文档库 最新最全的文档下载
当前位置:文档库 › 立体几何1

立体几何1

立体几何1
立体几何1

第一章 立体几何

一.知识点

1.柱、锥、台、球的结构特征:

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形

的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱

平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P -

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于

顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面

展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成

的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2.空间几何体的三视图和直观图 (1)三视图:

正视图:从前往后 侧视图:从左往右 俯视图:从上往下 (2) 画三视图的原则: 长对齐、高对齐、宽相等 (3)直观图:斜二测画法 (4)斜二测画法的步骤:

1)平行于坐标轴的线依然平行于坐标轴;

2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; 3)画法要写好。

(5) 用斜二测画法画出长方体的步骤:1)画轴2)画底面3)画侧棱4)成图 3.空间几何体的表面积与体积 (一 )空间几何体的表面积

(1)棱柱、棱锥的表面积: 各个面面积之和

(2) 圆柱的表面积 (3)圆锥的表面积2

S rl r

ππ=+

(4) 圆台的表面积22S

rl r Rl R ππππ=+++ (5) 球的表面积

24S R π=

(6)扇形的面积公式21

3602

n R S lr π==扇形(其中l 表示弧长,r 表示半径) (二)空间几何体的体积

(1)柱体的体积 V S h =?底 (2)锥体的体积 1

3

V S h =?底

(3)台体的体积

1

)3

V S S h =+

?下上(

(4)球体的体积3

43

V R π=

4.平面

(1)平面含义:平面是无限延展的,无大小,无厚薄。 (2) 平面的画法及表示

1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2 倍长

2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行

四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平

面ABCD 等。 5. 三个公理:

(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内

符号表示为A l B l l A B ααα∈??∈?

???∈??∈?

公理1作用:判断直线是否在平面内

(2)公理2:过不在一条直线上的三点,有且只有一个平面。

2

22r

rl S ππ+=

符号表示为:A 、B 、C 三点不共线 ? 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。 补充3个推论:

推论1:经过一条直线与直线外一点,有且只有一个平面。 推论2:经过两条平行直线,有且只有一个平面。 推论3:经过两条相交直线,有且只有一个平面。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为: ,p l p l α

βαβ∈?=∈且

公理3作用:判定两个平面是否相交的依据 6.空间中直线与直线之间的位置关系 (1) 空间的两条直线有如下三种关系:

相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;

异面直线: 不同在任何一个平面内,没有公共点。 (2)公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线,//////a b a c c b ?

???

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 (3) 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.

(4)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线

符号表示: ,,,A B l B l AB l ααα?∈???直线与直线异面。 (5)注意点:

① 异面直线11a b 与所成的角的大小只由它们的相互位置来确定,与选择的位置无关,为简便一

般取在两直线中的一条上;

② 两条异面直线所成的角: (0

0,90]θ∈

③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;

④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;

⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 7.直线与平面有三种位置关系:

(1)直线在平面内 —— 有无数个公共点

共面直线

(2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点

特别指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α?来表示

a α a ∩α=A a ∥α

8.直线与平面平行的判定

直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面

平行。简记为:线线平行,则线面平行。

符号表示: ////a b a a b ααα??

?

?????

9.两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个

平面平行。

符号表示 : //////a b a b A a b ββαβαα∈??∈??

?=??

???简记为:线线平行,则面面平行。

10.判断两平面平行的方法有三种:

(1)用定义; (2)判定定理;

(3)垂直于同一条直线的两个平面平行。符号表示为:,//a a αβαβ⊥⊥? 11.直线与平面、平面与平面平行的性质

(1)定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行,则线线平行。符号表示: ////a a a b b α

βαβ??

????=?

作用:利用该定理可解决直线间的平行问题。

(2)定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示: ////a a b b αβαγβγ?

?

=???=?

,简记为:面面平行,则线线平行

作用:可以由平面与平面平行得出直线与直线平行 (3)两个平面平行具有如下的一些性质:

1)如果两个平面平行,那么在一个平面内的所有直线都与另一个平面平行 2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.

