文档库 最新最全的文档下载
当前位置:文档库 › 摆动从动件圆柱凸轮机构的设计误差分析

摆动从动件圆柱凸轮机构的设计误差分析

摆动从动件圆柱凸轮机构的设计误差分析
摆动从动件圆柱凸轮机构的设计误差分析

·14·机械2005年 第32卷 增刊

摆动从动件圆柱凸轮机构的设计误差分析

王勇

(合肥学院机械工程系,安徽合肥 230022)

摘要:分析了摆动从动件圆柱凸轮机构误差产生原因,建立了数学模型,并给出其实际运动规律的方程。通过应用Matlab 及Sumilink软件对该种机构的误差进行了仿真求解,得到与实际应用相吻合的结果。这种方法对此类机构的设计有一定的指导意义。

关键词:摆动从动件;圆柱凸轮机构;误差分析;Matlab;Simulink

Analyse on design error for oscillating follower cylinder cam Mechanism

WANG Yong

(Dept. of Mechanical Engineering Hefei University,Hefei 230022,China)

Abstract:To analyze the cause of design error on Oscillating follower Cylinder Cam Mechanism,building the mathematics model,and affording the equation to conform to actual motion rule.Through simulation method about such mechanism using software Matlab and Simulink, attain to result in accordance with actual engineering application. The method has certain meaning to direct such mechanism.

Key words:oscillating follower;cylinder cam;error analyse;Matlab;Simulink

圆柱凸轮可以视为将移动凸轮卷成圆柱体演化而成的,但因主动件和从动件的运动不在同一个平面,圆柱凸轮机构属于空间机构。圆柱凸轮的设计一般是将圆柱面展成平面,按平面凸轮的方法来设计其展开轮廓曲线的。与直动从动件圆柱凸轮机构不同,摆动从动件凸轮机构的凸轮及从动件的运动是分别绕各自的交错轴转动,其运动轨迹是相互干涉的,工作时必然带来传动误差。这种误差主要在表现凸轮工作轨迹误差和凸轮有效平均半径误差,这两者是相互关联的。

1 设计模型及误差的产生

图1所示为摆动从动件圆柱凸轮机构的工作原理图。圆柱凸轮以角速度ω绕z轴负方向转动,摆杆相应地绕平行与y轴的轴线摆动,摆角为Ψ,摆杆的长度为l,圆柱的半径r m为圆柱凸轮的平均半径,设摆杆在初始位置(Ψ=0)与圆柱相切。

图1 摆动从动件圆柱凸轮机构的工作原理图1中,圆柱凸轮设计轨迹(理论轮廓曲线)为空间

曲线AC;但因受O点的回转副约束,从动件摆杆端点的实际轨迹是以O为圆心、杆长l为半径的平面圆弧AB,两者的差别即为摆动从动件圆柱凸轮机构的主要设计误差,这表明凸轮机构工作时,沿y轴线方向摆杆与凸轮存在相对滑动,摆杆的实际运动摆角会产生误差,角速度及角加速度也会出现较大误差。

图2为以投影图方式表达的摆动从动件圆柱凸轮机构。随着摆杆的运动,摆杆的端点从A点至B点,可视为圆柱凸轮的有效平均半径从O'A(=r m)增大至O'B,设凸轮匀速转动,则凸轮上与摆杆端点重合点的圆周速度是变化的,从而进一步说明摆杆的运动规律会出现失真。

图2 摆动从动件圆柱凸轮机构

2 摆杆实际的运动规律

从图2可知,当摆杆转动Ψ角时,摆杆端点与圆柱凸轮表面的接触处为C 点,在XOY 平面上,CO '与AO '的夹角的投影角α为:

m

r l l ψ

αcos arcsin

?= (1) 此时,凸轮理论上转角为φ,而实际的转角为:(φ-α)。

因此,可以得到摆动从动件实际运动规律为:

()()

()t t t φφαψψ=???

=?

(2) 式(2)中的φ为一非线性方程,可以用牛顿—辛普森方法求解,也可以用数学工具软件Matlab 的Simulink 仿真求解,这里采用的是后一种方法。

3 Simulink 法及仿真模型的建立

3.1 Simulink 法的优点

Matlab 软件有强大的计算、分析和绘图能力,其中Sumilink 工具箱可以为设计分析提供极大的便利。只要建立了仿真模型,甚至不用编程就很容易得到结果,并能自动绘图。 3.2 实例

为了便于说明这种方法,这里引入数据见下表:

表1 计算数据

凸轮平均半径 r m =25mm

摆杆长度 l =75mm 凸轮角速度 ω=10rad/r 摆角范围 0 ~24 

推程运动角 φ1 =120 远休止角 φ2 =120 回程运动角 φ3 =120 静休止角 φ4 =0 推程运动规律

匀速运动

回程运动规律

匀速运动

将有关数据分别代入式(1)、式(2),并化简: ))cos 1(3arcsin(ψα?×= (3) ))cos 11(3arcsin(ψ???×?=t (4) 推程运动:

t ?ψ2.01= (5) 远休止:

