文档库 最新最全的文档下载
当前位置:文档库 › 两路语音PCM时分复用系统的设计

两路语音PCM时分复用系统的设计

两路语音PCM时分复用系统的设计
两路语音PCM时分复用系统的设计

摘要数字通信系统是采用数字信号来传递信息的通信系统,数字通信过程中主要涉及信源编码与译码、信道编码与译码、数字调制与解调等技术问题。而脉冲编码调制就是一种常用的信源编码方法,将模拟信号抽样、量化,直到转换成为二进制符号的基本过程。为了扩大通信系统链路的容量,在一条链路上传输多路独立的信号,为此引入了一种复用技术来实现多路信号共同传输的目的。

而在本系统设计中,所运用的复用技术是时分复用,同时基于现场可编程门阵列器件作为主控芯片,在Quartus II软件中使用硬件描述语言Verilog HDL编写PCM编译码和时分复用模块的程序,再对其进行波形仿真以验证程序的正确性,从而设计出语音信号的PCM编码与译码、时分复用的过程。本设计中,将两路语音信号通过外围硬件电路模块送至FPGA中进行PCM编码、译码处理,最后通过后级外围电路实现语音信号的重现。

关键词:语音脉冲编码调制时分复用FPGA

Design of Two-way V oice PCM System

by Time Division Multiplexing

ABSTRACT A digital communication system is a communication system that transmit information by using digital signal, and digital communication mainly relates to the source coding and decoding, channel coding and decoding, digital modulation and demodulation technology. Pulse code modulation is a common source coding, and it is that the analog signal sampling ,quantization ,until the transformation become the basic process of binary symbols. In order to expand the capacity of communication link system ,a transmission of multiple independent signal on a link, therefore introduction of a division multiplexing technology to achieve the purpose of multiplexing.

In this system design, we use a time division multiplexing technology, and based on the Field Programmable Gate Array, using Verilog HDL hardware description language to write PCM encoding and decoding and time division multiplexing module in Quartus II, then Waveform simulation to verify the correctness of the program, thus design a voice signal process of PCM encoding and decoding, time division multiplexing. In this system design, The two-way voice signal through the peripheral hardware circuit module is sent to the FPGA for PCM encoding and decoding, finally to achieve reproducible speech signal through the peripheral circuit. Key Words:V oice Pulse code modulation Time division multiplexing FPGA

目录

摘要................................................................ I ABSTRACT........................................................... I I 目录

1 引言 (1)

1.1 选题背景与意义 (1)

1.2 QuartusⅡ软件 (2)

1.3 FPGA的介绍 (3)

1.4 本文内容简介 (4)

1.5 实施过程简介 (4)

1.6 设计结果简介 (4)

2 基本原理介绍 (5)

2.1 模拟信号的数字化 (5)

2.1.1 采样定理 (5)

2.1.2 量化原理 (5)

2.1.3 A律13折线 (5)

2.2 脉冲编码调制 (7)

2.3 时分复用技术 (9)

2.4 PCM一次群帧结构 (10)

3 系统设计介绍 (11)

3.1 总体框图 (11)

3.2 外围硬件电路的介绍 (12)

3.2.1 拾音电路 (12)

3.2.2 仪用放大器 (12)

3.2.3 带通滤波器 (13)

3.2.4 抬升电路 (13)

3.2.5 A/D转换电路 (14)

3.2.6 D/A转换电路 (14)

3.2.7 功率放大器 (15)

3.3 基于FPGA的模块设计 (16)

3.3.1 系统时钟的设计 (16)

3.3.2 前端模块设计 (16)

3.3.3 后级模块设计 (18)

3.3.4 同步时钟的提取 (20)

3.3.5 整体FPGA系统原理框图 (20)

4 设计的结果 (21)

致谢 (22)

参考文献 (22)

附录 (23)

1 系统实物图 (23)

2 FPGA中主要模块程序 (24)

1 引言

1.1 选题背景与意义

在当今信息化极其高度的社会,信息和通信已经与现代社会的发展密不可分。随着科技革命步伐的推进,出现了模拟通信系统和数字通信系统两种方式,其中数字通信系统就是利用数字信号传递信息的通信系统,数字通信系统模型如图1所示,并且目前数字通信系统的发展速度已明显超过模拟通信系统,取缔了传统的通信系统,已成为当今通信的发展方向。数字通信系统因具有噪声不积累、抗干扰能力强,传输差错可控以及便于运用数字信号处理技术对数字信息进行处理、变换、存储等特点,从而在不同的通信业务领域中都得到了广泛的应用,成为当代通信技术的主流。

图1 数字通信系统模型

然而自然界的许多信息绝大部分是模拟信号,而模拟信号是不能够直接被系统所识别,必须将模拟信号采样、量化、编码将其转换成数字信号。脉冲编码调制(PCM)是把模拟信号变换为数字信号的一种最基本、最常用和最简单的编码方式,主要广泛的应用在语音传输,光纤通信、卫星通信这些领域中。

如今在实际的数字通信系统中,为了提高通信系统的利用率,常常采用多路复用的通信方式来传输信号。多路通信就是指把由多个不同信源所发出的信号经过技术将其组合成一个群信号,并经由同一信道进行传输,在接收端采用相应的技术再将这些群信号分离接收。常见的复用方式有:频分复用、时分复用以及码分复用。时分复用就是一种应用非常广泛的多路复用的通信方式。对于时分制多路电话通信系统,国际电信联盟(International Telecommunication Union, ITU)制定了两种准同步数字体系(Plesiochronous Digital Hierarchy,PDH)和两种同步

数字体系(Synchronous Digital Hierarchy,SDH)的建议。而ITU又提出两个PDH 体系的建议,即E体系和T体系,如今我国大陆使用的是PDH体系中的E体系。

1.2 QuartusⅡ软件

随着电子技术的快速发展,无论是日常生活中的家用电器,还是军事、航天领域中,电子技术的应用已经渗透到生活的各个方面。无处不在的电子应用需求,对电子技术的发展提出了更高的要求,从而电子设计自动化(Electronic Design Automation,EDA)技术就随着集成电路和计算机技术发展的潮流应运而生。EDA 技术是指以计算机为设计平台,融合了计算机技术、应用电子技术、信息处理及智能化技术的最新成果,设计者以计算机为工具,在EDA平台上,用硬件描述语言写成电路的设计工作,然后由计算机自动完成逻辑编译、化简、分割、优化、布局、布线和仿真,直至对特定目标芯片的适配编译、逻辑映像和编程下载等工作,是进行数字系统自动化设计的技术。

