计规范》(沪DBJ08-109-2004) (以下简称规范D )的基坑抗隆起稳定性验算仅采用圆弧滑动一种模式。其计算简图如图6所示:

图6 规范D 的计算简图

规范D 规定:板式支护体系按圆弧滑动模式验算绕最下道内支撑点的抗隆起稳定性:

s

r s M M K =

抗滑力矩:

h k

n n r r r M M M M ++=∑=1

滑动力矩:

2/)(20D q h M s +=γ

式中:K s ──抗隆起安全系数;

0r M ──坑外最下道支撑以上土层产生的抗滑力矩;

∑=k

n n

r M

1

j ──坑外最下道支撑以下土层产生的抗滑力矩;

M h ──围护墙的容许力矩。

规范D规定:安全等级为一级、二级、三级的支挡式结构,抗隆起安全系数

s

K分别不应小于2.2、2.0、1.8。

6 规范B、规范C和规范D的比较

上海市由于其地理位置和经济地位集中了我国许多最大、最深的基坑工程,上海的基坑开挖支护技术基本上反映了我国基坑工程的最高水准,上海市的基坑支护设计规范对我国沿海地区的软土地基基坑开挖支护工程具有示范作用。表1以规范B、规范C和规范D为例,对计算特征和稳定安全系数作一比较。

表1 规范B、规范C和规范D的比较

①由OK段上覆压力产生的滑动力矩,

②KCGO区域内土体自重产生的滑动力矩,

③CEG区域内土体自重产生的滑动力矩。

、围护墙的容许力矩,

、EFG区域内土体自重产生的抗滑动力矩,

(与滑动力矩的第③项相抵消)

、滑动面FECK上抗剪强度产生的抗滑动

力矩。

按圆弧滑动模式的抗隆起稳定性验算时,规范B和规范C产生的滑动力矩的项完全相同,稳定安全系数也完全相同。但是,《规范B》产生的抗滑动力矩的项忽略了:①围护墙的容许力矩,②EFG区域内土体自重产生的抗滑动力矩,和③滑动面FE上抗剪强度产生的抗滑动力矩。所以,与《规范C》相比较,《规范B》按圆弧滑动模式的抗隆起稳定性验算结果偏于安全。

对于按极限承载力模式的抗隆起稳定性验算,情况则恰恰相反。由于两本规范的计算公式完全相同,而《规范C》的稳定安全系数比《规范B》要大的多,所以,按极限承载力模式《规范C》的抗隆起稳定性验算结果偏于安全。

按圆弧滑动模式的抗隆起稳定性验算时,规范C和规范D产生的滑动力矩的项完全相同,稳定安全系数也基本相同。但是,《规范D》的抗滑动力矩多了一项,即滑动面IK上抗剪强度产生的抗滑动力矩。所以,与《规范D》相比较,《规范C》抗隆起稳定性验算结果偏于安全。

在软土中,抗隆起稳定性验算以圆弧滑动模式为主,因此,按安全度大小比较:规范B>规范C>规范D,基坑支护结构是施工临时设施,安全度大的设计并不一定是最优的设计。

7 其他一部分省市的地方规范

2000年以后新修订的地方基坑支护设计规范还有:

1)北京市《建筑基坑支护技术规程》(DB11/489-2007)基坑抗隆起稳定性验算仅采用地基极限承载力一种模式,计算方法与规范B 基本相似,这可能因为北京地区没有软土,稳定安全系数为1.6。2)浙江省标准《建筑基坑工程技术规程》(DB33/T1008-2010),其基坑抗隆起稳定性验算采用地基极限承载力和圆弧滑动两种模式,稳定安全系数分别为2.0和1.6, 地基极限承载力模式的计算方法与规范B基本相似,而圆弧滑动模式的计算方法与规范A基本相似,围护墙最下道支撑位置作为圆弧滑动的圆心。

3)天津市《建筑基坑工程技术规程》(DB29-202-2010),其基坑抗隆起稳定性验算采用地基极限承载力和圆弧滑动两种模式,计算方法与规范A基本相似,稳定安全系数均为不小于1.4。

4)深圳市《基坑支护技术规范》(SJG05-2011),其基坑抗隆起稳定性验算采用地基极限承载力和圆弧滑动两种模式,稳定安全系数分别为1.2和1.4 地基极限承载力模式的计算方法与规范B基本相似,而圆弧滑动模式的计算方法与规范A基本相似。