242=ψ (6) 回程运动:t ωψ2.0243?= (7) 3.3 建立Sumilink 模型

根据上面的数据和公式,建立Sumilink 模型如图3。

4 模型说明及结果分析

图3 中,模块Multiport Switch 是为了表达从动件的推程、远休止及回程等运动规律,这部分也可以用一个M 程序实现。模块Theory Curve 和模块Real Curve ,分别显示从动件角位移运动的理论曲线和实际曲线。为了将这两种曲线作个对比,用模块Mux 将数据引入Matlab 工作空间,绘制图形见图4。

图3 Sumilink 模型

从图4可以看到,φ=0°时,误差δ=0°,当从动

件的摆角增大,实际误差也随之增大,该例最大误差分别为:推程φ=105°时,误差δ=+3°;回程φ=241°时,误差δ=-2.5°。

为了减少实际误差,将从动件摆杆的安装位置调整到摆动工作范围的中间位置,即摆角的工作范围:ψ=-12~+12 ,其它条件不变,得到结果见图5。

图4从动件角位移的理论与实际曲线

图5 改变摆杆安装位置后的曲线

从图5可知,摆杆实际角位移在推程和回程分别由两段曲线组成。在φ=60°和φ=300°时,误差δ=0°。推程最大误差:φ=0°时,误差δ=+0.6°,φ=116°时,

误差δ=+0.7°

。回程最大误差φ=240°时,误差δ=-0.7°,φ=335°时,误差δ=-0.8°。故实际误差大为减小,这

与工程中的实际作法是相吻合的。

5 结论

从上述分析可知,摆杆的运动误差随摆角的增大而

增大。限定摆角的最大值,使摆杆的安装位置位于摆动工

(下转第17页)

即时显示,减少了传统设计过程中二维和三维在设计者头脑中的转换,符合人类的设计思维,避免了设计中的误区。通过人工智能、路径规划等理论相结合,完成阀的布置以及工艺孔的自动设计等功能。最终辅助设计者轻轻松松完成集成块的设计。使设计者如同直接面向集成块进行处理,以选取最佳方案[4]。设计过程中,因为设计者如同在真实的设计环境中,对各元件外形是否干涉、孔道是否连通可以随时发现随时改正,减少了一般设计方法的设计流程,提高了设计效率。

3 液压集成块虚拟设计的关键问题

利用虚拟工程和相关虚拟设计软件以及三维实体造型技术进行软件系统建模,完成虚拟环境的设计。

实现集成块孔道的自动布置是集成块设计的最关键问题,孔道布置涉及人工智能、空间路径规划等多专业知识,而且自动布孔要有相应规则作支撑,这些规则的制定又同设计者经验技术相关,突破个体经验,找出孔道自动布置的统一规则相当关键。

虚拟环境大多采用多边形格式,而CAD环境常采用参数建模,导致虚拟环境到CAD环境的数据交换能力非常薄弱,二者的数据交换接口设计非常关键,它要解决IGES、DXF和STEP等数据接口只能提供几何数据转换的问题;也要解决虚拟设计系统与CAD在图形输出和模型操纵方法不同而导致二者数据不能很好共享的问题。

4 结束语

虚拟技术应用到液压集成块设计中,不但可使设计者有身临其境的感觉,而且降低了集成块设计难度,减少了设计出错率,给设计者带来诸多方便,提高了设计效率。但现在虚拟设计的发展还存在许多问题。诸如虚拟环境与传统CAD设计环境的数据交换问题,现在的虚拟系统处理器计算能力不足、头盔式显示器分辨率太低、反馈系统的灵敏度不高等等,这些都制约了虚拟技术在液压集成块设计中的应用。但相信随着虚拟技术及其相关技术的飞速发展,虚拟技术必将在液压集成块设计中得到广泛应用。参考文献(略)

(上接第15页)

作范围的中间位置,可以减小摆动从动件凸轮机构的运动误差。

这种对摆动从动件圆柱凸轮机构的分析方法,可以确定运动误差的范围,也可据此对设计的凸轮进行修正,因此对摆动从动件圆柱凸轮机构的设计有一定的指导意义。

参考文献:

[1]郑文纬,吴克坚.机械原理(第七版)[M].北京:高等教育出版社,1997,7.

[2]范顺成. 机械设计基础[M].北京:机械工业出版社,2001,7.

[3]姚俊,马松辉.Simulink建模与仿真[M].西安:西安电子科技大学出版社,2002,8.