3)如果一条直线和两个平行平面中的一个相交,那么它也和另一个平面相交 4)夹在两个平行平面间的所有平行线段相等 12.直线与平面垂直的判定

(1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l

α⊥,

直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。直线与平面垂直时,它们唯一公共点P ,点P 叫做垂足。

(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

符号表示:,,,,l a l b a b a b A l ααα⊥⊥??=?⊥,简记为:线线垂直,

则线面垂直。

注意点: a)定理中的“两条相交直线”这一条件不可忽视;

b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数

学思想。

(3)补充性质://,a b a b αα⊥?⊥ (4)直线与平面所成的角的范围为: 00[0,90] 14.平面与平面垂直的判定

(1)二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A

梭 l β

B

α

(2)二面角的记法:二面角α-l-β或α-AB-β,平面之间二面角范围是00[0,180] (3)两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 符号表示:,,l

l βααβ

⊥??⊥,简记为:线面垂直,则面面垂直。

(4)线面角的求法,在直线上任找一点作平面的垂线,则直线和射影所成的角就是了。

15.直线与平面、平面与平面垂直的性质

(1)定理:垂直于同一个平面的两条直线平行。符号表示: ,,a b a b αα⊥⊥?⊥ 补充性质:1),//a

b a b αα⊥?⊥, 2),//a b a b αα

⊥?⊥ ,

3),,//a a αβαβ⊥⊥?,4),//,a a βαββ⊥?⊥

(2)性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 符号表示: ,,,,a l a a l a βαβαβ⊥=?⊥?⊥,面面垂直,则线面垂直。

16.点到平面的距离

(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.

(2)求点面距离常用的方法: 1)直接利用定义求

①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.

2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.

3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此

三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=3

1

S ·h ,求出h 即为所求.

这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.

4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求. 17.直线和平面的距离

(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.

(2)求线面距离常用的方法

①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之. ②将线面距离转化为点面距离,然后运用解三角形或体积法求解之. ③作辅助垂直平面,把求线面距离转化为求点线距离. 18.平行平面的距离

(1)定义 个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行

平面的公垂

线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.

(2)求平行平面距离常用的方法 ①直接利用定义求

证(或连或作)某线段为距离,然后通过解三角形计算之.

②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之. 19.异面直线的距离

(1)定义 条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.

任何两条确定的异面直线都存在唯一的公垂线段. (2)求两条异面直线的距离常用的方法

①定义法 题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有

关定理、性质求出公垂线段的长.

此法一般多用于两异面直线互相垂直的情形. ②转化法 为以下两种形式:线面距离面面距离 ③等体积法 ④最值法 ⑤射影法 ⑥公式法

二.经典例题:

例1. 一空间几何体的三视图如图所示,则该几何体的体积为( ).

A.2π+

4π+

C. 23π+

D. 43

π+ 解析:该空间几何体为一圆柱和一四棱锥组成的,

圆柱的底面半径为1,高为2,体积为2π,

边长为2,高为3,

所以体积为2

1

3

3?

=

所以该几何体的体积为23

π+. 答案:C

侧(左)视图

俯视图

例2.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A.9π B.10π C.11π D .12π

答案 D

解析:考查三视图与几何体的表面积。从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为

22411221312.S ππππ=?+??+??=

例3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为

A .

3

B .13π

C .23π

D .

3 答案 A

解析:此正八面体是每个面的边长均为a 的正三角形,所以由8=

1a =A 。

例4.已知正方体外接球的体积是π3

32

,那么正方体的棱长等于( )

A.22

B.332

C.324

D.3

3

4 答案 D

解析:正方体外接球的体积是32

3

π,则外接球的半径R=2,正方体的对角线的长为4,

棱长等于

3

,选D. 例5.正方体的内切球与其外接球的体积之比为 ( )

A. 1∶3

B. 1∶3

C. 1∶33

D. 1∶9 答案 C

解析:设正方体的棱长为

a ,则它的内切球的半径为12a ,它的外接球的半径为2

a ,

故所求的比为1∶33,选C.

