文档库 最新最全的文档下载
当前位置:文档库 › 第五章__大数定律及中心极限定理

第五章__大数定律及中心极限定理

第五章__大数定律及中心极限定理
第五章__大数定律及中心极限定理

第五章 基本极限定理

【授课对象】理工类本科三年级 【授课时数】4学时

【授课方法】课堂讲授与提问相结合

【基本要求】1、理解切比雪夫(车贝晓夫)不等式;

2、了解车贝晓夫大数定理及Bernoulli 大数定理;

3、知道独立同分布的中心极限定理,了解德莫佛—拉普拉斯中心极限 定理。

【本章重点】车贝晓夫不等式,车贝晓夫大数定理及Bernoulli 大数定理。 【本章难点】对车贝晓夫大数定理及独立同分布的中心极限定理的理解。 【授课内容及学时分配】

§5.0 前 言

在第一章中我们曾提出,大量重复试验中事件发生的频率具有稳定性,随着试验次数n 的无限增大,事件A 在n 次试验中出现的次数n μ与试验次数之比n

n μ(即频

率)稳定在某个确定的常数附近(频率的稳定性),以此常数来近似作为事件A 在一次试验中发生的概率,并在实际中,当n 充分大时,用频率值作为概率值的近似估计。对于这些,我们需要给出理论上的说明,而这些理论正是概率论的理论基础。

§5.1 切比雪夫不等式及大数定律

一、切比雪夫不等式

定理1 设随机变量ξ具有有限的期望与方差,则对0>?ε,有

2

)

())((εξεξξD E P ≤

≥-

或2

)

(1))((ε

ξεξξD E P -

≥<-

证明:仅对连续的情形给予证明,设ξ的分布函数为)(x F ,则

??≥-≥

--≤=

≥-ε

ξ

ε

ξε

ξεξξ)(2

2

)()())(()())((E x E x x dF E x x dF E P

2

22

)

()())((1

εξξεD x dF E x =

-≤?

+∞

-

该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 在理论上切比雪夫不等式常作为其它定理证明的工具。

二、大数定律(——包括强大数定律和弱大数定律,本书主要讲弱大数定律) 定义:设{}n ξ是随机变量序列,它们都具有有限的数学期望 ),(),(21ξξE E ,若对

0>?ξ,011lim 11=??

?

???????≥??? ??-∑∑==∞→εξξn i i n i i n n E n P ,则称{}n ξ服从弱大数定律。

定理2(车贝晓夫大数定律)设相互独立的随机变量n ξξ,,1 分别具有数学期望

)(,),(1n E E ξξ 及方差)(,),(1n D D ξξ ,若存在常数C 使 ,2,1)(=≤i C D i ξ(方差一致有界),则}{n ξ服从大数定律。

既对任意的0>ε,有0})(11{lim 11=≥-∑∑==∞→εεεn i n

i i i n E n n P

证明:由车贝晓夫不等式知:,0>?ε有:

)(0)1(1})(11{022********∞→→=≤=≤≥-≤∑∑∑∑====n n C

n nC n D n D E n n P n

i i

n

i i n i n i i i ε

εεξ

ξεεξξ

注:切比雪夫大数定律是最基本的大数定理,作为切比雪夫大数定律的特殊情形有Bernoulli 大数定理和Poisson 大数定律。

定理3(Bernoulli 大数定理)设n μ是n 重Bernoulli 试验中事件A 出现的次数,已知在每次试验中A 出现的概率为)10(<

?ε,

0lim =?

??

???≥-∞

→εμp n P n n

证明:令??

?=不出现

次试验中第出现次试验中第A i A i i 0

1

ξ,n i ,1,2, =

则n n μ=∑=n

i i n 11ξ,P E i =)(ξ,41)1()(≤-=P P D i ξ,n i ,1,2, =

于是由切比雪夫不等式,对0>?ε,有

()??????≥-=??

?

???????≥??? ??-=??????≥-∑∑∑===εξξεξξεμn i i n i i n i i n E n P n E n P P n P 111)(111

()0)

(1)(11

2

11

2212→=

=???