图2 虚拟CAD方式流程图

哈工大机械原理大作业 凸轮机构设计 题

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 一.设计题目 设计直动从动件盘形凸轮机构, 1.运动规律(等加速等减速运动) 推程 0450≤≤? 推程 009045≤≤? 2.运动规律(等加速等减速运动) 回程 00200160≤≤? 回程 00240200≤≤? 三.推杆位移、速度、加速度线图及凸轮s d ds -φ 线图 采用VB 编程,其源程序及图像如下: 1.位移: Private Sub Command1_Click() Timer1.Enabled = True '开启计时器 End Sub Private Sub Timer1_Timer() Static i As Single

Dim s As Single, q As Single 'i作为静态变量,控制流程;s代表位移;q代表角度 Picture1.CurrentX = 0 Picture1.CurrentY = 0 i = i + 0.1 If i <= 45 Then q = i s = 240 * (q / 90) ^ 2 Picture1.PSet Step(q, -s), vbRed ElseIf i >= 45 And i <= 90 Then q = i s = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2) Picture1.PSet Step(q, -s), vbGreen ElseIf i >= 90 And i <= 150 Then q = i s = 120 Picture1.PSet Step(q, -s), vbBlack ElseIf i >= 150 And i <= 190 Then q = i s = 120 - 240 * (q - 150) ^ 2 / 6400 Picture1.PSet Step(q, -s), vbBlue ElseIf i >= 190 And i <= 230 Then

滚子摆动从动件凸轮设计matlab程序

disp ' ******** 滚子摆动从动件凸轮设计 ********' disp '已知条件:' disp ' 凸轮作顺时针方向转动,从动件做摆动' disp ' 从动件在推程作等加速/等减速运动,在回程作等加速等减速运动' rb =52;rt = 10;qm=15;ft = 60;fs = 10;fh = 60;alp = 35;a=140;l=122;q0=asin(rb/a)*180/pi; fprintf (1,' 基圆半径 rb = %3.4f mm \n',rb) fprintf (1,' 滚子半径 rt = %3.4f mm \n',rt) fprintf (1,' 起始角度 q0= %3.4f mm \n',q0) fprintf (1,' 最大摆动角度 qm = %3.4f mm \n',qm) fprintf (1,' 推程运动角 ft = %3.4f 度 \n',ft) fprintf (1,' 远休止角 fs = %3.4f 度 \n',fs) fprintf (1,' 回程运动角 fh = %3.4f 度 \n',fh) fprintf (1,' 推程许用压力角 alp = %3.4f 度 \n',alp) hd= pi / 180;du = 180 / pi; %角度弧度互换 d1 = ft + fs;d2 = ft + fs + fh; disp ' ' disp '计算过程和输出结果:' disp ' 1- 计算凸轮理论轮廓的压力角和曲率半径' disp ' 1-1 推程(等加速/等减速运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft);vt=zeros(ft);st1=zeros(ft);at=zeros(ft); at = zeros(ft);atd = zeros(ft);pt = zeros(ft); for f = 1 : ft if f <= ft / 2 s(f)=2*(qm/ft^2)*f^2;st1(f)=s(f);s = s(f); %推程加速方程式 ds(f)=(qm/ft^2)*f;vt(f)=ds(f);ds = ds(f); d2s(f)=4*qm/ft;at(f)=d2s(f);d2s = d2s(f); else s(f)=qm-2*qm*(ft-f)^2/ft^2;st1(f)=s(f); s = s(f); %推程减速方程式 ds(f)=4*qm*(ft-f)/ft^2;vt(f)=ds(f);ds = ds(f); d2s(f)=-4 *qm/ft^2;at(f)=d2s(f);d2s = d2s(f); end at(f)= atan((-l*(1-ds))/(a*sin((s+q0)*hd))-(-1)*cos((s+q0)*hd)/sin((s+q0)*hd));atd(f) = at(f) * du; %推程压力角的角度和弧度表达式 p1= -a*sin(f*hd)+l*sin((s+q0-f)*hd)*(ds-1); p2= a*cos(f*hd)+l*cos((s+q0-f)*hd)*(ds-1); p3=-a*cos(f*hd)+l*(ds-1)^2*cos((s+q0-f)*hd)+l*d2s*sin((s+q0-f)*hd); p4=-a*sin(f*hd)-l*(ds-1)^2*sin((s+q0-f)*hd)+l*ds*cos((s+q0-f)*hd); pt(f)= (p1^2+p2^2)^1.5/(p1*p4-p2*p3) ;p = pt(f);

直动从动件盘形凸轮机构设计说明书

机械原理大作业二直动从动件盘形凸轮机构设计任务书 课程名称:机械原理 设计题目:盘形凸轮机构设计(20) 院系:机电工程学院 班级:1508104 设计者:关宇珩 学号:1150810423 指导教师:陈明 设计时间:2017.6.15 哈尔滨工业大学机械设计制造

目录 一.凸轮设计要求 (1) 二.凸轮轮廓设计数学模型 (3) 三.计算流程框图 (4) 四.matlab程序 (5) 五.计算结果与分析 (10)