目前比较流行的EDA设计软件有Altera的QuartusⅡ,Xilink的ISE和Lattice 的ispEXPERT。QuartusⅡ是Altera公司的综合性CPLD/FPGA开发软件,覆盖了CPLD/FPGA开发的整个流程。它包含了整个可编程逻辑器件设计阶段的所有解决方案,提供了完整的图形用户界面,基于该工具,设计者们可以方便地完成数字系统设计的全过程。在设计的过程中QuartusⅡ可以支持原理图、VHDL、Verilog HDL以及AHDL等多种设计输入形式,内嵌自有的综合器以及仿真器,可以完成从设计输入到硬件配置的完整PLD设计流程。

Quartus II不仅提供逻辑设计、综合、布局和布线、仿真验证、对器件编程等功能,而且还充分支持Altera的IP核,包含了LPM/MegaFunction宏功能模块库,使得用户能够充分体验已经成熟化的模块,从而达到简化设计的复杂性和加快设计速度的目的。

此外,QuartusⅡ也可以与DSP Builder工具、Matlab/Simulink相结合,从而更加方便地实现各种DSP应用系统;QuartusⅡ同样也支持Altera的片上可编程系统(SOPC)开发,它是集系统级设计、嵌入式软件开发、可编程逻辑设计于一体的一种综合性的开发环境平台。

利用开发软件和编程工具对FPGA、CPLD等可编程逻辑器件进行系统性的设计开发的流程如图2所示。

图2 Quartus Ⅱ软件开发流程

1.3 FPGA的介绍

可编程逻辑器件(Programmable Logic Device,PLD)是一种半定制的集成电路,在其内部集成了大量的“与阵列”、“或阵列”和触发器等基本的电路单元,通过编程形成的网表文件,控制其内部的器件连接,获得所需要的电路设计。目前可编程逻辑器件的两种主要类型有现场可编程门阵列(Field Programmable Gate Array,FPGA)和复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。FPGA提供了最高的逻辑密度、最丰富的特性和最高的性能。它没有采用CPLD的“与-或”逻辑阵列来实现逻辑函数,而是采用了一种叫做查找表(Look-Up Table,LUT)的方式来实现逻辑函数的设计。它们两者的不同在于FPGA可以包含数量众多的LUT和触发器,可以实现更复杂的、更大规模的逻辑电路,从而避免了CPLD“与-或”阵列结构上的限制和触发器以及I/O端数量上面的限制。因此,FPGA成为了目前设计数字系统的首选器件之一。

FPGA内部结构包含了可配置逻辑模块(Configurable Logic Block,CLB)、可配置输入/输出模块(Input Output Block,IOB)和由可编程开关矩阵组成的可编程互连资源(Interconnect Resource,IR)三个部分。可配置逻辑模块CLB是FPGA 内的重要组成部分,是实现各种各样系统逻辑功能的基本单元,如加法器、组合逻辑、时序逻辑等运算功能。可编程的输入/输出模块IOB是用来配置FPGA芯片引脚与外部模块信号的传输方向及输出信号的驱动电流大小,通过编程可以将I/O引脚配置成输入、输出、双向以及高阻态。

在FPGA中,组合逻辑电路的功能是依靠LUT和数据选择器而实现的,而

触发器仍然是实现时序逻辑电路功能的基本电路。在LUT和数据选择器的基础上,适当增加触发器,就可构成既能够实现组合逻辑功能又可以实现时序逻辑电路的功能的数字系统。LUT本质上就是一个静态存储器(SRAM),在目前的FPGA 中广泛使用4个输入、1个输出的LUT,从而每一个LUT就可以看成一个具有4根地址线的16*1位的SRAM。当用户通过原理图或硬件描述语言描述一个逻辑电路以后,开发软件会自动计算逻辑电路的所有可能的结果,并把结果事先写入RAM中,这样每输入一个信号进行逻辑运算就等于输入一个地址进行查表,找出地址对应的内容,然后输出即可。

1.4 本文内容简介

本文内容分为4个章节,第一章阐述了现代通信的发展以及与本系统设计相关的软件和FPGA的介绍。第二章主要论述了与本系统设计相关的基本原理的介绍如采样定理、PCM编码、时分复用和PCM一次群帧结构。第三章介绍了系统设计硬件和软件的具体实现过程。第四章主要记录了调试过程中系统测试的参数和设计的结果。

1.5 实施过程简介

从本学期开始时,就开始着手毕业设计工作,经赵仕良老师每一周的讲解,大致明白系统设计的工作流程。于是就在Quartus II中开始编写模块程序,每一个模块的设计都是采用虚拟的数据进行波形仿真,确定该模块时序与仿真结果的正确无误后,再编写下一个模块程序的思路。最后在逐级连接起来进行仿真,以保证程序设计的无误。因波形仿真是为了确保各个时序的无误,故仿真时输入的数据时随意的,所以在FPGA各个模块的介绍时没有给出相应模块的波形仿真图。当FPGA每个模块正确之后,就开始硬件电路的设计与制作工作。外围电路制作完成之后就要开始调试电路的性能参数,以满足本系统设计的要求。最后将外围硬件电路与FPGA进行联合调试,得出设计结论。

1.6 设计结果简介

在两个拾音器接收端分别播放不同的音频,模拟信号经过一系列调理之后,经AD采集送入FPGA中进行编码、复用和位同步码插入过程,之后再传入信道,在接收端信号,先提取位同步码信息,再进行分接过程,最后进行译码,将译码的结果送至给DA转换器,之后再进行滤波操作,最后通过扬声器实现音频的重

现。最终实现设计的目标要求。

2 基本原理介绍

2.1 模拟信号的数字化

2.1.1 采样定理

奈奎斯特采样定理:对于带限于最高频率M ω的连续时间信号()x t ,如果以2s M ωω≥的频率进行理想采样,则错误!未找到引用源。可以唯一的由其样本

值错误!未找到引用源。来确定,并将错误!未找到引用源。2s M f f =定义成奈

奎斯特速率。模拟信号一般是在时间上连续的信号,经采样后得到的是一系列周期性的冲激脉冲,并且采样之后得到的离散冲激脉冲与原始连续模拟信号的形状并不一样。同时可以证明,对一个带宽有限的连续模拟信号进行抽样时,若采样速率足够的大,则所得到的这些采样值就能够完全代替原始的模拟信号,并且能够由这些采样值准确地恢复出原先的模拟信号波形。因而,采样定理为模拟信号的数字化奠定了理论基础。

2.1.2 量化原理

采样只是将时间轴上连续的模拟信号变换成了在时间轴上离散的信号,但仍然属于模拟信号范畴,因而必须将其经过量化才可以成为取值离散的抽样序列,即数字信号。在原理上,量化过程可以假想认为是在一个量化器中完成的,如图3所示。量化器的输入为m(kT),输出信号为()q m kT 。但实际上,量化与编码是结合在一起完成的。

(m )kT

图3 量化器 2.1.3 A 律13折线

量化的过程可以分为均匀量化和非均匀量化两种形式。假设模拟信号的电压取值范围在m 和n 之间,量化电平数为M ,则在采用均匀量化的量化间隔为

v m n M

-?= (1) 平均信号的量化信噪比为

0101020log 20log 26n S M n N ??=== ???