例6.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同

一个球面上,且该六棱柱的体积为9

8

,底面周长为3,则这个球的体积为 .

答案 3

解析:令球的半径为R ,六棱柱的底面边长为a ,高为h

R =,

且21

962863a V h h a ??==?=??

???

??==??1R ?=34433V R ππ?==

.

例7.一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱

3,那么这个球的体积为_________

答案 4

3

π

解析:∵正六边形周长为3,得边长为1

2

,故其主对角线为1,从而球的直径

22R =

= ∴1R = ∴球的体积43

V =

π. 例8.如图,在四棱锥O ABCD -中,底面ABCD 是边长为2的正方形,

OA ABCD ⊥底面,2OA =,M 为OA 的中点.

(Ⅰ)求四棱锥O ABCD -的体积;

(Ⅱ)求异面直线OB 与MD 所成角的大小. 解:(Ⅰ)由已知可求得,正方形ABCD 的面积4=S , 所以,求棱锥

ABCD O -的体积3

8

2431=??=V

(Ⅱ)方法一(综合法)

设线段AC 的中点为E ,连接ME ,则EMD ∠为异面直线OC 与MD 所成的角(或其补角)

由已知,可得5,3,2===MD EM DE ,222)5()3()2(=+ DEM ?∴为直角三角形

3

2

tan ==

∠∴EM

DE

EMD , 32

3arctan =∠∴EMD .所以,异面直线OC 与MD 所成角

的大小3

2

3arctan .

例9.在空间,下列命题正确的是( ).

A .平行直线的平行投影重合

B .平行于同一直线的两个平面平行

C .垂直于同一平面的两个平面平行

D .垂直于同一平面的两条直线平行

解析:两平行直线的投影不一定重合,故A 错,由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可知B 、C 显然是错误的,故选D .

例10.一个几何体的三视图如图,该几何体的表面积为( ). A .280 B .292 C .360

D .372

解析:该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.2(10810282)2(6882)360S =?+?+?+?+?=.

例11.若某空间几何体的三视图如图所示,则该几何体的体积是( )

A.2

B.1

C.23

D.1

3

解析:本题考查立体图形三视图及体积公式如图,

该立体图形为直三棱柱,所以其体积为12212

1

=???.

例12.一个几何体的三视图如图所示,则这个几何体的体积为 .

解析:本题主要考查三视图的基础知识,和主题体积的计算,属于容易题.由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结

2

2

1

合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为1

+=2

??(12)213. 例13.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,

则这个多面体最长的一条棱的长为______.

解析:由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2

=

例14.如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直.EF//AC ,

(Ⅰ)求证:AF//平面BDE ; (Ⅱ)求证:CF ⊥平面BDF. 证明:(Ⅰ)设AC 于BD 交于点G.

因为EF ∥AG,且EF=1,AG=1

2

AC=1,

所以四边形AGEF 为平行四边形,所以AF ∥EG, 因为EG ?平面BDE,AF ?平面BDE, 所以AF ∥平面BDE. (Ⅱ)连接FG.

因为EF ∥CG,EF=CG=1,且CE=1,

所以平行四边形CEFG 为菱形.所以CF ⊥EG. 因为四边形ABCD 为正方形,所以BD ⊥AC.

又因为平面ACEF ⊥平面ABCD,且平面ACEF ∩平面ABCD=AC, 所以BD ⊥平面ACEF. 所以CF ⊥BD.

又BD ∩EG=G,所以CF ⊥平面BDE.

例15.如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 解:(Ⅰ)取BC 中点O ,连结AO .

ABC △为正三角形,AO BC ∴⊥.

正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,

AO ∴⊥平面11BCC B .

连结1B O ,在正方形11BB C C 中,O D ,分别为

A

B

C D

1

A

1

C

1B A

B

C

D

1

A

1

C 1

B

O

F

1

BC CC

,的中点,1B O BD

∴⊥,

1

AB BD

∴⊥.