5)成都地区《基坑工程安全技术规范》(DB51T5072-2011)基坑抗隆起稳定性验算仅采用圆弧滑动一种模式,稳定安全系数为1.3。6)《合肥市深基坑开挖与支护技术实施细则》(2009)基坑抗隆起稳定性验算仅采用地基极限承载力一种模式,计算方法与规范B基本相似,稳定安全系数为不小于2.0。

8 小结

建设部行规《建筑基坑支护技术规程》(JGJ120-2012)对基坑抗隆起稳定性验算是最严格、安全度最高。

上海市《基坑工程技术规范》(DG T J08-61-2010 ) 基坑抗隆起稳定性验算方法最严谨,公式也最复杂。

9 说明

本文引用的规范大多为电子文挡,可能与正式颁布的文本在文字表述上有出入,特此说明。

基坑稳定性验算

第4章基坑的稳定性验算 4.1概述 在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。所以在进行支护设计时,需要验算基坑稳定性,必要时应采取适当的加强防范措施,使地基的稳定性具有一定的安全度。 4.2 验算内容 对有支护的基坑全面地进行基坑稳定性分析和验算,是基坑工程设计的重要环节之一。目前,对基坑稳定性验算主要有如下内容: ①基坑整体稳定性验算 ②基坑的抗隆起稳定验算 ③基坑底抗渗流稳定性验算 4.3 验算方法及计算过程 4.3.1基坑的整体抗滑稳定性验算 根据《简明深基坑工程设计施工手册》采用圆弧滑动面验算板式支护结构和地基的整体稳定抗滑动稳定性时,应注意支护结构一般有内支撑或外拉锚杆结构、墙面垂直的特点。不同于边坡稳定验算的圆弧滑动,滑动面的圆心一般在挡墙上方,基坑内侧附近。通过试算确定最危险的滑动面和最小安全系数。考虑内支撑或者锚拉力的作用时,通常不会发生整体稳定破坏,因此,对支护结构,当设置外拉锚杆时可不做基坑的整体抗滑移稳定性验算。 4.3.3基坑抗隆起稳定性验算

图4.1 基坑抗隆起稳定性验算计算简图 采用同时考虑c 、φ的计算方法验算抗隆起稳定性。 ()q D H cN DN K c q s +++=12γγ 式中 D —— 墙体插入深度; H —— 基坑开挖深度; q —— 地面超载; 1γ—— 坑外地表至墙底,各土层天然重度的加强平均值; 2γ—— 坑内开挖面以下至墙底,各土层天然重度的加强平均值; q N 、c N —— 地基极限承载力的计算系数; c 、?—— 为墙体底端的土体参数值; 用普郎特尔公式,q N 、c N 分别为: ?π?tan 2245tan e N q ??? ? ?+=? ()? tan 11-=q c N N 其中 D=2.22m q=10kpa H=7m ?= 240 4.1879.29.1821.181.2181=?+?+?= γ 5.181 7.03.183.09.182=?+?=γ 6.9)22445(tan 24tan 14.302=+ =?e Nq 32.1924 tan 1)16.9(tan 1)1(0=-=-=?Nq Nc 则 Ks=(18.5×2.22×9.6+10×19.32)/18.4(7+2.22)+10=3.27>1.2 符合要求 4.3.4抗渗流(或管涌)稳定性验算 (1)概述

抗倾覆稳定性验算

*作品编号:DG13485201600078972981* 创作者: 玫霸* 五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11.0米左右,此处的土为粘性土,可以采用“等值梁 法”进行强度验算。 首先进行最小入土深度的确定: 首先确定土压力强度等于零的点离挖土面的距离y ,因为在此处的被动 土压力等于墙后的主动土压力即: ()a p b K K P y -=γ 式中:P b 挖土面处挡土结构的主动土压力强度值,按郎肯土压力理论进 行计算即 a a b K cH K H P 22 12-=γ γ 土的重力密度 此处取18KN/m 3 p K 修正过后的被动土压力系数(挡土结构变形后,挡土结构 后的土破坏棱柱体向下移动,使挡土结构对土产生向上的摩擦力,从而使 挡土结构后的被动土压力有所减小,因此在计算中考虑支撑结构与土的摩 擦作用,将支撑结构的被动土压力乘以修正系数,此处φ=28°则K=1.78 93.42452=??? ? ?+?=? tg K K p