(dB) (2) (2)式也称为6dB 原理,其中n 为编码位数,10n log M =。故量化信噪比随着量化电平数M 的增大而改善提高。

然而在实际的工程应用中,对于给定的量化器,量化电平数M 和量化间隔错误!未找到引用源。是确定,所以量化噪声q N 也是确定的,但是信号的强度

可能会随着时间的变化而变化,当信号小时,信噪比就会小。为了改善小信号的量化信噪比,在实际应用中常常采用非均匀量化。

在非均匀量化时,量化间隔是随模拟信号采样值的不同而变化。当信号采样值小时,量化间隔也很小;信号采样值大时,量化间隔也变大。在实际应用中,非均匀量化在其量化之前,先将信号的采样值压缩,再进行均匀量化。

关于电话语音信号的压缩特性,ITU 制定A 压缩律和错误!未找到引用源。压缩律两种建议以及相应的近似算法13折线法和15折线法。目前,我国大陆就采用A 压缩律及相对应的13折线法。

A 压缩律是指符合一定表达式的对数压缩规律

101ln 1ln 111ln Ax x A A y Ax x A A

?<≤??+=?+?≤≤??+ (3) (3)式中:x 表示压缩器归一化后输入的电压值;y 表示压缩器归一化后输出的电压值;A 为常数,表示压缩的程度,通常A 取值是87.6。

根据A 律的表达式可以得出一条连续的平滑的曲线,但是在实际中很难实现。随着数字电子技术的发展A 律压缩特性可以使用数字电路来近似实现,13折线特性就是近似A 律的特性。13折线特性曲线如图4所示。

基于某SystemviewPCM时分复用多路系统设计

通信原理课程设计 基于Systemview的 PCM时分复用多路系统设计

课程设计题目: 基于Systemview的PCM时分复用多路系统设计课程设计内容与要求: (1)基于Systemview软件实现; (2)实现单路话音信号的抽样、压缩、均匀量化与编码得到PCM信号; (3)实现多路PCM信号的时分复用; (4)实现接收端的分接与译码; (5)考虑实现位同步电路; (6)观察输出信号的眼图,得出误码率-信噪比曲线;(7)分别选择不同特性信道时考察误码率-信噪比曲线。

一、设计目的 通过通信原理实验箱或者Systemview软件仿真进一步深化通信原理课程知识,培养学生的专业素质,提高其利用通信原理知识处理通信系统问题的能力,为今后专业课程的学习、毕业设计打下良好的基础。通过必要的工程设计、初步的科学研究方法训练和实践锻练,增强分析问题和解决问题的能力,了解通信系统的新发展。 二.设计原理 1 .PCM实验原理 脉冲编码调制是把模拟信号数字化传输的基本方法之一,它通过抽样、量化和编码,把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号,然后在信道中进行传输。接收机将收到的数字信号经再生、译码、平滑后恢复出原始的模拟信号。PCM系统的组成如图1-1所示。

话音信号先经过防混叠低通滤波器,得到限带信号(300Hz~3400Hz),进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码,转换成二进制码。 (a) 抽样 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。(b) 量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。模拟信号的量化分为均匀量化和非均匀量化。由于均匀量化存在的主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。

通信原理课程设计---基于Sysyemview的PCM时分复用多路系统设计

通信原理课程设计 学院: 信息科学与工程学院 班级: 通信0903 姓名: 学号: 指导老师:

课程设计任务书 课程设计题目: 基于Sysyemview的PCM时分复用多路系统设计 课程设计内容与要求: (1)基于Systemview软件实现; (2)实现单路话音信号的抽样、压缩、均匀量化与编码得到PCM 信号; (3)实现多路PCM信号的时分复用; (4)实现接收端的分接与译码; (5)考虑实现位同步电路; (6)观察输出信号的眼图,得出误码率-信噪比曲线; (7)分别选择不同特性信道时考察误码率-信噪比曲线。 1 .PCM实验原理 脉冲编码调制是把模拟信号数字化传输的基本方法之一,它通过抽样、量化和编码,把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号,然后在信道中进行传输。接收机将收到的数字信号经再生、译码、平滑后恢复出原始的模拟信号。PCM系统的组成如图1-1所示。

话音信号先经过防混叠低通滤波器,得到限带信号(300Hz~3400Hz),进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码,转换成二进制码。 2 .时分复用原理 时分复用就是将抽样周期分成若干个时隙,各路信号的抽样值编码按一定的顺序占用某一时隙,用一个信道传输多路数字信号,既一个物理信道分为多个逻辑信道。在现代交换机之间往往采用数字中继传输方式,将多路信号复接为一个基群,如我国采用的E制:基群传输数率为2048Kb/s。时分复用设备主要由复接器和分接器组成,示意图见图6,其中复接器完成时分复用功能,复接器完成解时分复用功能。