一.凸轮设计要求

二.凸轮轮廓设计数学模型 1.确定凸轮偏心距与基圆半径(mm ) 通过matlab 对已给s 方程求导,通过许用压力角做斜率已知的直线,找出其与线图的切线,并找出切线的y 轴截距。 由于最大截距绝对值为65,则取偏心距3/56e =,基圆半径12/385r 0=,滚子半径 3/28r =。计算2200e -r s =。 2.建立压力角方程 已知方程: ??? ? ? ?+=e -d /ds arctan 0?α分段代入s 方程,计算升程和回程的压力角。 3.建立凸轮轮廓线的坐标方程 已知凸轮轴心在从动件左方。建立方程(理论轮廓线): ()??ecos sin s s x 0++=;()??esin -cos s s y 0+=; 建立方程(外包络实际轮廓线): ()() 2 2 d /dy d /dx d /dy r x X ??? ++=; ()() 2 2 d /dy d /dx d /dx r -y Y ??? +=; 4.建立曲率方程

已知方程: ()() 2 /322 2dx /dy 1dx /y d k += ; ; k /1R =通过参数方程的求导方法建立R ~ψ的方程。 三.计算流程框图 设时间ψ为未知量 对s ,v ,a 方程求导,绘制位移、速度、 加速度和?d /ds ~s 线图 利用许用压力角做已知斜率曲线,寻找与?d /ds ~s 线图相交的y 轴截距绝对值最大的直线为切线,取偏 心距e 、基圆半径r0、滚子半径 建立压力角方程 建立理论轮廓线和实际轮廓线的坐标方 程

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

虚拟样机Adams作业尖端摆动从动件凸轮机构设计

《产品设计与虚拟样机》 2013-11-26

尖端摆动从动件凸轮机构设计 北京航空航天大学机械工程及自动化学院(北京100191) 摘要 摆动从动件凸轮机构的设计通常采用的方法为反转法。在ADAMS中对凸轮机构的设计,需要对从动件添加运动规律函数,通过从动件与凸轮接触点位移曲线求解出凸轮轮廓曲线,再拉伸得到凸轮;而对于摆动件凸轮,若摆杆采用直杆,在仿真过程中,摆杆会与凸轮相交,因此摆杆设计为曲形,这样保证摆杆与凸轮接触基本是同一点接触且不会存在相交干涉,若依旧采用直杆作为摆杆,由于接触点是变动的,接触点曲线法不能得出凸轮的正确轮廓,应该在从动件上添加一条标志曲线,通过运动过程中标志曲线的包络线来得到凸轮轮廓,然后再获得凸轮。 关键词:摆动从动件凸轮机构;ADAMS;接触点;凸轮轮廓曲线;标志曲线

目录 1 摆动从动件凸轮机构设计要求 (1) 1.1 题目设计要求 (1) 1.2 题目分析........................................................................ 错误!未定义书签。 2 建立虚拟样机模型 (2) 2.1 设置工作空间及网格参数 (2) 2.2 创建摆杆模型 (3) 2.2.1 创建R100mm及R200圆曲线............................ 错误!未定义书签。 2.2.2 Boolean减运算得到摆杆................................. 错误!未定义书签。 2.3 创建凸轮模型............................................................... 错误!未定义书签。 2.4 创建凸轮副及驱动角速度........................................... 错误!未定义书签。 2.4.1 创建Marker点.................................................. 错误!未定义书签。 2.4.2 创建凸轮副........................................................ 错误!未定义书签。 2.4.3 添加驱动角速度................................................ 错误!未定义书签。 2.5 检查模型....................................................................... 错误!未定义书签。 3 仿真与后处理.......................................................................... 错误!未定义书签。 3.1 仿真模型....................................................................... 错误!未定义书签。 3.2 测试与后处理............................................................... 错误!未定义书签。 3.3 结果分析....................................................................... 错误!未定义书签。 4 结束语...................................................................................... 错误!未定义书签。参考文献: .. (12)

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程0 0240 190≤ ≤?,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮s d ds -φ 线图 本题目采用Matlab 编程,写出凸轮每一段的运动方程,运用Matlab 模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回程的运动方程 输入凸轮基圆偏距等基本参数 输出ds,dv,da 图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