a K 主动土压力系数 361.02452=??? ? ?-=? tg K a 经计算y=1.5m 挡土结构的最小入土深度t 0: x y t +=0 x 可以根据P 0和墙前被动土压力对挡土结构底端的力矩相等来进行计算 ()m K K P y t a p 9.2600=-+=γ 挡土结构下端的实际埋深应位于x 之下,所以挡土结构的实际埋深应为 m t K t 5.302=?=(k 2 经验系数此处取1.2) 经计算:根据抗倾覆稳定的验算,36号工字钢需入土深度为3.5米,实际入土深度为3.7米,故:能满足滑动稳定性的要求 2、支撑结构内力验算 主动土压力:a a a K cH K H P 22 12-=γ 被动土压力:p p p cK K H P 22 12+=γ 最后一部支撑支在距管顶0.5m 的地方,36b 工字钢所承受的最大剪应力 d I Q d I Q S S z x x z ???? ??==*max max *max max max τ ,3.30* max cm I S z x = d=12mm,经计算 []ττ<=a MP 6.26max 36b 工字钢所承受的最大正应力 []σσ<==a MP W M 9.78max 经过计算可知此支撑结构是安全的 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口的位置,可降低

结构稳定性的验算与控制

结构稳定性的验算与控制 结构稳定性的验算与控制 1 控制意义: 对结构稳定性的控制,避免建筑在地震时发生倾覆. 当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。 2 规范条文 规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。 规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件. 高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。 高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。 3 计算方法及程序实现 重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。一般只考虑第(2)种,第(1)种对结构影响很小。 当结构侧移越来越大时,重力产生的福角效应( P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。 对于多层结构 P-Δ效应影响很小。 对于大多数高层结构, P-Δ效应影响将在5%~10%之间。 对于超高层结构, P-Δ效应影响将在10%以上。 所以在分析超高层结构时,应该考虑 P-Δ效应影响。 (P-Δ效应对高层建筑结构的影响规律:中间大两端小) 框架为剪切型变形,按每层的刚重比验算结构的整体稳定 剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定 整体抗倾覆的控制??基础底部零应力区控制 4 注意事项 1)结构的整体稳定的调整 当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。 当整体稳定不满足要求时,必须调整结构方案,减少结构的高宽比。 对一些特殊的工业建筑物,在没有特殊要求的情况下,也应满足整体稳定的要求。 2)结构大震下的稳定 第二阶段设计是结构的弹塑性变形验算,对地震下容易倒塌的结构和有特殊要求的结构,要求其薄弱部位的验算应满足大震不倒的位移限制,并采用相应的专门的抗震构造措施。 对于复杂和超限高层结构宜进行第二阶段的设计。 第二阶段的弹塑性变形分析,宜同时考虑结构的P-Δ效应。

抗倾覆验算

一、便桥墩身抗倾覆检算 说明:1#墩为已完成墩身,且新建线路中线与1#墩身中线偏移0.19m,详见平面图所示。1#墩为最不利墩身,故以1#墩来检验墩身的抗倾覆安全性。 1、竖向力 竖向恒载: N1=95.75+39.2ⅹ9.2=456.39KN(桥跨上部结构自重) N2=562.5KN(墩身自重) N3=687.5KN(基础自重) 竖向活载: N4=1045.884KN(支点反力)Mx=18.068KN·m(支点反力对基底长边中心轴x-x轴力之矩) 2、水平力 制动力的大小均按竖向静活载(不包括冲击力)的10%计算,作用点在轨顶2m;离心力等于离心力率乘以支座的静活载反力N4,作用点在轨顶2m。 制动力T1: T1=(N1+N2+N3+N4)ⅹ10%=275.227KN 离心力T2: T2=CⅹN4 离心力率通过C=V2/(127R)计算,其中V为设计行车速度5Km/h,R为曲线半径400m,代入可得:C=52/(127ⅹ400)=0.0005 T2=0.0005ⅹ1045.884=0.523KN 3、风荷载(作用在墩身上的风力T墩、作用在列车上的风力T列车): 作用在桥梁受风面上的静压力,按《桥规》规定的标准求出最大风速后,通过风速与风压 1