频分复用系统设计报告

《信息处理课群综合训练与设计》任务书学生姓名:黄在勇专业班级:通信1104班 指导教师:周建新工作单位:信息工程学院 题目: 频分复用 初始条件: Matlab软件、信号与系统、通信处理等。 要求完成的主要任务: 根据频分复用的通信原理,用matlab采集两路以上的信号(如语音信号),选择合适的高频载波进行调制,得到复用信号。然后设计合适的带通滤波器、低通滤波器,从复用信号中恢复出所采集的语音信号。设计中各个信号均需进行时域和频域的分析。 参考书: [1]陈慧慧、郑宾. 频分多址接入模型设计及MATLAB仿真计算(第三版). 高等教育出版社,北京: 2000 [2]李建新、刘乃安、刘继平. 现代通信系统分析与仿真MATLAB通信工 具箱. 西安电子科技大学出版社,西安: 2000 [3]邓华等. MATLAB通信仿真及应用实例详. 人民邮电出版社,北京: 2003 时间安排: 1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料; 2、课程设计时间为2周。 (1)理解相关技术原理,确定技术方案,时间2天; (2)选择仿真工具,进行仿真设计与分析,时间6天; (3)总结结果,完成课程设计报告,时间2天。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................................................................ I Abstract ................................................................................................................. II 1绪论 (1) 1.1设计目的 (1) 1.2设计内容 (2) 1.3设计要求 (2) 2频分复用通信系统模型 (3) 3频分复用系统方案设计 (6) 3.1语音信号采样 (6) 3.2语音调制信号 (7) 3.3 系统的滤波器设计 (8) 3.4信道噪声 (9) 4频分复用原理实现与仿真 (11) 4.1 语音信号的时域和频域仿真 (11) 4.2 复用信号的频谱仿真 (12) 4.3 传输信号的仿真 (13) 4.4 解调信号的频谱仿真 (14) 4.5恢复信号的时域与频域仿真 (16) 5 心得体会 (18) 附录I 源程序 (19) 附录II 参考文献 (24)

时分复用-解复用实验

固定及变速率时分复用、解复用实验 第一部分固定速率时分复用/解复用实验? 一、实验目得 1.掌握固定速率时分复用/解复用得同步复接/分接原理。 2.掌握帧同步码得识别原理。 3.掌握集中插入帧同步码时分复用信号得帧结构特点。 二、实验内容 1.搭建一个理想信道固定速率时分复用数字通信系统,使系统正常工作。 2.搭建一个理想信道固定速率时分解复用数字通信系统,使系统正常工作。 3.用示波器观察集群信号(FY_OUT)、位同步信号(BS)及帧同步信号(FS),熟悉它们得对应关 系。 4.观察信号源发光管与终端发光管得显示对应关系,直接观察时分复用与解复用得实验效果。 三、实验仪器 示波器,RC-GT-II型光纤通信实验系统。 四、基本原理 1.同步复接/分接原理 固定速率时分复用/解复用通常也称为同步复接/分接。在实际应用中,通常总就是把数字复接器与数字分接器装在一起做成一个设备,称为复接分接器(缩写为Muldex)。 图1、1 数字复接器得基本组成图1、2 数字分接器得基本组成图数字复接器得基本组成如图1、1所示。数字复接器得作用就是把两个或两个以上得支路数字信号按时分复接方式合并成为单一得合路数字信号。数字复接器由定时、调整与复接单元所组成。定时单元得作用就是为设备提供统一得基准时间信号,备有内部时钟,也可以由外部时钟推动。调整单元得作用就是对各输入支路数字信号进行必要得频率或相位调整,形成与本机定时信号完全同步得数

字信号。复接单元得作用就是对已同步得支路信号进行时间复接以形成合路数字信号。 数字分接器得基本组成如图1、2所示。数字分接器得作用就是把一个合路数字信号分解为原来支路得数字信号。数字分接器由同步、定时、分接与恢复单元所组成。定时单元得作用就是为分接与恢复单元提供基准时间信号,它只能由接收得时钟来推动。同步单元得作用就是为定时单元提供控制信号,使分接器得基准时间与复接器得基准时间信号保持正确得相位关系,即保持同步。分接单元与复接单元相对应,分接单元得作用就是把输入得合路数字信号(高次群)实施时间分离。分接器得恢复单元与复接器得调整单元相对应,恢复单元得作用就是把分离后得信号恢复成为原来得支路数字信号。 将低次群复接成高次群得方法有三种;逐比特复接;按码字复接:按帧复接。在本实验中,由于速率固定,信息流量不大,所以我们所应用得方式为按码字复接,下面我们把这种复接方式作简单介绍。 按码字复接:对本实验来说,速率固定,信息结构固定,每8位码代表一“码字”。这种复接方式就是按顺序每次复接1个信号得8位码,输入信息得码字轮流被复接。复接过程就是这样得:首先取第一路信息得第一组“码字”,接着取第二路信息得第一组“码字”,再取第三信息得第一组“码字”,轮流将3个支路得第一组“码字”取值一次后再进行第二组“码字”取值,方法仍然就是:首先取第一路信息得第二组码,接着取第二路信息得第二组码,再取第三路信息得第二组码,轮流将3个支路得第二组码取值一次后再进行第三组码取值,依此类推,一直循环下去,这样得到复接后得二次群序列(d)。这种方式由于就是按码字复接,循环周期较长,所需缓冲存储器得容量较大,目前应用得很少。 图1、3 按码字复接示意图 (a)第一路信息;(b)第二路信息;(c)第三路信息;(d)复接后2.本实验所用得同步复接模块得结构原理 本实验所用到得固定速率时分复用端得原理方框图如图1、4所示。这些模块产生三路信号时分复用后得FY_OUT信号,信号码速率约为128KB,帧结构如图1、5所示。帧长为24位,其中首位无定义,第2位到第8位就是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此FY_OUT信号为集中插入帧同步码时分复用信号。同时通过发光二极管来指示码型状态:发光二极管亮状态表示1码,熄状态表示0码。本实验中用到得电路,除并行码产生器与8选一电路就是由分立器件组成得外,其她电路全都在两片大规模集成电路XC95XL144TQ100-5(以下简称CPLD)