圆柱分度凸轮机构的设计及凸轮的数控加工

文章编号:1004-2539(2002)04-0050-03 圆柱分度凸轮机构的设计及凸轮的数控加工 (山东大学自动化研究所, 山东济南 250061)  金作成 (山东诸城锻压机床股份有限公司, 山东诸城 262200) 陈龙宝 摘要 空间分度凸轮机构主要应用于冲压机械、包装机械、制药机械及需要固定转位的自动化机械 中。根据应用的场合、应用精度及分度数的不同,空间分度凸轮机构分为平行分度凸轮机构、弧面分度凸轮机构和圆柱分度凸轮机构3大类。本文主要介绍圆柱分度凸轮机构的设计及凸轮的数控加工。 关键词 圆柱分度凸轮 设计 数控加工 1 圆柱分度凸轮机构的设计 图1为圆柱分度凸轮机构的结构示意图,凸轮作 为主动轴,分度盘作为从动轴旋转。由于凸轮曲线是由曲线部分和直线部分组成,就形成了分度盘的间歇运动。圆柱分度凸轮机构尤其适用于分度数较多的自动机械中 。 图1 圆柱分度凸轮机构的结构示意图 1.1 分度数和分度角 分度数n 的大小是由所应用的自动机械决定的。这种形式的分度机构一般适合于n =6~60的情况。 n 太小时压力角太大,传动特性很差;n 过大时,结构 很复杂,分度盘尺寸过大,转动惯量限制其不能高速运转或消耗功率过大。n 确定之后,分度盘的分度角则为Q 10=Q h =360°/2n 。1.2 分度盘直径 分度盘的直径与机构的外形尺寸和分度数有关,从图1可见,从动滚子之间的距离H 应大于工作机构 的最大外形尺寸A 。留一定空隙的σ。一般σ=10mm ~20mm ,于是从动盘滚子中心的节圆半径可用下式计算 l = H 2sin πn = A +σ 2sin π n 1.3 滚子尺寸 滚子半径通常取r 1=(0.25~0.30)H 滚子宽度通常取b 1=(0.8~1.2)r 1 1.4 凸轮尺寸 凸轮尺寸的确定原则是在保证接触应力最大值小于许用应力的前提下,尽可能紧凑一些。根据压力角计算公式可推出,圆柱凸轮的基圆直径可由下式算出 D 2= 2H V m Q 2h tan a m 式中,V m 为最大无因次速度;a m 为最大压力角。 圆柱凸轮的外径则为D 2e =D 2+b 0,凸轮槽深度 h 一般应略大于滚子宽度b 0。在确定凸轮体宽度B 2 时,为了保证分度运动时的连续性,应有适当的啮合重叠段为宜。在图1所示的机构中,B 2的取值范围为2(1-r 1)>B 2>H 。1.5 中心距 中心距是凸轮中心线与分度盘中心线之间的距离。可以用下式求得 c =l cos π n ±a 式中,a 为凸轮中心线偏离滚子起始与终止位置中心连线的距离,一般情况下a =0。凸轮中心线与分度盘基准面的距离取决于凸轮体外径D 2e 、滚子销轴向尺寸和分度盘厚度等结构参数的选取,应尽量使凸轮外缘靠近分度盘底面,以减少滚子销轴的悬臂分度。1.6 结构形式 圆柱分度的结构形式大体分3种,一种是凸脊定位,另有偏凸脊定位,还有槽定位。由于凸脊定位精度高,所以凸脊定位形式较常见。1.7 凸轮的动程角与动静比 由于分度凸轮主要功能就是实现间歇运动,因此对动静比的要求就非常严格,对动程角也有一定要求。动程角的大小是由用户提出的。但是通常希望动静比 5 机械传动 2002年

第九章凸轮机构及其设计

第九章凸轮机构及其设计 第一节凸轮机构的应用、特点及分类 1.凸轮机构的应用 在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。 例1内燃机的配气机构 当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。 例2自动机床的进刀机构 当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。 2.凸轮机构及其特点 (1)凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆动或移动的。推杆是被凸轮直接推动的构件。因为在凸轮机构中推杆多是从动件,故又常称其为从动件。凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。 (2)凸轮机构的特点

1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。 2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 3.凸轮机构的分类 凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。 (1)按凸轮的形状分 1)盘形凸轮(移动凸轮) 2)圆柱凸轮 盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。移动 凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作 出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种 空间凸轮机构。盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。 (2)按推杆的形状分 1)尖顶推杆。这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2)滚子推杆。滚子推杆由于滚子与凸轮轮廓之间为滚动摩擦,所以磨损较小,故可用来传递较大的动力,因而应用较广。

机械原理试题及答案3

第六章凸轮机构及其设计 一、填空题 1、凸轮机构是凸轮、和机架组成的高副机构。 2、凸轮机构中,凸轮与从动件的接触处,是以点或线相接触,形成副。 3、凸轮按形状分为凸轮、移动凸轮和圆柱凸轮。 4、凸轮按形状分为盘形凸轮、凸轮和圆柱凸轮。 5、凸轮按形状分为盘形凸轮、移动凸轮和凸轮。 6、按从动件与凸轮的接触形式可分为从动件、滚子从动件和平底从动件三种类型。 7、按从动件与凸轮的接触形式可分为尖底从动件、从动件和平底从动件三种类型。 8、按从动件与凸轮的接触形式可分为尖底从动件、滚子从动件和从动件三种类型。 9、按从动件的运动形式分,凸轮机构有从动件和摆动从动件凸轮机构两大类。 10、按从动件的运动形式分,凸轮机构有直动从动件和从动件凸轮机构两大类。 二、选择题 1、凸轮机构中,从动件的运动规律取决于。 A、凸轮轮廓的大小 B、凸轮轮廓的形状 C、基圆的大小 2、设计凸轮机构时,凸轮的轮廓曲线形状取决于从动件的。 A、运动规律 B、运动形式 C、结构形状 3、等速运动规律的凸轮机构,从动件在运动开始和终止时,加速度值为。 A、零 B、无穷大 C、常量 4、等速运动规律的凸轮机构,从动件在运动开始和终止时,将引起冲击。 A、刚性 B、柔性 C、无 5、等加速等减速运动规律的凸轮机构将引起。 A、刚性 B、柔性 C、无 6、简谐运动规律的凸轮机构将引起。 A、刚性 B、柔性 C、无 7、根据工作经验,建议直动从动件凸轮机构推程许用压力角等于。 A、30° B、0° C、90° 8、为防止滚子从动件运动失真,滚子半径必须凸轮理论廓线的最小曲率半径。 A、< B、> C、>= 9、凸轮机构中,采用导路偏置法,可使推程压力角减小,同时回程压力角。 A、增大 B、减小 C、不变 10、凸轮机构中,基圆半径减小,会使机构压力角。 A、增大 B、减小 C、不变 三、判断题 1、在其他条件不变的情况下,基圆越大,压力角越大。() 2、在设计凸轮机构时,应保证凸轮轮廓的最大压力角不超过许用值的前提下,尽可能缩小凸轮的尺 寸。() 3、在设计凸轮机构时,为保证凸轮轮廓的强度,应尽可能增大凸轮的尺寸。() 4、在凸轮机构中,若从动件在推程和回程采用等速运动,则运转平稳,无冲击。()