关系公式Wo=γv2/(2q)求出基本风压值, 式中Wo为基本风压值(Pa) q为重力加速度(m/s2) γ为空气重度(N/m3) v为平均最大风速(m/s) 取标准大气压下,常温为15摄氏度时的空气重度12.255N/m3、纬度45度处重力加速度为9.8m/s2, 代入公式可以得出Wo=v2/1.6,查表v取12m/s计算得出Wo=90Pa 作用于桥梁上的风荷载强度W(Pa)按下式计算W=K1·K2·K3·Wo,查表取K1=1.0,K2=1.0,K3=0.8代入公式 可得W=72Pa 墩风压计算取横向迎风面积S=aⅹh,其中1#墩的a值为1.8m,h为墩高度5m代入可得墩迎风面积为9m2,T墩=9ⅹ72=0.65KN。 计算风力时,标准规矩列车横向受风面积等于受风面积按3m搞的长方带计算,作用点在轨面上2m高度处。 桥上有车时:W=K1·K2·800=800Pa≮1250Pa,列车迎风面积为3ⅹ(12.5+9.5+9+10)=96m2。T列车=96ⅹ800=76.8KN。 设基底截面重心至压力最大一边的边缘的距离为y(荷载作用在重心轴上的矩形基础且y=b/2),外力合力偏心距为e0,则两者的比值Ko可反映基础倾覆稳定性的安全度,Ko 称为抗倾覆稳定系数。 即Ko=y/ e0e0=(ΣPiei十ΣTihi)/ΣPi y=b/2=5/2=2.5m e=0.19m 2

脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。 [关键词]脚手架;倾覆;稳定性;验算 结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。 《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。 1脚手架的倾覆验算 1.1通用的验算公式推导 无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用0.9;当风荷载仅与永久荷载组合时采用1.0。 对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行: (2)式中:0.9为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。 对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

基坑放坡稳定性验算

基坑放坡稳定性验算 根据施工组织安排,10-03地块各楼栋基坑采用分块开挖,临时放坡的施工方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算,验算过程如下: 参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.50; 基坑内侧水位到坑顶的距离(m):8.00; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 1 2.50 3.80 2.00 0.00 2 3.00 4.50 2.00 0.00 计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重 2、作用于土条弧面上的法向反力 3、作用于土条圆弧面上的切向阻力 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 计算公式: 式子中: --土坡稳定安全系数; F s c --土层的粘聚力; --第i条土条的圆弧长度; l i γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角; φ --土层的内摩擦角; --第i条土的宽度; b i --第i条土的平均高度; h i ――第i条土水位以上的高度; h 1i ――第i条土水位以下的高度; h 2i γ' ――第i条土的平均重度的浮重度;

理正深基坑难点问题集锦

理正深基坑软件难点问题集锦: 1.嵌固深度,一般按何经验取值?抗渗嵌固系数(1.2),整体稳定分项系数(1.3),以及圆弧滑动简单条分法嵌固系数(1.1)的出处? 答:如果桩是悬臂的或单支锚的,嵌固深度一般大约可取基坑底面以上桩长,当然还要结合地层情况、有水无水、支锚刚度等其他条件综合来看。抗渗嵌固系数(1.2),和圆弧滑动简单条分法嵌固系数(1.1)在程序界面的黄条提示上都有标明所参照的规依据,整体稳定分项系数(1.3)是根据经验给用户的参考值,用户可根据自己的设计经验取用。 2.冠梁的水平侧向刚度取值如何计算? 答:采用近似计算;公式如下,具体参数解释可参照软件的帮助文档 冠梁侧向刚度估算公式:k = [1/3 * (L*EI) ] / [ a^2 (L-a)^2 ] 3.土层信息,输入应注意哪些容?避免出错。 答:土层信息互重度(天然重度)与浮重度两个指标,软件会根据水位自动判别选取。水上土采用天然重度,水下的土计算根据计算方法采用浮重度或饱和重度(饱和重度=浮重度+10) 4.支锚信息:支锚刚度(MN/m如何确定? 答:有四种方法: ①试验方法 ②用户根据经验输入 ③公式计算方法(见规程附录) ④软件计算。具体做法是先凭经验假定一个值,然后进行力计算、锚杆计算得到一个刚度值,系统可自动返回到计算条件中,再算;通过几次迭代计算,直到两个值接近即可,一般迭代2~3次即可。 5.护壁桩的桩径,配筋多少在合理围,好像理正算出来钢筋配筋太多,桩钢筋多了不好布置,理正配筋量一般比PKPM软件要多三分之一。 答:桩钢筋多了不好布置,用户在设计时可自行调整,更改界面等。 与pkpm对比配筋量时力是否一致,如果一致的情况,用户可核查理正的配筋计算公式与PKPM是否一致,两个软件分别做了哪些折减,如果条件一样的情况所算结果差别较大,可与理正市场部联系,提供您的例题我们来核查软件计算的正确性。 计算m值时,输入的“基坑底面位移估算值d”的含义是什么? 答:“基坑底面位移估算值d”是指基坑底面的水平位移。 该值影响m值的选择;对于有经验地区,可直接采用m值;对于无经验地区,m值采用规建议公式计算。一般采用水平位移为10mm计算,当水平位移大于10mm时,应进行适当的修正,不能严格按规建议公式计算。否则,计算的基坑底面处水平位移会增大,计算的m值会更小,导致水平位移更大,m值更小,结果不一定收敛。使用时要特别注意,建议不要进行迭代计算。