高速光时分复用系统的全光解复用技术

高速光时分复用系统的全光解复用技术 李利军,陈 明,范 戈 (上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200030) 摘要:作为高速光信号处理应用的一个分支,全光解复用技术涉及到半导体非线性光学多方面的问题,是实现高速光时分复 用(OT DM )系统的关键技术之一。文章对现有的OT DM 系统的全光解复用技术进行了综述,较为详细地描述了两类主流技术的工作原理,对两者的优缺点做了剖析。介绍了潜在的基于更高速全光开关的解复用新技术,并探讨了全光解复用技术的演进思路。 关键词:光时分复用系统;全光开关;解复用中图分类号:T N914 文献标识码:A 文章编号:1005-8788(2005)06-0027-04 A survey of a ll -opti ca l de m ulti plex i n g techn i ques for h i gh speed O TDM syste m s L IL i 2jun,CHEN M i n g,FAN Ge (Nati onal Laborat ory on Local Fiber 2Op tic Communicati on Net w orks,Shanghai J iaot ong University,Shanghai 200030,China )Abstract:A s a branch app licati on of high s peed op tical signal p r ocessing .The all 2op tical de multi p lexing technol ogy relates t o many as 2pects of se m iconduct or non 2linear op tics and is one of the key technol ogies t o realize the high 2s peed op tical ti m e 2dividi on multi p lexing (OT DM )syste m.This paper gave a survey of current all 2op tical de multi p lexing technol ogies,the p rinci p les of operati on of t w o p re 2dom inant technol ogies have been described in detail,their advantages and disadvantages were analyzed .The potential demulti p lexing technol ogy based on higher 2s peed op tical s witch was als o intr oduced and the evoluti on r oute of all 2op tical de multi p lexing technol ogy dis 2cussed in this paper . Key words:op tical ti m e -divisi on multi p lexing (OT DM )syste m s;all -op tical gate;de multi p lexing 光时分复用(OT DM )技术是一种能有效克服电子电路带宽“瓶颈”、充分利用低损耗带宽资源的扩容方案。与波分复用(WDM )系统相比,OT DM 系统只需单个光源,光放大时不受放大器增益带宽的限制,传输过程中也不存在四波混频等非线性参量过程引起的串扰,且具有便于用户接入、易于与现行的同步数字系列(S DH )及异步传输模式(AT M )兼容等优点。在多媒体时代,超高速(速率高于100Gbit/s )的OT DM 技术对超高速全光网络的实现具有重要意义,其中涉及的关键技术包括:超短光脉冲的产生、时分复用、同步/时钟提取和解复用。解复用可以由光开关来实现。适用于时分复用光信号的光开关有:机械光开关、热光开关、喷墨气泡光开关、液晶光开关和声光开关等。但这些窗口宽度从几百个ns 到几十个m s 的光开关并不适合于线路速率在100Gbit/s 以上的高速OT DM 系统,这是因为这些光开关在操作过程中引入了电的控制信号。基于光学非线性效应(如:光Kerr 效应、四波混频(F WM )效应和交叉相位调制(XP M )效应)的全光开关是实现高速OT DM 信号解复用技术的关键器件。 1 基于相移型全光开关的解复用技术 相移型光开关是一类干涉型光开关,这类光开 关的平衡状态对应器件的闭合状态,而它的非平衡状态是在非线性介质中用控制脉冲对被分割成两路的信号光的其中一路的相位进行半波调制,使得这两路信号光在光开关输出端干涉耦合的耦合量为最大值,从而使光开关导通。 相移型全光开关中的非线性介质可以是光纤也可以是半导体材料。光纤在非线性响应速度方面具有明显的优势(<10fs ),而且不存在载流子密度起伏和增益饱和等问题;然而由于半导体材料在集成度(有效长度低于1mm )、偏振稳定性、非线性强度(高于前者4个数量级)等方面具有更加明显的优势,因而在全光开关中得到了广泛的重视。 基于相移型全光开关的解复用技术是非常多的。基于光Kerr 效应的解复用最早报道于1987年[1] ,随后的非线性光环路镜(NOLM )、太赫兹光非对称解复用器(T OAD )和马赫-曾德尔干涉仪(MZI )则是基于XP M 效应的光开关。 半导体光放大器(S OA )的非线性效应很复杂,除了亚皮秒级的双光子吸收(TP A )、谱烧孔(SHB )和载流子加热(CH )外,还有p s 级的带间载流子起伏(I nterband Carrier Dyna m ics ),各种非线性机制的恢复时间也相差很大。尽管提高有源区载流子密度和添加辅助光可以把载流子寿命控制在几十个p s 收稿日期:2004-12-21 作者简介:李利军(1976-),男,山西寿阳人,博士,主要从事高速光通信技术研究。 7 22005年 第6期(总第132期) 光通信研究 ST UDY ON OPTI CAL COMMUN I CATI O NS 2005 (Sum.No .132)

两路语音PCM时分复用系统的设计

摘要数字通信系统是采用数字信号来传递信息的通信系统,数字通信过程中主要涉及信源编码与译码、信道编码与译码、数字调制与解调等技术问题。而脉冲编码调制就是一种常用的信源编码方法,将模拟信号抽样、量化,直到转换成为二进制符号的基本过程。为了扩大通信系统链路的容量,在一条链路上传输多路独立的信号,为此引入了一种复用技术来实现多路信号共同传输的目的。 而在本系统设计中,所运用的复用技术是时分复用,同时基于现场可编程门阵列器件作为主控芯片,在Quartus II软件中使用硬件描述语言Verilog HDL编写PCM编译码和时分复用模块的程序,再对其进行波形仿真以验证程序的正确性,从而设计出语音信号的PCM编码与译码、时分复用的过程。本设计中,将两路语音信号通过外围硬件电路模块送至FPGA中进行PCM编码、译码处理,最后通过后级外围电路实现语音信号的重现。 关键词:语音脉冲编码调制时分复用FPGA

Design of Two-way V oice PCM System by Time Division Multiplexing ABSTRACT A digital communication system is a communication system that transmit information by using digital signal, and digital communication mainly relates to the source coding and decoding, channel coding and decoding, digital modulation and demodulation technology. Pulse code modulation is a common source coding, and it is that the analog signal sampling ,quantization ,until the transformation become the basic process of binary symbols. In order to expand the capacity of communication link system ,a transmission of multiple independent signal on a link, therefore introduction of a division multiplexing technology to achieve the purpose of multiplexing. In this system design, we use a time division multiplexing technology, and based on the Field Programmable Gate Array, using Verilog HDL hardware description language to write PCM encoding and decoding and time division multiplexing module in Quartus II, then Waveform simulation to verify the correctness of the program, thus design a voice signal process of PCM encoding and decoding, time division multiplexing. In this system design, The two-way voice signal through the peripheral hardware circuit module is sent to the FPGA for PCM encoding and decoding, finally to achieve reproducible speech signal through the peripheral circuit. Key Words:V oice Pulse code modulation Time division multiplexing FPGA

HUT-时分复用通信系统的设计与实现汇总

湖南工业大学 课程设计 资料袋 计算机与通信学院(系、部)2015 ~ 2016 学年第 1 学期 课程名称通信原理课程设计指导教师胡永祥职称教授 学生姓名专业班级通信1302 学号 题目时分复用通信系统的设计与实现 成绩起止日期2015 年12 月07 日~2015 年_12 月24 日 目录清单