在正方形

11

ABB A中,11

AB A B

⊥,1

AB

∴⊥平面1A BD.

(Ⅱ)设

1

AB与1A B交于点G,在平面1A BD中,作1

GF A D

⊥于F,连结AF,由(Ⅰ)得1

AB⊥平面1A BD.

1

AF A D

∴⊥,AFG

∴∠为二面角

1

A A D B

--的平面角.

1

AA D

△中,由等面积法可求得AF=

1

1

2

AG AB

==sin AG

AFG

AF

∴==

所以二面角

1

A A D B

--的大小为

(Ⅲ)

1

A BD

△中,

1

11A BD

BD A D A B S

===∴

1

BCD

S=

在正三棱柱中,

1

A到平面11

BCC B

设点C到平面

1

A BD的距离为d.

11

A BCD C A BD

V V

--

=,得

1

11

3

33

BCD A BD

S S d

=

△△

1

A BD

d

∴=

∴点C到平面

1

A BD

解法二:(Ⅰ)取BC中点O,连结AO.

ABC

△为正三角形,AO BC

∴⊥.

在正三棱柱

111

ABC A B C

-中,平面ABC⊥平面11

BCC B,

AD

∴⊥平面11

BCC B.

11

B C中点1O,以O为原点,OB,1

OO,OA的方向为x y z

,,轴的正方向建立空间直角坐标系,则(100)

B,,,(110)

D-,,,1(0

A,(0

A,

1

(120)

B,,

1

(12

AB

∴=,,(210)

BD=-,,,1(12

BA=-.

12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.

1AB ∴⊥平面1A BD .

(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .

(11AD =-,,1(020)AA =,,. AD ⊥n ,1AA ⊥n ,

1

00AD AA ??=?∴??=??,,n n 020x y y ?-+=?∴?

=??,,0y x =??∴?=??,. 令1z =得(=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD ,

1AB ∴为平面1A BD 的法向量.

cos

1

3AB AB AB ?->===?n n ∴二面角1A A D B --的大小为

(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量,

1(200)(12BC AB =-=,,,,.

∴点C 到平面1A BD 的距离11

BC AB d AB ?-===

例16. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离.

解:BD ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求 点O 平面11D GB 的距离,

1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,

D

G

H 1

A 1

C 1

D 1

B 1

O

又?11D B 平面11D GB

∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,

作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1?中,2222

1

2111=??=??=?AO O O S OG O . 又3

6

2,23212111=

∴=??=??=

?OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于3

6

2. 解析二 BD ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离. 设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则

,由于632221,111111=??=

=?--D GB GBB D D GB B S V V 3

4222213111=????=-GBB D V , ,3

6

26

4=

=

∴h 即BD 到平面11D GB 的距离等于

3

6

2. 例17.如图,在Rt AOB △中,π6

OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ;

(II )求异面直线AO 与CD 所成角的大小. 解:解法1:(I )由题意,CO AO ⊥,BO AO ⊥,

BOC ∴∠是二面角B AO C --是直二面角,

CO BO ∴⊥,又AO BO O =,

CO ∴⊥平面AOB , 又CO ?平面COD .

O

C

A

D

B

E

∴平面COD ⊥平面AOB .

(II )作DE OB ⊥,垂足为E ,连结CE (如图),则,DE AO ∥

CDE ∴∠是异面直线AO 与CD 所成的角.

在Rt COE △中,2CO BO ==,112

OE BO ==,

CE ∴

又12

DE AO ==

∴在Rt CDE △

中,tan CE CDE DE

=

∴异面直线AO 与CD

所成角的大小为

解法2:(I )同解法1.

(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,

,(00A ,,(200)C ,,

,D ,

(00OA ∴=,

,(CD =-, cos OA CD OACD OA CD

∴<>=

,322

=

=

∴异面直线AO 与CD 所成角的大小为

例18. 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知

45

ABC

=∠,2AB =

,BC =SA SB =

(Ⅰ)证明SA BC ⊥;

(Ⅱ)求直线SD 与平面SAB 所成角的大小.

解:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .

因为SA SB =,所以AO BO =,

又45ABC =∠,故AOB △为等腰直角三角形,AO

BO ⊥, 由三垂线定理,得SA BC ⊥.

(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥,

故SA AD ⊥,由AD BC ==,SA =AO =,得

x

D

B

C

S

O

D

B

C

A

S

1SO =

,SD =. SAB △

的面积2

1112

2S AB

SA ?=- ?

连结DB ,得DAB △的面积21

sin13522

S AB AD =

= 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得

1211

33

h S SO S =,解得h

= 设SD 与平面

SAB 所成角为α,则

sin h SD

α=.

所以,直线SD 与平面SBC 所成的我为.

解法二:

(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面

ABCD .

因为SA SB =,所以AO BO =.

又45ABC =∠,AOB △为等腰直角三角形,

AO OB ⊥

如图,以O 为坐标原点,OA 为x 0)A ,,(0B ,(0C ,(001)S ,,,(2SA =,(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,0E ???

??

连结SE ,取SE 中点G ,连结OG ,12G ?????

,.

12?=????,,1SE ?=??

??

,(AB =.

0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直. 所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.

y

D

,(DS =. 22cos OG DS OG DS

α=

=

sin β

所以,直线SD 与平面SAB 所成的角为.

例19.如图,已知正四棱柱ABCD —A 1B 1C 1D 1的底面边长为3,

侧棱长为4,连结A 1B ,过A 作AF ⊥A 1B 垂足为F ,且AF 的延长线交B 1B 于E 。

(Ⅰ)求证:D 1B ⊥平面AEC ; (Ⅱ)求三棱锥B —AEC 的体积; (Ⅲ)求二面角B —AE —C 的大小. 证(Ⅰ)∵ABCD —A 1B 1C 1D 1是正四棱柱,

∴D 1D ⊥ABCD.

连AC ,又底面ABCD 是正方形, ∴AC ⊥BD ,

由三垂线定理知 D 1B ⊥AC. 同理,D 1B ⊥AE ,AE ∩AC = A , ∴D 1B ⊥平面AEC .

解(Ⅱ)V B -AEC = V E -ABC . ∵EB ⊥平面ABC ,

∴EB 的长为E 点到平面ABC 的距离. ∵Rt △ABE ~ Rt △A 1AB ,

∴EB =.49

1

2=A A AB ∴V B -AEC = V E -ABC =31

S △ABC ·EB =31×21×3×3×49

=.827

解(Ⅲ)连CF ,

∵CB ⊥平面A 1B 1BA ,又BF ⊥AE ,

由三垂线定理知,CF ⊥AE .

于是,∠BFC 为二面角B —AE —C 的平面角,

在Rt △ABE 中,BF =

5

9

=?AE BE BA ,

在Rt △CBF 中,tg∠BFC =35

, ∴∠BFC = arctg 35

.

即二面角B —AE —C 的大小为arctg 35

.

例20.如图,正三棱柱ABC —A 1B 1C 1的底面边长为1,点 M 在BC 上,△AMC 1是以M 为直角顶点的等腰直角三角形. (I )求证:点M 为BC 的中点; (Ⅱ)求点B 到平面AMC 1的距离; (Ⅲ)求二面角M —AC 1—B 的正切值. 解:(I )证明:∵△AMC 1是以点M 为直角 顶点的等腰直角三角形, ∴AM⊥MC 1且AM=MC 1 ∵在正三棱柱ABC —A 1B 1C 1中,

有CC 1⊥底面ABC. ∴C 1M 在底面内的射影为CM , 由三垂线逆定理,得AM⊥CM. ∵底面ABC 是边长为1的正三角形, ∴点M 为BC 中点. (II )解法(一)

过点B 作BH⊥C 1M 交其延长线于H. 由(I )知AM⊥C 1M ,AM⊥CB, ∴AM⊥平面C 1CBB 1.