51 PKPM计算关于结构稳定性的验算与控制

1.PKPM计算关于结构稳定性的验算与控制2011-9-19 20:10 阅读(458) 转自土木工程网,https://www.wendangku.net/doc/2c3606894.html, A 控制意义: 对结构稳定性的控制,避免建筑在地震时发生倾覆. 当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。 B 规范条文 规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。 规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件. 高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。 高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。 C 计算方法及程序实现 重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。一般只考虑第(2)种,第(1)种对结构影响很小。 当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。 在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。 对于多层结构P-Δ效应影响很小。 对于大多数高层结构,P-Δ效应影响将在5%~10%之间。 对于超高层结构,P-Δ效应影响将在10%以上。 所以在分析超高层结构时,应该考虑P-Δ效应影响。 (P-Δ效应对高层建筑结构的影响规律:中间大两端小) 框架为剪切型变形,按每层的刚重比验算结构的整体稳定 剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定 整体抗倾覆的控制??基础底部零应力区控制 D 注意事项 >>结构的整体稳定的调整 当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑内侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度(m) 坑壁土的重 度γ(kN/m3) 坑壁土的内 摩擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式:

抗倾覆稳定性验算

五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11、0米左右,此处得土为粘性土,可以采用“等值梁法”进行强度验算。 首先进行最小入土深度得确定: 首先确定土压力强度等于零得点离挖土面得距离y,因为在此处得被动土压 式中:P 挖土面处挡土结构得主动土压力强度值,按郎肯土压力理论进行计 b 算即 土得重力密度此处取18KN/m3 修正过后得被动土压力系数(挡土结构变形后,挡土结构后得土破坏棱柱体向下移动,使挡土结构对土产生向上得摩擦力,从而使挡土结构后得被动土压力有所减小,因此在计算中考虑支撑结构与土得摩擦作用,将支撑结构得被动土压力乘以修正系数,此处φ=28°则K=1、78 主动土压力系数 经计算y=1、5m : 挡土结构得最小入土深度t 与墙前被动土压力对挡土结构底端得力矩相等来进行计算x可以根据P 0 挡土结构下端得实际埋深应位于x之下,所以挡土结构得实际埋深应为(k 经验系数此处取1、2) 2 经计算:根据抗倾覆稳定得验算,36号工字钢需入土深度为3、5米,实际入土深度为3、7米,故:能满足滑动稳定性得要求

2、支撑结构内力验算 主动土压力: 被动土压力: 最后一部支撑支在距管顶0、5m得地方,36b工字钢所承受得最大剪应力 d=12mm,经计算 36b工字钢所承受得最大正应力 经过计算可知此支撑结构就是安全得 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口得位置,可降低 经计算 因此此处不会发生管涌现象 4、顶力得计算 工程采取注浆减阻得方式来降低顶力. φ1800注浆后总顶力为: F=fo、S*0、3=25*667/10*0、3*1、1=550t fo—土得摩擦阻力,一般为25KN/m2 S-土与管外皮得摩擦面积 0。3-注浆减阻系数 1。1—顶力系数 5、后背得计算 E=1、5×0、5×Υ×H2×tg2(45+φ/2)+2chtg(45+φ/2) (式中Υ土得重度(18KN/m3)c土得粘聚力10kpa,φ摩擦角28o)计算得每米588吨,后背工作宽度为4米,后背承载力为2354吨。(参照最

深基坑计算书8.30..