湖南工业大学 课程设计任务书 2015 —2016 学年第一学期 计算机与通信学院学院(系、部)通信工程专业通信1302 班级课程名称:通信原理课程设计 设计题目:时分复用通信系统的设计与实现 完成期限:自2015 年12 月07 日至2014 年12 月24 日共 3 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

通信原理课程设计 设计说明书 时分复用通信系统的设计与实现 起止日期:2015 年12 月07 日至2015 年12 月24 日 学生姓名 班级通信工程1302 学号 成绩 指导教师(签字) 计算机与通信学院(部) 2015年12 月25日

1、概述 (5) 2、设计基本概念和原理 (12) 2.1数字基带通信系统 (12) 2.2时分复用2DPSK、2FSK通信系统 (12) 3、总体设计 (12) 3.1数字调制的原理 (12) 3.2数字解调的工作原理 (16) 4、详细设计 (20) 5、完成情况 (23) 6、简要的使用说明 (19) 7、总结 (20) 参考文献 (21)

第1部分总则 1.1、目的要求 (5) 1.2、设计步骤与设计说明书的撰写要求 (12) 1.2.1、设计步骤 (12) 1.2.2、设计说明书的撰写要求 (12) 1.3、时间进度安排 (12) 1.4、考核要求 (20) 第二部分课程设计项目内容 2.1、设计目的 (23) 2.2、设计内容 (19) 7、总结 (20) 参考文献 (21)

波分复用/解复用 知多少

波分复用/解复用器 知多少? 随着数据业务的飞速发展,现代生活对传输网的带宽需求越来越高,而光纤资源已经固定且再次铺设费用昂贵,这就需要设备制造商提供有保障、低成本的解决方案。鉴于城域网具有一定的传输距离、较多的业务种类等许多不同于骨干网的特点,波分复用(WDM,Wavelength Division Multiplexing)技术就十分适用于光纤扩容。 什么是光波分复用技术? 在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复用指光频率的粗分,光信道相隔较远,甚至处于光纤不同窗口。 什么是波分复用/解复用器? 我们知道波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 波分复用/解复用器的工作原理是什么? 在FDM系统中,波分复用器用于发射端将多个波长的信号复合在一起并注入传输光纤中,而波分解复用器则用于在接收端将多路复用的光信号按波长分开分别送到不同的接收器上,波分复用/解复用器可以分成两大类,即有源(主动)和无源(被动)型,我们这里只介绍被动型的器件,它按照工作原理可以分成三类,最简单的一种波分复用器是基于角度散射元件,例如棱镜和衍射光栅,另外两种波分复用器为光滤波器和波分复用定向耦合器。从原理上讲,一个波分解复用器反射过来用即为波分复用器,但应该注意的是在FDM系统中对它们的要求不一样,波分解复用器严格要求波长的选择性,而复用器不一定要求波长选择性,因为它的作用只是将多路信号复合在一起。

时分复用和频分复用

时分复用和频分复用

时分复用频分复用 简介 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过 传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大 大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。 举个例最简单的例子: 从A地到B地 坐公交2块。打车要20块 为什么坐公交便宜呢 这里所讲的就是“多路复用”的原理。 频分复用 (FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。①前群,又称3路群。它由3个话路经变频后组成。各话路变频的载频分别为12,16,20千赫。取上边带,得到频谱为12~24千赫的前群信号。②基群,又称12路群。它由4个前群经变频后组成。各前群变频的载频分别为84,96,108,120千赫。取下边带,得到频谱为 60~108千赫的基群信号。基群也可由12个话路经一次变频后组成。③超群, 又称60路群。它由5个基群经变频后组成。各基群变频的载频分别为420,468,516,564,612千赫。取下边带,得到频谱为312~552千赫的超群信号。④主群,又称300路群。它由5个超群经变频后组成。各超群变频的载频分别为1364,1612,1860,2108,2356千赫。取下边带,得到频谱为812~2044千赫的主群信号。3个主群可组成 900路的超主群。4个超主群可组

时分复用通信系统设计

目录 第一章摘要 (1) 第二章总体设计原理 (2) 2.1 PCM编码原理 (2) 2.2 PCM原理框图 (3) 2.3 时分复用原理 (4) 第三章单元电路的设计 (6) 3.1信号源系统模块 (6) 3.2 PCM编码器模块 (7) 3.3帧同步模块 (9) 3.4位同步模块 (10) 3.5 PCM分接译码模块 (12) 3.6系统仿真模型 (14) 第四章总结与体会 (15)

第一章摘要 SystemView是具有强大功能基于信号的用于通信系统的动态仿真软件,可以满足从底层到高层不同层次的设计、分析使用。SystemView具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。 时分复用(TDM:Time Division Multiplexing)的特点是,对任意特定的通话呼叫,为其分配一个固定速率的信道资源,且在整个通话区间专用。TDM把若干个不同通道(channel)的数据按照固定位置分配时隙(TimeSlot:8Bit数据)合在一定速率的通路上,这个通路称为一个基群。时分复用是建立在抽样定理基础上的。抽样定理使连续(模拟)的基带信号有可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据短时间时,在抽样脉冲之间就留有时间空隙,利用这个时间空隙便可以传输其他信号的抽样值。因此,这就有可能沿一条信道同时传送若干个基带信号。 当采用单片集成PCM 编解码器时,其时分复用方式是先将各路信号分别抽样、编码、再经时分复用分配器合路后送入信道,接收端先分路,然后各路分别解码和重建信号。PCM的32路标准的意思是整个系统共分为32个路时隙,其中30 个路时隙分别用来传送30 路话音信号,一个路时隙用来传送帧同步码,另一个路时隙用来传送信令码,即一个PCM30/32 系统。

实验2脉冲编码调制PCM与时分复用实验(.)-

实验2脉冲编码调制PCM与时分复用实验(.)- 实验2脉冲编码调制和时分复用实验-实验目的 1。加深对脉码调制过程的理解; 2。熟悉PCM编解码专用集成电路的功能和用法;3.了解PCM系统的工作流程; 4。掌握时分复用的工作流程;用同步正弦波信号观察α律PCM八位编码 2,实验仪器 1。HD8621D实验盒1 2.20米双踪示波器1 3。铆钉孔线5 3,实验电路工作原理(PCM基本工作原理 脉冲调制是将模拟信号转换成数字信号,然后在通道中传输它脉码调制是模拟信号的过程所谓 采样,就是在采样脉冲到达的瞬间提取模拟信号,并及时将信号转换成信号所谓的 的量化意味着采样瞬时值的幅度,即一组指定的电平,被用来表示瞬时采样值在对模拟信号进行采样和量化之后,获得量化的脉冲幅度调制信号,该信号只是有限数量的值首先对