机械原理大作业3凸轮结构设计说明

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构设计 院系:机电工程学院 班级: 设计者: 学号: 指导教师:丁刚明 设计时间: 工业大学机械设计

1.设计题目 如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。 表一:凸轮机构原始参数 序号升程(mm) 升程运动 角(o)升程运动 规律 升程许用 压力角 (o) 回程运动 角(o) 回程运动 规律 回程许用 压力角 (o) 远休止角 (o) 近休止角 (o) 12 80 150 正弦加速 度30 100 正弦加速 度 60 60 50 2.凸轮推杆运动规律 (1)推杆升程运动方程 S=h[φ/Φ0-sin(2πφ/Φ0)]

V=hω1/Φ0[1-cos(2πφ/Φ0)] a=2πhω12sin(2πφ/Φ0)/Φ02 式中: h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算) (2)推杆回程运动方程 S=h[1-T/Φ1+sin(2πT/Φ1)/2π] V= -hω1/Φ1[1-cos(2πT/Φ1)] a= -2πhω12sin(2πT/Φ1)/Φ12 式中: h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/6 3.运动线图及凸轮线图 运动线图: 用Matlab编程所得源程序如下: t=0:pi/500:2*pi; w1=1;h=150; leng=length(t); for m=1:leng; if t(m)<=5*pi/6 S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi)); v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6); a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度 elseif t(m)<=7*pi/6 S(m)=h; v(m)=0; a(m)=0; % 求远休止位移,速度,加速度 elseif t(m)<=31*pi/18 T(m)=t(m)-21*pi/18; S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi)); v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9))); a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9)); % 求回程位移,速度,加速度

弧面分度凸轮的设计

毕业设计 题目弧面分度凸轮的设计 学院机械工程学院 专业工业工程 姓名冯堃 学号 20050407069 指导教师王红岩 二OO九年六月十日

弧面分度凸轮的设计 The Design of Roller Gear Indexing Cam 专业:工业工程 学生:冯堃 指导教师:王红岩 济南大学机械工程学院 二零零九年六月

目 录 摘 要 ............................................................i ABSTRACT .. (ii) 第一章 绪论 ...................................................- 1 - 1.1 课题研究的背景和意义 .................................................................. - 1 - 1.2 分度运动 .......................................................................................... - 1 - 1.3 从动系统的工作原理 ...................................................................... - 2 - 1.4 凸轮驱动系统分度机构 .................................................................. - 3 - 1.4.1精密分度凸轮机构的基本类型 ............................................... - 3 - 第二章 弧面凸轮设计中基本参数的确认 .............................- 5 - 2.1 弧面分度凸轮机构的基本形式与工作特点 ..................................... - 5 - 2.2 运动的必要条件——凸轮曲线的选择 ............................................. - 6 - 2.3 选择曲线时考虑的运动学参数 ......................................................... - 8 - 2.4 弧面分度凸轮机构的主要运动参数 ................................................. - 9 - 2.4.1 凸轮分度廓线头数H、转盘滚子数Z与转盘分度书I之间的 关系 .................................................................................................................... - 9 - 2.4.2 凸轮与转盘在分度期与停歇期的运动参数 .......................... - 9 - 2.4.3动停比k 与运动系数τ ......................................................... - 10 - 2.4.4 啮合重叠系数ε .................................................................... - 10 - 2.5弧面分度凸轮机构的主要几何尺寸计算 ........................................ - 11 - 2.5.1凸轮节圆半径1p r ,转盘节圆半径2p r 与中心距C ............... - 11 - 2.5.2许用压力角p a ...................................................................... - 11 - 2.5.3转盘节圆半径2p r .................................................................... - 11 - 2.5.4滚子数z 、相邻两滚子轴线间夹角z φ、滚子半径ρ与宽度b . - 11 - 2.5.5凸轮的主要尺寸 ..................................................................... - 12 - 2.5.6装上滚子后转盘的尺寸 ......................................................... - 13 -