13、支护计算 13.1垃圾库深基坑开挖支护计算 一、参数信息: 1、基本参数: 侧壁安全级别为二级,基坑开挖深度h为5.600m(已经整体开挖2.2~2.6 m),土钉墙计算宽度b'为25.00 m,土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角,条分块数为4;考虑地下水位影响,基坑外侧水位到坑顶的距离为2.000 m(2.6+2=4.6m),基坑内侧水位到坑顶的距离为6.000 m。 2、荷载参数: 局部面荷载q取10.00kPa,距基坑边线距离b0为1.5 m,荷载宽度b1为2 m。 3、地质勘探数据如下:: 填土厚度为3.00 m,坑壁土的重度γ为17.00 kN/m3,坑壁土的内摩擦角φ为14.00°,内聚力C为8.00 kPa,极限摩擦阻力18.00 kPa,饱和重度为20.00 kN/m3。粘性土厚度为6.00 m,坑壁土的重度γ为1,8.00 kN/m3,坑壁土的内摩擦角φ为20.00°,内聚力C为23.50 kPa,极限摩擦阻力65.00 kPa,饱和重度为20.00 kN/m3。 4、土钉墙布置数据: 放坡高度为5.60 m,放坡宽度为0.60 m,平台宽度为6.00 m。土钉的孔径采用120.00 mm,长度为6.00 m,入射角为20.00°,土钉距坑顶为1.00 m(-3.6,m),水平间距为1.50 m。 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25γ0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk=ζe ajk s xj s zj/cosαj 其中ζ--荷载折减系数 e ajk --土钉的水平荷载

基础稳定验算

基础稳定性验算 一、工程概况 根据*******提供的岩土工程勘察报告。本工程采用嵌岩桩基础,基础持力层为中等风化砂岩,桩端岩石饱和单轴抗压强度标准值为frk=,地基承载力特征值fak=1200Kpa ,桩长约为6m 。桩基础最不利地质剖面如下图所示,桩侧土层厚度分别为一般填土或粘土、强风化砂岩、中风化砂岩按考虑。 二、基础抗倾覆验算 本工程设防烈度6度,根据《高规》条,304.0/12.0)(/)(max max ==小震中震αα,考虑到中震作用下结构的塑性耗能,本工程取中震地震作用力为小震的倍。 根据PKPM 计算结果,结构在小震、风荷载、中震作用下整体抗倾覆验算如下: 楼栋号 13-24轴单体 1~12轴单体 结构抗倾覆力矩 结构倾覆力矩 比值 结构抗倾覆力矩 结构倾覆力 矩 比值 X 向风荷载 Y 向风荷载 X 向小震 Y 向小震 X 向中震 Y 向中震 参照《高层建筑筏形与箱形基础技术规范》(JGJ6-2011)第条,本工程抗倾覆稳定性安全系数远大于,故结构的整体抗倾覆稳定性满足要求。 三、基础抗滑移验算 本工程采用嵌岩桩基础,基础抗滑移由基桩水平承载力提供。13-14轴单体共有基桩48根,1-12轴单体共有基桩62根。 单桩水平承载力计算 1. 设计资料 桩土关系简图 已知条件 (1) 桩参数 承载力性状 端承桩 桩身材料与施工工艺 干作业挖孔桩 截面形状 圆形

砼强度等级 C30 桩身纵筋级别 HRB400 直径(mm) 900 桩长(m) 是否清底干净 √ 端头形状 不扩底 (2) 计算内容参数 水平承载力 √ 桩顶约束情况 铰接 允许水平位移(mm) 轴力标准值(kN) (3) 土层参数 2 计算过程及计算结果 单桩水平承载力 根据《桩基规范》第4款(式及第7款(考虑地震作用) 计算 桩的水平变形系数α = (1/m) 桩截面模量塑性系数γm = 桩身砼抗拉强度设计值ft = (kPa) 桩身换算截面模量W0 = (m3) 桩身最大弯矩系数vM = 桩顶竖向力影响系数ζN = 桩身换算截面积An = (m2) 承载力特征值地震调整系数 = 单桩水平承载力特征值 Rha = (kN) 本工程地震作用下取单桩水平承载力特征值为250kN 。非地震作用下取200KN 。 基础抗滑移验算 根据PKPM 计算结果,结构在小震、风荷载、中震作用下整体抗倾覆验算如下: 参照《高层建筑筏形与箱形基础技术规范》(JGJ6-2011)第条,本工程抗滑移稳定性安全系数远大于,故结构的整体抗滑移稳定性满足要求。 四、构造加强措施 1)将塔楼外围基础梁加高(本工程取为300x1000),提高塔楼周边土体的压实标准,将建筑物水平荷 载有效传给地基。 2)提高桩基础的嵌岩深度,本工程取最小嵌岩深度.