??-≤∑∑==ε

ξξεξξεn D n E n D n

i i n i i )(∞→n 即

P n

n

→μ )(∞→n 。故{i ξ}服从大数定律。

可见,只要把)2,1( =i i ξ看作服从(0-1)分布的随机变量即可。Bernoulli 大数定律在理论上说明了在大量重复独立实验中,事件出现频率的稳定性,正是因为这种稳定性,概率才有客观意义。

而Poisson 大数定律则为切比雪夫大数定律的另一特例

定理4(Poisson 大数定律)设n μ是n 次独立试验中事件A 出现的次数,已知在第i 次试验中A 出现的概率为i p (10<

∞→n lim {|n n μ—n 1∑=n

i Pi

1

≥ε}=0

证:(略)

显然,Poisson 大数定律是作为Bernoulli 大数定律的推广,它表明随着n ∞→,n 次独立试验中事件A 出现的概率稳定于各次试验中事件A 出现的概率的算术平均值。

推论:设n ξξ,,1 是相互独立的随机变量,且服从相同的分布,

,2,1)(,)(2

===i D E i i σξμξ,则,0>?ε有:

0}1{lim 1=≥-∑=∞→εμξn i i n n P ?1}1{lim 1

=≤-∑=∞→εμξn

i i n n P 即∑=n i i n 11ξ以概率1收敛

于μ

这个结论有很实际的意义:人们在进行精密测量时,为了减少随机误差,往往重复

测量多次,测得若干实测值n ξξ,,1 ,然后用其平均值来代替μ。

§5.2 中心极限定理

设{n ξ}是相互独立的随机变量序列,n i D E i

i i

i ,,2,12 ===σξμξ

令n S =()∑=-n

i i i E 1

ξξ 则n B 2

=n DS =D

()∑=-n

i i i

E 1

ξξ

=∑=n

i i D 1

ξ=∑=n

i i 1

2σ,

设n ζ=

Bn

Sn

(标准化) 2,1=n , 下面研究n ζ的分布: Df 1:设{ξn }为相互独立的随机变量序列,若P {x n ≤ζ}以概率1收敛于标准正态分布)1,0(N 的分布函数)(x Φ, 即 ∞

→n lim P {x n ≤ζ}=

π

21dt e

x

t ?∞

--

2

2,则称{ξn }服从中心极

限定理。

Df 2:(不讲)设随机变量 ,,21ηη的分布函数为1F (X ), 2F (X ) , ,若n F (X )弱收敛于正态分布),(2σμN 的分布函数,则称}{n η渐近于正态分布),(2σμN

中心极限定理有多种不同的形式,下面我主要讲两种形式:

一、独立同分布的中心极限定理 定理1:(莱维—林德伯格定理)

设}{n ξ是独立同分布的随机变量序列,2,σξμξ==i i D E (有限),若R x ∈?,

随机变量σ

μξ

ζn n

i i

n ∑=-=

1

)

(的分布函数{}x P x F n n ≤=ζ)(收敛于标准正态分布()

1,0N 的分布函数,即 )()(lim x x F n n Φ=∞

→,则}{n ξ服从中心极限定理。 证:(略)

更进一步的有:对b a

→ζ

二、德莫佛—拉普拉斯中心极限定理

定理2: 设),2,1( =n n η是n 重Bernoulli 试验中成功的次数,已知每次试验成功的概率为()p q p p -=<<1,10,则对,R x

()x dt t

x npq

np

P x

n n e

φπ

η==

≤-?∞

--∞

→2

2

21}{

lim

或b a

a P n n φφξ

η-=≤-<

→}{lim 证明: 令???=反之

次试验成功

第01i i ξ 则

}{i ξ为独立同分布的随机变量序列,且4

1)1(≤-==p p D p E i i ξξ 显然:∑==n

i i n 1ξη, 此时npq

np

n n -=

ηζ

该定理为上定理的一个特殊情形,故由上定理该定理得证。 作为以上二定理的应用,我们给出下面例子:

Ex 1:(关于二项分布的近似计算式)设),(~p n B ξ,试求}{21m m P ≤<ξ 解}{21m m P ≤<ξ=})

1()

1()