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得: ????? ???? ??-=512sin 215650?ππ?S ;

?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

移动从动件盘形凸轮机构中

第4章习题 4-1 移动从动件盘形凸轮机构中,凸轮以转速为400r/min等速回转,工作要求从动件的运动规律如图4-6所示;当凸轮转速90°时,从动件在起始位置停歇不动;凸轮再转过90°时,从动件上升38.1mm;当凸轮又转过90°时,从动件停歇不动;当凸轮转过一周中剩余的90°时,从动件返回原处。试设计从动件的运动规律,并写出以坐标原点0为起点的从动件的位置方程式。 4-2 图4-7所示为凸轮机构从动件的速度曲线,它由四段直线组成。要求:在题图上画出推杆的位移曲线、加速度曲线;判断在哪几个益有冲击存在,是刚性冲击还是柔性冲击;在图示的F位置,凸轮与推杆之间有无惯性力作用,有无冲击存在。 ?=π/2,行程h=50mm。 4-3 在直动从动件盘形凸轮机构中,已知推程时凸轮的转角 求当凸轮转速ω1=10rad/s时,等速、等加速等减速、余弦加速度和正弦加速度四种常用的 ?。 基本运动规律的最大速度υmax、最大加速度αmax以及所对应的凸轮转角 0 4-4 在图4-8所示的从动件位置移线图中,AB段为摆线运动,BC段为简谐运动。若 ?要在两段曲线交界处的B点从动件的速度和加速度分别相等,试根据图中所给数据确定 2角的大小。 4-5 图4-9中给出了某直动从动件盘形凸轮机构的从动件的速度线图。要求: (1)画出其加速度和位移线图; (2)说明此种运动规律的名称及特点(υ、α的大小及冲击的性质)。 4-6 试求一个对心平底推杆盘状凸轮的廓线方程。已知推杆的平底与其导路垂直,基圆半径r b=45mm,凸轮顺时针方向匀速转动。要求当凸轮转动120°时,推杆以等加速等减速运动上升15mm;再转过60°时,推杆以正弦加速度运动回到原位置;凸轮转过一周中的其余角度时,推杆静止不动。 4-7 试以图解法设计一摆动滚子从动件盘形凸轮轮廓曲线。已知l OA=55mm,r o=25mm,l AB=50mm,r T=8mm,凸轮逆时针方向匀速转动。要求当凸轮转过180°时,推杆以余弦加速度运动向上摆动φ=25°;转过一周中的其余角度时,推杆以正弦加速度运动摆回到原位置。 4-8 用图解法设计摆动从动件圆柱凸轮。圆柱凸轮以等角速回转一圈时,从运件往复 ?=180°,从动件以等加速等减速摆动一次,其运动规律为:凸轮按图4-10所示方向回转

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

第6章凸轮--习题及答案(全)

习 题 6-6 在摆动从动件盘形凸轮机构中,从动件行程角max 30o ψ=,0120o Φ=,'0120o Φ=, 从动件推程、回程分别采用等加速等减速和正弦加速度运动规律,试写出摆动从动件在各行程的位移方程式。 解:(1)推程的位移方程式为 ()2 0max 02max 0max 00202 022 2?ψψ?ψψψ?????Φ?=??≤≤ ? Φ???? Φ? =-Φ-≤≤Φ?Φ? 代入数值得 ()2220230 060120240130-120 60120240o o o o o o o o o ??ψ?ψ?????=??=≤≤? ????? ?=?-≤≤?? (2)回程的位移方程式为 ()max 0''0001 21sin 3602o s s T T T πψψ?π ??????=?-+ Φ+Φ≤≤??? ?ΦΦ?????? =-Φ+Φ? 代入数值得: o 2401360360301sin 240120212012024030 30sin 3 24036042o o o o o o o o o o o o ?ψ?π???π ????-=?-+-??? ???? ?-=-+≤≤ 6-7 图中所示为从动件在推程的部分运动曲线,其0o s Φ≠,'0o s Φ≠,试根据s 、v 和a 之 间的关系定性的补全该运动曲线,并指出该凸轮机构工作时,何处有刚性冲击?何处有柔性冲击?

解:如图所示。 (1)AB段的位移线图为一条倾斜直线,因此,在这一段应为等速运动规律,速度线图为一条水平直线,其加速度为零。 (2)BC段的加速度线图为一条水平直线。因此,在这一段应为等加速运动规律,其速度线图为一条倾斜的直线,位移线图为一条下凹的二次曲线。 (3)CD段的速度线图为一条倾斜下降的斜直线。因此,在这一段应为等减速运动规律,其加速度线图为一条水平直线,位移线图为一条上凸的二次曲线。 该凸轮在工作时,在A处有刚性冲击,B、C、D处有柔性冲击。 6-8 对于图中的凸轮机构,要求: 1)写出该凸轮机构的名称; 2)在图上标出凸轮的合理转向; 3)画出凸轮的基圆; 4)画出从升程开始到图示位置时推杆的位移s,相对应的凸轮转角?,B点的压力角α;5)画出推杆的行程H。 解:1)偏置直动滚子推杆盘形凸轮机构。 2)为使推程压力角较小,凸轮应该顺时针转动。