语音信号进行滤波、脉冲采样并转换成采样信号,然后将幅度连续的PAM信号通过舍入法量化成信号,再经过编码转换成信号对于语音电话通信,CCITT规定采样速率为8千赫。每个采样值都是编码的,即总共有量化值。因此,每个信道的脉码调制后的标准数字速率是每秒为了解决均匀量化时小信号量化误差大、音质差的问题,在实践中采用量化方法,即小信号量化特征密集分层,量化间隔小,大信号稀疏分层,大信号大 (2个PCM编解码器电路[PCM编解码器电路TP3067芯片)1。根据图4-4和4-5,解释了单通道PCM编解码器的工作原理。a: 定时,可实现编解码器的省电控制图4-5是短帧同步定时的波形图 4,实验内容 1。用同步正弦波信号观察模数转换八位编码的实验:2.脉码调制和系统实验; 3。PCM 8位编码时分复用输出波形观测实验:4.脉码调制时分复用定

通信原理课程设计——两路时分复用课程设计最后版本

两路时分复用课程设计 摘要:本次课程设计的任务是完成简易的两路时分复用通信电路的设计,实现两路不同模拟信号的分时传输功能。随着通信网络的发展,时分复用设备的各路输入信号不再只是单路模拟信号。在通信网中往往有多次复用,由若干链路来的多路时分复用信号,再次复用,构成高次复用信号。在本课程设计中,我们只选用两次复用来完成设计。我们将要在信号接收端能够完整还原出两路原始模拟信号。并且选用相应的编码传输方式与同步方式,进行滤波器设计。 关键词:时分复用;抽样;解调;滤波

引言 在实际的通信系统中,复用的目的是为了扩大通信链路的容量,提高通信系统的利用率,在一条链路上传输多路独立的信号。常见的有时分复用和频分复用,时分复用是一种重要的复用方法,如今它比频分复用的应用更为广泛。本次课设将对时分复用进行讨论并以及EWB仿真。 1 设计内容及要求 1.1 课程设计目的 本次课设主要是使学生加深对通信原理的理解,熟悉各类编码方式及数字基带信号的传输方式,相关电路的构成,以及如何实现仿真,为以后的工程设计打下良好基础。 1.2 课程设计要求 设计电路时,应以理论作为指导,构思设计方案;设计完成后应进行调试,仿真和分析;处理结果和分析结论应该一致,而且应符合理论;独立完成课程设计并按要求编写课程设计报告书。 1.3 课程设计内容 完成一个简易的两路时分复用通信电路的设计,实现两路不同模拟信号的分时传输功能。在信号接收端能够完整还原出两路原始模拟信号。在EWB软件平台上实现仿真,并对结果进行分析。 2 设计相关知识 2.1 时分复用

在实际的通信系统中,为了提高通信系统的利用率,往往用多路通信的方式来传输信号。所谓多路通信,就是指把多个不同信源所发出的信号组合成一个群信号,并经由同一信道进行传输,在收端再将它分离并将它们相应接收。时分复用就是一种常用的多路通信方式。时分复用是建立在抽样定理基础上的,因为抽样定理使连续的基带信号有可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。图2-1表示的是两个基带信号在时间上交替出现。显然这种时间复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别得到恢复。这就是时分复用的概念。此外,时分复用通信系统有两个突出的优点,一是多路信号的汇合与分路都是数字电路,简单、可靠;二是时分复用通信系统对非线性失真的要求比较低。 图2.1 两个信号的时分复用 然而,时分复用系统对信道中时钟相位抖动及接收端与发送端的时钟同步问题提出了较高的要求。所谓同步是指接收端能正确地从数据流中识别各路序号。为此,必须在每帧内加上标志信号(即帧同步信号)。它可以是一组特定的码组,也可以是特定宽度的脉冲。在实际通信系统中还必须传递信令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号以及振铃信号等信令。上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。采用时分复用的数字通信系统,在国际上已逐步建立其标准。原则上是把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,汇合成更高速的数据信号,复接后的序列中按传输速率不同,分别成为一次群、二次群、三次群、四次群等等。

时分复用系统设计

目录 第一章绪论 (1) 第二章设计原理 (2) 2.1 PCM编码原理 (2) 2.2 时分复用原理 (2) 第三章总体设计思路 (4) 3.1总体结构框图 (4) 3.2各单元电路设计 (4) 第四章软件仿真 (7) 4.1仿真软件 (7) 4.2两路信号 (7) 4.3编码以及时分复用子模块 (8) 4.4位同步模块 (11) 4.5帧同步模块 (12) 4.6时分解复用模块 (14) 4.7 PCM译码模块 (15) 4.8总系统仿真 (18) 第五章总结与体会 (19)

第一章绪论 随着现代通信技术的发展,为了提高通信系统信道的利用率,话音信号的传输往往采用多路复用通信的方式。这里所谓的多路复用通信方式通常是指:在一个信道上同时传输多个话音信号的技术,也称复用技术。复用技术有多种工作方式,例如频分复用,时分复用以及码分复用等。在本文中运用的是两路的时分复用技术。 时分复用(TDM:Time Division Multiplexing)的特点是,对任意特定的通话呼叫,为其分配一个固定速率的信道资源,且在整个通话区间专用。TDM把若干个不同通道(channel)的数据按照固定位置分配时隙(TimeSlot:8Bit数据)合在一定速率的通路上,这个通路称为一个基群。时分复用是建立在抽样定理基础上的。抽样定理使连续(模拟)的基带信号有可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据短时间时,在抽样脉冲之间就留有时间空隙,利用这个时间空隙便可以传输其他信号的抽样值。因此,这就有可能沿一条信道同时传送若干个基带信号。 当采用单片集成PCM 编解码器时(如本文采用TP3057),其时分复用方式是先将各路信号分别抽样、编码、再经时分复用分配器合路后送入信道,接收端先分路,然后各路分别解码和重建信号。PCM的32路标准的意思是整个系统共分为32个路时隙,其中30 个路时隙分别用来传送30 路话音信号,一个路时隙用来传送帧同步码,另一个路时隙用来传送信令码,即一个PCM30/32 系统。