1({

)1(212

1p np np m p np np

p np np m P p p C m m k k n k k

n --≤

--<

--=-∑=-ξ

))

1((

))

1((

21p np np m p np np m --Φ---Φ≈

Ex 2:P 119 例4

三、课后作业:

1、仔细阅读P 112-119;

2、作业:P 120 2,5,7,9

3、预习:样本及抽样分布1-3。

考研数学一-概率论与数理统计大数定律和中心极限定理(一).doc

考研数学一-概率论与数理统计大数定律和中心极限定理(一) (总分:48.00,做题时间:90分钟) 一、选择题(总题数:9,分数:9.00) 1.假设随机变量序列X1,…,X n…独立同分布且EX n=0 (A) 0. 1.00) A. B. C. D. 2.设X1,…,X n…是相互独立的随机变量序列,X n服从参数为n的指数分布(n=1,2,…),则下列随机变量序列中不服从切比雪夫大数定律的是 (A) X1,X2/2,…,X n/n,…. (B) X1,X2,…,X n,…. (C) X1,2X2,…,nX n,…. (D) X1,22X2,…,n2X n,…. (分数:1.00) A. B. C. D. 3.假设X n,n≥1n充分大时,可以用正态分布作为S n的近似分布,如果 (A) X n,n≥1相互独立、同分布. (B) X n,n≥I (C) X n,n≥1 (D) X n,n≥1 1.00) A. B. C. D. 4.设X n,n≥1为相互独立的随机变量序列且都服从参数为λ的指数分布,则 1.00) A. B. C.

5.设随机变量X1,…,X n-林德伯格中心极限定理,当n充分大时,S n近似服从正态分布,只要X1,…,X n (A) PX i=m=p m q1-m,m=0,1,…(1≤i≤n). ≤i≤n). ≤i≤n) 1.00) A. B. C. D. 6.假设X1,…,X n,…为独立同分布随机变量序列,且EX n=0,DX n=σ2 (A) 0. 1.00) A. B. C. D. 7.下列命题正确的是 (A) 由辛钦大数定律可以得出切比雪夫大数定律. (B) 由切比雪夫大数定律可以得出辛钦大数定律. (C) 由切比雪夫大数定律可以得出伯努利大数定律. (D) 由伯努利大数定律可以得出切比雪夫大数定律. (分数:1.00) A. B. C. D. 8.设随机变量X1,X2,…,X n,…独立同分布,EX i=μ(i=1,2,…),则根据切比雪夫大数定律,X1,X2,…,X n,…依概率收敛于μ,只要X1,X2,…,X n,… (A) 共同的方差存在. (B) 服从指数分布. (C) 服从离散型分布. (D) 服从连续型分布. (分数:1.00) A. B. C. D. 9.假设天平无系统误差.将一质量为10克的物品重复进行称量,则可以断定“当称量次数充分大时,称量结果的算术平均值以接近于1的概率近似等于10克”,其理论根据是 (A) 切比雪夫大数定律. (B) 辛钦大数定律. (C) 伯努利大数定律. (D) 中心极限定理. (分数:1.00) A.

中心极限定理的创立与发展

中心极限定理的创立与发展 -----杨静邓明立 概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。 在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。 极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

数理统计作业二__用数学实验的方法验证大数定理和中心极限定理

验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式 =RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k,k=1,2,3······来验证中心极限定理。因为E k, k=1,2,3······之间是独立同分布,所以 )5.0, ( ~ E n 1 k k n B ∑ =。由中心极 限定理可知,当n的取值足够大时,∑ = n 1 k k E 这一随机变量的分布与正太分 布具有很好的近似,下面用MATLAB软件分别画出n取不同值时∑ = n 1 k k E 的分 布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N(5,2.5)。 MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: ⑤观察得出,当N足够大时,其密度函数服从正态分布,即满足 中心极限定理。

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

(完整word版)概率论与数理统计教程习题(大数定律与中心极限定理)