∴AM⊥BH. ∴BH⊥平面AMC 1. ∴BH 为点B 到平面AMC 1的距离. ∵△BHM∽△C 1CM. AM=C 1M=

,23 在Rt△CC 1M 中,可求出CC 1.2

2 .6623

21

2211=?=?=∴BH BH M C BM CC BH

解法(二)

设点B 到平面AMC 1的距离为h. 则11BMC A AMC B V V --=

由(I )知 AM⊥C 1M ,AM⊥CB,

A

B

C

A 1

B 1

C 1

M

第3题图

∴AM⊥平面C 1CBB 1

∵AB=1,BM=.22

,23,2111===CC MC AM 可求出

AM S h S MB C AMC ?=???113

1

31 23

2221213123232131?

???=???h 6

6

=

h (III )过点B 作BI⊥AC 1于I ,连结HI.

∵BH⊥平面C 1AM ,HI 为BI 在平面C 1AM 内的射影. ∴HI⊥AC 1,∠BIH 为二面角M —AC 1—B 的平面角. 在Rt△BHM 中,

,2

1,66==

BM BH ∵△AMC 1为等腰直角三角形,∠AC 1M=45°.

∴△C 1IH 也是等腰直角三角形. 由C 1M=

.332,63,23122==-=H C BH BM HM 有 ∴.3

6=

HI .2

1

==

∠∴HI BH BIH tg 例21.如图,已知多面体ABCDE 中,AB⊥平面ACD ,DE⊥平面ACD ,三角形ACD 是正三角形,且AD=DE=2,AB=1,F 是CD 的中点.

(Ⅰ)求证:AF∥平面BCE ; (Ⅱ)求多面体ABCDE 的体积;

(Ⅲ)求二面角C-BE-D 的正切值. 解:(Ⅰ)证明:取CE 中点M ,连结FM ,BM ,则

有AB DE FM //2

1

//.

∴四边形AFMB 是平行四边形. ∴AF//BM,

∵?BM 平面BCE , ?AF 平面BCE ,

数学必修2立体几何第一章全部教(学)案

第一章:空间几何体 1.1.1柱、锥、台、球的结构特征(一) 一、教学目标 1.知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪 四、教学过程: 一、创设情景,揭示课题 1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态? 2. 提问:小学与初中在平面上研究过哪些几何图形?在空间围上研究过哪些? 3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算. 二、讲授新课:

1. 教学棱柱、棱锥的结构特征: ①提问:举例生活中有哪些实例给我们以两个面平行的形象? ②讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征? ③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. →列举生活中的棱柱实例(三棱镜、方砖、六角螺帽). 结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线. ④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-A’B’C’D’E’ ⑤讨论:埃及金字塔具有什么几何特征? ⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥. 结合图形认识:底面、侧面、侧棱、顶点、高. →讨论:棱锥如何分类及表示? ⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质? 棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形 棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方. 2. 教学圆柱、圆锥的结构特征: ①讨论:圆柱、圆锥如何形成? ②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥. →列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高. →表示方法 ③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体. ④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体. 3.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1 A组第1题。 4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

2019届高考数学一轮复习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业20180

第一节空间几何体的结构特征及三视图与直观图 课时作业 A组——基础对点练 1.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体 是虚拟图形,起辅助作用),则四面体ABCD的正视图、侧视图、俯 视图是(用①②③④⑤⑥代表图形)( ) A.①②⑥B.①②③ C.④⑤⑥D.③④⑤ 解析:正视图应为边长为3和4的长方形,且正视图中右上到左下的对角线应为实线,故正视图为①;侧视图应为边长为4和5的长方形,且侧视图中左上到右下的对角线应为实线,故侧视图为②;俯视图应为边长为3和5的长方形,且俯视图中左上到右下的对角线应为实线,故俯视图为③,故选B. 答案:B 2.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( ) A.8 B.4 3 C.4 2 D.4 解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S=3×4=4 3. 答案:B 3.某几何体的三视图如图所示,则该几何体中最长的棱长为( )