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算 及基础设计 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用××,基础砼标号为C35(7天和28天期龄各一组), 要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:,塔身宽度B:,自重F K :453kN,基础承台厚度h:,最大起重荷载Q:60kN,基础承台宽度b:,混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn·m, F K = 530KN,Fv K =,砼基础重量G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=); G K ----------基础自重; b---------矩形基础底面的短边长度。(b= 将上述塔式起重机各项数值M K 、Fv K 、F K 、h、G K 、b代入式①得: e =< b/3= 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊基础底板处承载力特征值为372Kpa。取塔式起重机基础底土层的承载力标准值为372Kpa,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长×

深基坑专项施工方案计算书(1)

2#散货污水调节池、1#、2#蓄水池及吸水井基坑开挖计算书 土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用毕肖普法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还同时考虑了土条两侧面的作用力。 一、参数信息: 基本参数: 放坡参数: 荷载参数:

土层参数: 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,该土条上存在着: 1、土条自重W i, 2、作用于土条弧面上的法向反力N i, 3、作用于土条圆弧面上的切向阻力或抗剪力Tr i, 4、土条弧面上总的孔隙水应力U i,其作用线通过滑动圆心, 5、土条两侧面上的作用力X i+1,E i+1和X i,E i。如图所示: 当土条处于稳定状态时,即Fs>1,上述五个力应构成平衡体系。考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.35的要求。 三、计算公式: K sj=∑(1/mθi)(cb i+γb i h i+qb i tanφ)/∑(γb i h i+qb i)sinθi

mθi=cosθi+1/F s tanφsinθi 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i --第i条土水位以上的高度; h2i --第i条土水位以下的高度; q --第i条土条上的均布荷载 γ' --第i土层的浮重度 其中,根据几何关系,求得hi为: h1i=h w-{(r-h i/cosθi)×cosθi-[rsin(β+α)-H]} 式子中: r --土坡滑动圆弧的半径; l0 --坡角距圆心垂线与坡角地坪线交点长度; α --土坡与水平面的夹角; h1i的计算公式: h1i=h w-{(r-h i/cosθi)×cosθi-[rsin(β+α)-H]} 当h1i≥ h i时,取h1i = h i;

钢结构的-稳定性验算

第七章 稳定性验算 整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。 注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。 局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。 注意:热轧型钢不必验算局部稳定! 第一节 轴心受压构件的整体稳定和局部稳定 一、轴心受压构件的整体稳定 注意:轴心受拉构件不用计算整体稳定和局部稳定! 轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。这种现象就叫做构件的弯曲失稳或弯曲屈曲。不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。 弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力: 2222//λππEA l EI N cr == (7-1) 推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为: /22=+Ny dz y EId (7-2) 令EI N k /2 =,则: 0/222=+y k dz y d (7-3) 解得: kz B kz A y cos sin += (7-4) 边界条件为:z=0和l 处y=0; 则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=, 故 2 2 2 2 //λππEA l EI N cr == (7-5) 其它支承情况时欧拉临界力为: 2 222/)/(λπμπEA l EI N cr == (7-6) 欧拉临界应力为: 22/λπσE cr = (7-7)

基坑稳定验算书

基坑稳定验算书 一、基坑稳定分析验算 主要考虑基坑的失稳类型:a、支撑强度不够,刚度不够;b、整体滑动失稳;c、踢脚引起隆起失稳;d、砂地层管涌失稳;e、低鼓失稳(本工程地下无承压水)。本次论证主要是关于钢板桩及支撑结构的稳定问题,其中以支撑强度不够或刚度不够、整体滑动失稳和踢脚引起隆起失稳为主要验算对象。 (一)、W47钢板桩挡土结构的内力简化模型与分析计算 1、W47工作井参数的选用 地层情况,见表1,地下水位地面以下6米,接收坑开挖深度为6.58米,基坑宽×长为B×L=3.5×7.5m。 地层可分为粘性土层和砂层(如图1),并将粘性土层和砂层的γ、c、?值各自算得加权平均值。