习题10(切比雪夫不等式) 一.填空题 1. 设随机变量X 的数学期望μ=)(X E ,方差2 )(σ=X D ,则由切比雪夫不等式,得 ≤≥-)3(σμX P . 2. 随机掷6枚骰子,用X 表示6枚骰子点数之和,则由切比雪夫不等式,得≥<<)2715(X P . 3. 若二维随机变量),(Y X 满足,2)(-=X E ,2)(=Y E ,1)(=X D ,4)(=Y D , 5.0),(-=Y X R ,则由切比雪夫不等式,得≤≥+)6(Y X P . 4. 设ΛΛ,,,,21n X X X 是相互独立、同分布的随机变量序列,且0)(=i X E ,)(i X D 一致有界),,,2,1(ΛΛn i =,则=<∑=∞ →)( lim 1 n X P n i i n . 二.选择题 1. 若随机变量X 的数学期望与方差都存在,对b a <,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。 ①)(b X a P <<; ②))((b X E X a P <-<; ③)(a X a P <<-; ④))((a b X E X P -≥-. 2. 随机变量X 服从指数分布)(λe ,用切比雪夫不等式估计≤≥ -)1 (λ λX P ( ). ①λ; ②2 λ③4 λ; ④ λ 1 . 三.解答题 1. 已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若7300)(=X E , 2700)(=X D ,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。 2. 如果n X X X ,,,21Λ是相互独立、同分布的随机变量序列,μ=)(i X E ,

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

中心极限定理与大数定理的关系

渤海大学学士学位论文 题目: 中心极限定理与大数定理的关系 系别: 渤海大学 专业: 数学系 班级: 2002级1班 姓名:于丹 指导教师:金铁英 完成日期:2006年5月19日 中心极限定理与大数定理的关系 于丹 (渤海大学数学系辽宁锦州 121000 中国) 摘要:中心极限定理是概率与数理统计的一个重要分支,大数定理和中心极限定理都是讨论的随机变量序列的极限问题,它们是概率论中比较深入的理论结果。 本篇论文从研究大数定理开始,然后由大数定理以及收敛性引出了中心极限定理,最后通过对定理在实际应用中的举例和定理的一些反例的研究使我们弄清中心极限定理的内涵与外延,进一步弄清了大数定理与中心极限定理之间的关系。 关键词:大数定理中心极限定理收敛性 The relation of the central limit theorem and large numbers law Yu Dan (Department of Mathematics Bohai University Liaoning jinzhou 121000 China) Abstract:The Central limit theorem is an important branch of probability and mathematical statistic. The large numbers law and the central limit theorem is limit question of random variable sequence .They are the quite thorough theory result in the theory of probability. This paper commences from large numbers law,then the central limit theorem is cited by large numbers law and convergence.Eventually,we can understand connotation and extension of the central limit theorem by its examples and relationship between large numbers law and the central limit theorem . Key words:large numbers law ; the central limit theorem ; convergence. 引言

数理统计作业二--用数学实验的方法验证大数定理和中心极限定理(精编文档).doc

【最新整理,下载后即可编辑】 验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式=RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N 个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k ,k=1,2,3······来验证中心极限定理。因为E k ,k=1,2,3······之间是独立同分布,所以)5.0,(~E n 1k k n B ∑=。由中心极限定理可知,当n 的取值足够大时,∑=n 1k k E 这一随机变量的分布与正太分布具有很好的近似,下面用MATLAB 软件分别画出n 取不同值时∑=n 1k k E 的分布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N (5,2.5)。 MATLAB 结果图: MATLAB 源程序:

②当n=20时,对应正态分布为N(10,5)。MATLAB结果图: MATLAB源程序:

③当n=30时,对应正态分布为N(15,7.5)。MATLAB结果图: MATLAB源程序:

④当n=40时,对应正态分布为N(20,10)。MATLAB结果图: MATLAB源程序:

大数定理和中心极限定理

大数定理 概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。 发展历史 1733年,德莫佛—拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了二项分布的极限分布是正态分布。拉普拉斯改进了他的证明并把二项分布推广为更一般的分布。1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法。这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”。20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进展。伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理。 表现形式 大数定律有若干个表现形式。这里仅介绍高等数学概率论要求的常用的三个重要定律:?切比雪夫大数定理 设 是一列两两不相关的随机变量,他们分别存在期望 和方差 。若存在常数C使得: 则对任意小的正数ε,满足公式一: 将该公式应用于抽样调查,就会有如下结论:随着样本容量n的增加,样本平均数将接近于总体平均数。从而为统计推断中依据样本平均数估计总体平均数提供了理论依据。 ?伯努利大数定律 设μ是n次独立试验中事件A发生的次数,且事件A在每次试验中发生的概率为P,则对任意正数ε,有公式二: 该定律是切比雪夫大数定律的特例,其含义是,当n足够大时,事件A出现的频率将几乎接近于其发生的概率,即频率的稳定性。 在抽样调查中,用样本成数去估计总体成数,其理论依据即在于此。 ?辛钦大数定律

中心极限定理证明

中心极限定理证明 目录 第一篇:中心极限定理证明 第二篇:大数定理中心极限定理证明 第三篇:中心极限定理 第四篇:中心极限定理应用 第五篇:中心极限定理 更多相关范文 正文 第一篇:中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史

上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.

第五章大数定律及中心极限定理

第五章 大数定律及中心极限定理 第一节引言、第二节大数定律 一、教学目的要求 1.了解大数定律及中心极限定理的提出和发展历史。 2.掌握引理:切贝雪夫不等式。 3.掌握常用的切贝雪夫大数定律、贝努里大数定理、辛钦大数定律的适用条件及定律内容,会解答有关问题。 二、教学方法 讲授法:讲授大数定律、中心极限定理的概念。 演绎法:推导切贝雪夫不等式、定理1,2,3及例题 三、重点难点 重点:掌握切贝雪夫不等式及握常用的大数定律。 难点:大数定律应用具体应用。 四、课时安排:2课时 五、教具准备:多媒体。 六、教学步骤: (一)明确目标:通过问题引入本次课的教学,明确大数定律、中心极限定理的概念,掌握贝雪夫不等式的推导及应用,定理1及2的证明,了解定理3的条件及应用。 (二)教学过程及教学内容: 1问题引入:大数定律及中心极限定理的提出和发展历史 2.内容: (1)定义5.2.1 设ΛΛ,,,,21n X X X 是随机变量序列,记 )(1 21n n X X X n Y +++= Λ, 若存在一个常数序列ΛΛ,,,,21n a a a ,使得对任意正数ε,有 {}1lim =<-∞ →εn n n a Y P 则称随机变量序列{}n X 服从大数定律(Law of Great Numbers )。 (2)定义5.2.2 设ΛΛ,,,,21n X X X 是随机变量序列,a 是一个常数,若对任意正数ε,有 {}1lim =<-∞ →εa X P n n 则称随机变量序列{}n X 依概率收敛(Convergence In Probability)于常数a ,记为:a X P n ?→?。 (3)推论:可以证明:若a X P n ?→? ,b Y P n ?→?,),(y x g 在点),(b a 连续,则有:

抽样技术上机实验_中心极限定理验证

均匀分布中心极限定律的实现: clc clear n=200000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; sigma=1/12; population=0:0.001:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-0.5)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%% 两点分布的实现: clc clear n=10000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; p=0.5; sigma=p*(1-p); population=0:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-p)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 两点分布1以概率0.4发生

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

两点分布和中心极限定理(总)

两点分布和中心极限定理 1 两点分布 伯努利分布(the Bernoulli distribution),又名两点分布或者0-1分布,是一个离散型概率分布,为纪念瑞士科学家雅各布·伯努利而命名。若伯努利试验成功,则伯努利随机变量取值为1。若伯努利试验失败,则伯努利随机变量取值为0。记成功的概率为p ,失败的概率为1q p =-。 pdf 为:()() 1if 111if 00otherwise x x p x f x p p p x -=??=-=-=??? CDF 为:()000111 for x F X q for x for x