A .3 3 B .2 6 C.21 D .2 5 解析:由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面PAD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱 PC =PE 2+CE 2=26,故选B. 答案:B 4.某空间几何体的三视图如图所示,则该几何体的表面积为( ) A .12+4 2 B .18+8 2 C .28 D .20+8 2 解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×1 2 ×2×2+4×2×2+22×4=20+82,故选D. 答案:D 5.已知某几何体的三视图如图所示,则该几何体的表面积是( )

高中数学第一章立体几何初步1.1简单旋转体课后课时精练北师大版必修212250412

高中数学第一章立体几何初步1.1简单旋转体课后课时 精练北师大版必修212250412 时间:25分钟 1.给出以下说法:①圆台的上底面缩小为一点时(下底面不变),圆台就变成了圆锥; ②球面就是球;③过空间四点总能作一个球.其中正确说法的个数是( ) A.0 B.1 C.2 D.3 答案 B 解析根据圆锥和圆台的形状之间的联系可知①正确;球面是曲面,球是球体的简称,是实心的几何体,故②不正确;当空间四点在同一条直线上时,过这四点不能作球,故③不正确. 2.如图阴影部分,绕中间轴旋转一周,形成的几何体形状为( ) A.一个球体 B.一个球体中间挖去一个圆柱 C.一个圆柱 D.一个球体中间挖去一个棱柱 答案 B 解析按旋转体的定义得到几何体B. 3.有下列三个命题: ①圆柱是将矩形旋转一周所得的几何体; ②圆台的任意两条母线的延长线,可能相交也可能不相交; ③圆锥的轴截面是等腰三角形. 其中错误命题的个数是( ) A.0 B.1 C.2 D.3 答案 C 解析①将矩形的一边作为旋转轴旋转一周得到的几何体是圆柱.②圆台的两条母线的延长线必相交,故①②错误,③是正确的.

4.如图所示的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个竖直的平面去截这个几何体,则所截得的图形可能是( ) A.(1)(2) B.(1)(3) C.(1)(4) D.(1)(5) 答案 D 解析轴截面为(1),平行于圆锥轴截面的截面是(5). 5.下列命题中,错误的是( ) A.圆柱的轴截面是过母线的截面中面积最大的一个 B.圆锥的轴截面是所有过顶点的截面中面积最大的一个 C.圆台的所有平行于底面的截面都是圆面 D.圆锥所有的轴截面都是全等的等腰三角形 答案 B 解析当圆锥的截面顶角大于90°时,面积不是最大. 6.圆锥被平行于底面的平面所截,若截面面积与底面面积之比为1∶2,则此圆锥的高被分成的两段之比为( ) A.1∶2 B.1∶4 C.1∶(2+1) D.1∶(2-1) 答案 D 解析根据相似性,若截面面积与底面面积之比为1∶2,则对应小圆锥与原圆锥高之比为1∶2,那么圆锥的高被截面分成的两段之比为1∶(2-1). 7.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的( ) 答案 B 解析由组合体的结构特征知,球只与正方体的六个面相切,而与两侧棱相离,故正确答案为B. 8.将等边三角形绕它的一条中线旋转180°,形成的几何体是________. 答案圆锥 解析由旋转体的概念可知,得到的几何体是圆锥.

立体几何知识点总结归纳

一、立体几何知识点归纳 第一章 空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①???????? →???????→?? ?? 底面是正多形 棱垂直于底面 斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形 侧棱与底面边长相等 1.3①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 1.4长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的

平方和;【如图】2222 11AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么 222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则2 2 2 cos cos cos 2αβγ++=,2 2 2 sin sin sin 1αβγ++=. 1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式: 2S c h S c h S S h =?=?+=?直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱 2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式: S 圆柱侧=2rh π;S 圆柱全=2 22rh r ππ+,V 圆柱=S 底h=2 r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥 3.1棱锥——有一个面是多边形,其余各 面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.2棱锥的性质: ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。)(如上图:,,,SOB SOH SBH OBH 为直角三角形) 3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。 侧面 母线 B