滚子摆动从动件凸轮设计matlab程序

disp’******** 滚子摆动从动件凸轮设计********'disp '已知条件:’ disp ’凸轮作顺时针方向转动,从动件做摆动’ disp’从动件在推程作等加速/等减速运动,在回程作等加速等减速运动’rb=52;rt= 10;qm=15;ft= 60;fs=10;fh = 60;alp = 35;a=140;l=122;q0=asin(rb/a)*180/pi; fprintf (1,’基圆半径 rb =%3、4f mm\n',rb) fprintf(1,’滚子半径 rt =%3、4fmm \n’,rt) fprintf (1,' 起始角度q0= %3、4f mm \n’,q0) fprintf (1,'最大摆动角度 qm =%3、4fmm \n',qm) fprintf (1,'推程运动角 ft =%3、4f 度\n',ft) fprintf(1,' 远休止角fs = %3、4f 度 \n',fs) fprintf(1,' 回程运动角fh=%3、4f度 \n’,fh) fprintf(1,’推程许用压力角 alp=%3、4f 度\n',alp) hd= pi / 180;du = 180/pi; %角度弧度互换 d1 = ft+fs;d2=ft + fs+fh; disp ' ' disp '计算过程与输出结果:’ disp ’1-计算凸轮理论轮廓得压力角与曲率半径' disp '1-1 推程(等加速/等减速运动)' s=zeros(ft);ds = zeros(ft);d2s =zeros(ft);vt=zeros(ft);st1=zeros(ft);at=zeros(ft); at = zeros(ft);atd=zeros(ft);pt = zeros(ft); for f= 1: ft if f <=ft/ 2 s(f)=2*(qm/ft^2)*f^2;st1(f)=s(f);s=s (f);%推程加速方程式 ds(f)=(qm/ft^2)*f;vt(f)=ds(f);ds= ds(f); d2s(f)=4*qm/ft;at(f)=d2s(f);d2s=d2s(f); else s(f)=qm-2*qm*(ft-f)^2/ft^2;st1(f)=s(f);s=s(f);%推程减速方程式 ds(f)=4*qm*(ft-f)/ft^2;vt(f)=ds(f);ds= ds(f); d2s(f)=-4*qm/ft^2;at(f)=d2s(f);d2s = d2s(f); end at(f)=atan((-l*(1-ds))/(a*sin((s+q0)*hd))—(-1)*cos((s+q0)*hd)/sin((s+q0)*hd));atd(f)= at(f) * du; %推程压力角得角度与弧度表达式

机械基础答案解析

第三章凸轮机构 题3-1欲设计图示的直动滚子从动件盘形凸轮机构,要求在凸轮转角为00~900时,推杆以余弦加速度运动规律上升h= 20 mm,且取r0= 25 mm,e= 10 mm,r r= 5 mm。试求: (1)选定凸轮的转向ω,并简要说明选定的原因; (2)用反转法画出当凸轮转角φ=00~900时凸轮的工作廓线(画图的分度要求小于150); (3)在图上标注出φ1=450时凸轮机构的压力角α。 解答: 1.选位移比例尺 m/m m 001 .0 = S μ ,转角比例尺 /mm 04 .0弧度 = ? μ ,绘制从动件 位移曲线,见题解3-1图(a)。 2. 逆时针方向,使凸轮机构为正偏置,减小推程段凸轮机构的压力角。 3.将圆弧顶推杆视为滚子推杆,取尺寸比例尺 m/m m 001 .0 = l μ 作图,凸轮廓线如图 所示。 4.如图所示,当φ1=450时,α=14.50。 题3-1图(a)(b) 题解3-1图

题3-2图示为一摆动平底推杆盘形凸轮机构(001 .0 = l μ m/mm),已知凸轮的轮廓 是一个偏心圆,其圆心为C,试用图解法求: (1)凸轮从初始位置到达图示位置时转角φ0及推杆的角位移ψ0; (2)推杆的最大角位移ψmax及凸轮的推程运动角Φ; (3)凸轮从初始位置回转900时,推杆的角位移ψ90。 解题分析:作推杆的摆动中心所在的圆η→作基圆→作推杆的初始位置→按题目要求逐步求解。 解答: 1.求φ0及ψ0 (1)以O为圆心,OA长为半径作圆 η ;以O为圆心作圆切于凸轮,该圆即为基圆;作推杆与基圆和凸轮同时相切,得切点B0,A0B0即为推杆的初始位置。 (2)凸轮从初始位置到达图示位置时的转角就是A0O沿-ω方向转到AO时的角度,即φ0=330,推杆的角位移ψ0=20。 2.求ψmax及Φ 题3-2图 题解3-2图

相关文档
相关文档 最新文档