实验6 时分复用 解复用TDM实验

实验6 时分复用/解复用(TDM)实验 一、实验目的 1.掌握时分多路复用的概念; 2.了解本实验中时分复用的组成结构。 二、实验仪器 1.复接/解复接、同步技术模块,位号:I 2.PCM/ADPCM编译码模块,位号:H 3.增量调制编译码模块,位号:D 4.时钟与基带数据发生模块,位号:G 5.20M双踪示波器1台 6.铆孔连接线9根 7.电话单机 1部 三、实验原理 在数字通信中,为扩大传输容量和提高传输效率,通常需要把若干低速的数据码流按一定格式合并为高速数据码流,以满足上述需要。数字复接就是依据时分复用基本原理完成数码合并的一种技术。在时分复用中,把时间划分为若干时隙,各路信号在时间上占有各自的时隙,即多路信号在不同的时间内被传送,各路信号在时域中互不重叠。 把两个或两个以上的支路数字信号按时分复用方式合并成单一的合路数字信号的过程称为数字复接,其实现设备称为数字复接器。在接收端把一路复合数字信号分离成各路信号的过程称为数字分接,其实现设备称为数字分接器。数字复接器、数字分接器和传输信道共同构成数字复接系统。本实验平台中,数据发送单元模块的39U01内集成了数字复接器,数据接收单元的39U01内集成了数字分接器,连接好光传输信道即构成了一个完整的数字复接系统。 数字复接的方法主要有按位复接、按字复接和按帧复接三种;按照复接时各路信号时钟的情况,复接方式可分为同步复接、异步复接与准同步复接三种。本实验中选择了按帧复接的方法和方式。下面介绍一下“按帧复接”方法和“准同步复接”方式的概念。 按帧复接是每次复接一个支路的一帧数据,复接以后的码顺序为:第1路的F0、第2路的F0、第3路的F0、第4路的F0、……,第1路的F1.第2路的F1.第3路的F1.第4路的F1.……,后面依次类推。也就是说,各路的第F0依次取过来,再循环取以后的各帧数据。这种复接方法的特点是:每次复接一支路信号的一帧,因此复接时不破坏原来各 个帧的结构,有利于交换。 同步复接指被复接的各个输入支路信号在时钟上必须是同步的,即各个支路的时钟频率完全相同的复接方式。为了接收端能够正确接收各支路信码及分接的需要,各支路在复接时,插入一定数量的帧同步码、告警码及信令等,PCM基群就是这样复接起来的。准同步复接是在同步复接分接的基础上发展起来的,相对于同步复接增加了码速调整和码速恢复环节。在复接前必须将各支路的码速都调整到规定值后才能复接。 本实验中数字复接系统方框图,如下图2-1: 帧同步

基于system view的PCM时分复用系统的设计与制作

基于system view的PCM时分复用系统的设计与制作 前言 在通信原理的学习过程中,借助于System View软件,可以形象、直观、方便地进行通信系统仿真设计与仿真分析。引入System View仿真实现PCM通信系统,将带来直观、形象的感受。加深对通信系统的理解。 System View主要用于电路与通信系统的设计和仿真。具有良好的交互的界面,通过打开其分析窗口和示波器模拟等方法,为用户提供了一个可视化具体的的仿真过程,其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库图示和专业库图示。可以快速、有效的建立和修改系统、进行访问与参数的调整,方便地加入注释。 用户在进行通信系统的设计时,仅仅只需要从System view配置的图示库中调出有关图示并进行所要求的参数设置,完成图示间的各项连线,然后运行仿真操作,System View最终以时域波形、眼图、功率谱等形式给出系统的仿真分析的详细结果。System View被广泛的应用在通信的设计与仿真中,通过相应的设计与仿真将展示PCM通信系统实现的设计思路及具体过程,并对仿真结果加以进行分析。 1 PCM通信系统 PCM通信系统包括对信号的抽样、PCM编码(包括量化、非均匀量化编码)、调制、通道编码以及通过传输后在接收端进行的信道译码、解调、译码。 PCM,中文名称为脉码调制,60年代它就开始应用在市内电话网来扩充信道的容量,它的应用使已有音频电缆的大部分芯线的信道传输容量扩大了二十四至四十八倍。它由A.里弗斯在1937年时提出的,它为数字通信奠定了坚实的基础,到70年代的中、末期,世界各个国家相继把脉码调制成功地应用于卫星通信、同轴电缆通信和光纤通信等中、大容量传输系统。到80年代初,脉码调制已用于大容量干线传输和市话中继传输以及数字程控交换机,并在用户话机中采用此种技术。 PCM通信系统的主要优点有:传输性能比较稳定、远距离信号再生中继时噪

精选-东南大学信息学院_系统实验(通信组)_第二次实验

1.1.1 时分复用/解复用(TDM)实验 一、时分复接观测 (1).同步帧脉冲及复接时钟观测 帧脉冲宽度125us 一帧数据包含时钟数32 复接后时钟速率256k (2).复接后帧头观测 我们将帧头设置为01111110,帧头处于每帧的第一个时隙且帧同步的上升沿为帧的开始位置。观测结果如下: (3).复接后8bit数据观测 我们将帧头设置为00000000,8bit数据为01010101,位于帧的第三个时隙,观测如下:

二、时分解复接观测 (1).解复用同步帧脉冲观测 ●发送与接收端帧头一样时结果如下,此时可以实现同步。 ●拔掉复接数据结果如下,当不解复用信号时无法实现同步,因为没有输入信号。

两端帧头不同时结果如下,解复用端无法找到相对应的帧头,所以无法实现同步,它无法识别出与其不同的帧头。 (2).解复用后8bit数据观测 我们设置01010101,结果如下. 在不断修改原始信号的过程中,我们发现解复用的信号也随之同步变化 (3).解复用后PCM译码观测

(4).解复用后CVSD译码观测

1.1.2 帧同步实验 一、帧同步提取观测及分析 (1).假同步测试 当8bit数据与帧头相同时,由于多次重复完成复接信号输入与断开操作,导致解复用端时与真正的帧头实现同步,但也会与8bit实现同步,出现同步错误。(2).后方保护测量(捕捉态) 经过改变加错信号,我们测得后方保护计数个数为3. 后方保护可以防止误同步,经过连续几次检测到帧头才进入同步状态可以让同步更准确。 (3).前向保护测试(维持态) 经过改变加错信号,测得前向保护计数为2。 前向保护可以避免因一次传输错误而导致帧头出错而引起的同步出错。 当加错开关位置为“0001000100010001”时,帧提取情况如下: 信号恢复如下:

相关文档
相关文档 最新文档