2.1.1 定理 设n μ为n 重伯努利试验中事件A 出现的次数,已知每次试验事件A 出现的概率为p ,01p <<,则对任意x ,有 ()2/2 lim d x t n P x x e t --∞ →∞???<=Φ=?? ? 2.1.2 证明 随机变量n μ可表示为n 个独立的服从()1,B p 分布的随机变量 ()1,2, ,i X i n =和和,即1 n n i i X μ==∑,而()i E X p =,()()1i D X p p =-, 1,2, ,i n =,由独立同分布的中心极限定理有: 2/2lim lim d n i x t n n X np x x t -→∞→∞?? - ?????<=<=???? ? ∑? 由此定理可知,正态分布是二项分布(两点分布)的极限分布,因此,当n 很大时,有如下所示的近似计算二项分布的常用方法: ()() ()()2 1 2/2121d m n m m m m t n n m C p p P t P m m e βα μβα-=-= -??=<<≈=≤≤Φ-Φ∑ 其中()x Φ为()0,1N 的分布函数,且 αβ= = 2.2 中心极限定理的证明 设{}i ξ是独立随机变量序列,i ξ服从相同分布,且()i E ξμ=,()20i D ξσ=>,则当n →∞时,有:

中心极限定理证明

中心极限定理证明)题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地 位。参考文献 [1]邓永录著应用概率及其理论基础.清华大学出版社。 [2]魏振军著概率论与数理统计三十三讲.中国统计出版社。 [3]程依明等著概率论与数理统计习题与解答.高等数学出版社。 第五篇:中心极限定理 中心极限定理 中心极限定理(central limit theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a 和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理 设μn是n次独立试验中事件a发生的次数,事件a在每次试验中发生的概率为p,则当n无限大时,频率设μn / n 趋于服从参数为的正态分布。即: 该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设 差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方 。 记,如果能选择这一个正数δ>0,使当n→∞ 时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x ,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

中心极限定理发展

概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。1920年,G.波伊亚称这类定理为中心极限定理。它是概率论中最重要的一类定理,有着广泛的实际背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。 独立随机变量的中心极限定理 历史上最初的中心极限定理是讨论 n重伯努利试验(见二项分布)中,事件A出现的次数μn渐近于正态分布的问题。若记事件A出现的概率为p(A)=p,不出现的概率为q=1-p,1716年前后,A.棣莫弗对p=1/2作了讨论,随后,P.-S.拉普拉斯推广到一般情形,得到:当-∞<α0,使当 那么当n→∞,的分布渐近于标准正态分布 ,即

随着特征函数(见概率分布)的引入,中心极限定理的研究得到了很快的发展。20世纪20年代,Y.W.林德伯格和P.莱维证明了林德伯格-莱维定理:对于独立同分布的随机变量序列{x n},当Exk=α及varxk=ζ2有限时,部分和S n的标 准化的分布渐近于标准正态分布。它在数理统计的大样本理论中有重要的应用。1935年,林德伯格和W.费勒又进一步解决了独立随机变量 序列的中心极限定理的一般情形,即林德伯格-费勒定理: 且费勒条件成立,当且仅当林德伯格条件成立,即对任给正实数η, , 式中F k(x)=p(xk≤x)。这个结果使长期以来作为概率论中心议题之一的关于独立随机变量序列的中心极限定理得到根本解决。前述诸结果都是它的推论。 此后中心极限定理的研究基本上围绕几个方面进行:一是减弱对随机变量独立性的要求,考虑具有某种相依性的随机变量;一是讨论向标准正态密度函数收敛的问题;再就是估计向正态分布收敛的速度及有关问题。 局部极限定理 向正态密度函数收敛的问题虽然在概率论的早期工作中就出现了,但是一般性结果直至20世纪中期才得到。在棣莫弗-拉普拉斯定理形成的过程中,首先解决的是,在 n重伯努利试验中,事件 A出现的次数μn等于k的概率 p n(k)=p(μn=k)渐近于正态密度的问题,即所谓棣莫弗-拉普拉斯局部极限定理:在 任给的有限区间[с,d]中,对于满足的k,一致地成立, ,式中是标准正态密度函数。这一结论的推广就是讨论取值为b+Nk(N=0,±1,…)的独立随机变量序列{x k}的相应问题,即格点极限定理。对于独立同分布情形,1948年Б.Β.格涅坚科给出了相当简明的充分必要条件;对于独立非同分布情形,于50年代 也给出了充分条件。当独立随机变量序列{xk}的标准化部分和的密度函数

相关文档
相关文档 最新文档