(1)、粘性土层: 31 18 1.918.7 1.718.1 1.9 18.3/5.5i i h KN m h γγ?+?+?== =∑ 1 16 1.914 1.719 1.9 16.45.5 i i a c h c KP h ?+?+?== =∑ 1 1.90.287 1.70.394 1.90.133 tan tan 0.267 5.5 i i h h ???+?+?== =∑ tan 0.1312 ? = (2)、砂层: 则有加权浮重度' ' ' 32 9.8/i i h KN m h γγ ==∑ ,' tan 0.732?=,' tan 0.3272 ?=。 2、内力的计算 (1)、钢板桩外侧主动土压力(采用粘性土层和砂层分开计算主动土压力的方法其中将 水头压力看作为主动土压力的一部分) 2001tan (45)2tan(45)22 a P h c ?? γ=--- ' ' '20 2tan (45)2 a P h ?γ=- 其中 20 tan (45)0.5902 a K ? =- = ' ' 20 t a n (45 )0.257 2 a K ?=-= 式中:a P —粘土层主动土压力; ' a P —砂土层主动土压力; a K —粘土层主动土压力系数; 'a K —砂土层主动土压力系数。 则粘性土的主动土压力合力为:

边坡整体稳定性验算书

验算条件说明 一、边坡段选取 1、因Ⅰ-Ⅱ和Ⅱ-Ⅲ段边坡为顺向坡---斜向破,经顺层清方后,边坡的可能破坏模式为边坡沿着强风化与中风化界面滑动,经验算边坡为稳定边坡(详见地勘报告),不再验算。 2、Ⅲ-Ⅳ段边坡为切向坡,边坡的可能破坏模式为边坡沿岩层面(视倾角31°)产生滑移破坏。经验算边坡为不稳定边坡(详见地勘报告),在此对原设计作支护后的整体稳定性验算。 二、参数选取说明 1、对于Ⅰ-Ⅱ、Ⅱ-Ⅲ和Ⅲ-Ⅳ段边坡破坏模式为边坡沿着强风化与中风化界面滑动时,选取强风化泥岩指标验算,即强风化泥岩:f a=200kPa;γ=21.30kN/m3;c k=80kPa,φk =20°; 2、对于Ⅲ-Ⅳ段边坡破坏模式为边坡沿岩层层面滑动时,选取软弱结构面(泥岩层面)指标验算,即软弱结构面:c k=25kPa ,φk =13°。 3、边坡岩体重度选取粉质粘土、强风化泥岩和中风化泥岩的加权平均重度γ=24.1 kN/m3。 4、边坡支护高度为边坡开挖面高度51米,本次边坡验算高度取至坡顶滑体影响区域拉断处。 三、Ⅲ-Ⅳ段边坡支护后稳定性验算计算书 计算说明:计算软件为理正6.5版,采用规范《建筑边坡工程技术规范》(GB50330-2013) ---------------------------------------------------------------------------- 计算项目: 平塘加油站C断面(Ⅲ-Ⅳ段)边坡支护后稳定性验算 ---------------------------------------------------------------------------- [ 计算简图 ] ----------------------------------------------------------------------------------- [ 计算条件 ] ----------------------------------------------------------------------------------- [ 基本参数 ] 计算方法:极限平衡法(建坡规范附录A.0.2)

【结构设计】浅析结构稳定性的验算要的目的

浅析结构稳定性的验算要的目的 A控制意义: 对结构稳定性的控制,避免建筑在地震时发生倾覆. 当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。 B规范条文 规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。 规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件. 高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。 高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。 C计算方法及程序实现 重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由

于侧移引起的附加效应。一般只考虑第(2)种,第(1)种对结构影响很小。 当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。 在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。 对于多层结构P-Δ效应影响很小。 对于大多数高层结构,P-Δ效应影响将在5%~10%之间。 对于超高层结构,P-Δ效应影响将在10%以上。 所以在分析超高层结构时,应该考虑P-Δ效应影响。 (P-Δ效应对高层建筑结构的影响规律:中间大两端小) 框架为剪切型变形,按每层的刚重比验算结构的整体稳定 剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定整体抗倾覆的控制??基础底部零应力区控制 D注意事项 >>结构的整体稳定的调整 当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。 当整体稳定不满足要求时,必须调整结构方案,减少结构的

相关文档