重庆市永川中学高中数学第18周练习一(立体几何1)

立体几何(1) 1.设m,n 是不同的直线,,αβ是不同的平面,下列命题中正确的是(B ) A .若m//,,,n m n αβαβ⊥⊥⊥则 B .若m//,,//,n m n αβαβ⊥⊥则 C .若m//,,,//n m n αβαβ⊥⊥则 D .若m//,,//,//n m n αβαβ⊥则 2.直三棱柱111ABC A B C -中,0 90=∠BCA ,M N 、分别是1111A B A C 、的中点, 1BC CA CC ==,则BM 与AN 所成的角的余弦值为(D ) A .110 B .25 C D 3.在三棱锥ABC S -中,底面是边长为1的等边三角形,侧棱长均为2,⊥SO 底面ABC ,O 为垂足,则侧棱SA 与底面ABC 所成角的余弦值为(D ) A .23 B .2 1 C .33 D . 63 4.如图,正方体1111ABCD A B C D -的棱长为1,点M 是面对角线1A B 上的动点,则 1AM MD + 5.在正四面体A -BCD 中,棱长为4,M 是BC 的中点,点P 在线 段AM 上运动(P 不与A ,M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题: ①BC ⊥平面AMD ; ②Q 点一定在直线DM 上; ③V C -AMD =4 2. 其中正确的是_①② ______ 6.如图是一个空间几何体的三视图,则该几何体的外接球的表面积为__.8π __ 7,已知两异面直线a ,b 所成的角为π 3,直线l 分别与a ,b 所成的角都是θ,则θ的取 值范围是________. [答案] [π6,π 2 ] 1. 若正四面体S —ABC 的面ABC 内有一动点P 分别到平面SAB 、平面SBC 、平面SAC 的距 离成等差数列,则点P 的轨迹是(A )

最新高中立体几何题型分类训练(附详细答案)(1)

立体几何题型分类解答 第一节空间简单几何体的结构与三视图、直观图 及其表面积和体积 一、选择题 1.(2009年绵阳月考)下列三视图所对应的直观图是( ) 2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( ) A.①②B.①③C.①④D.②④ 3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( ) ①长方体②圆锥③三棱锥④圆柱 A.④③② B.②①③ C.①②③ D.③②④ 4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( ) A.9与13 B.7与10 C.10与16 D.10与15 5.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )

A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+23 3 二、填空题 6.在下列图的几何体中,有________个是柱体. 7.(2009年全国卷)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC=120°,则此球的表面积等于__________. 8.一个长方体共顶点的三个面的面积分别为2、3、6,这个长方体对角线的长是________. 三、解答题 9.如右图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N.求: (1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长. 10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积. 参考答案 1.C 2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.

苏教版数学高一【必修三】第一章《立体几何初步》单元测试

高中数学必修2《立体几何初步》单元测试一 一、填空题(每小题5分,共70分) 1. 如图是长方体积木块堆成的几何体的三视图,此几何体共由_ _ 块木块堆成。 2、给出下列命题:(1)直线a 与平面α不平行,则a 与平面α内的所有直线都不平行;(2)直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直;(3)异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直;(4)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面 其中错误命题的个数为 3.已知a 、b 是直线,α、β、γ是平面,给出下列命题: ①若α∥β,a ?α,则a ∥β ②若a 、b 与α所成角相等,则a ∥b ③若α⊥β、β⊥γ,则α∥γ ④若a ⊥α, a ⊥β,则α∥β 其中正确的命题的序号是________________。 4.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行; (3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题... 的序号 (写出所有真命题的序号) 5、一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 . 6、已知二面角α—l —β为60°,若平面α内有一点A 到平面β的距离为3,那么A 在平面β内的射影B 到平面α的距离为 . 7、如图长方体中,AB=AD=23,CC 1=2,则二面角 C 1—BD —C 的大小为 8、以等腰直角三角形ABC 斜边BC 上的高AD 为折痕,将△ABC 折成二面角B AD C --等于 .时,在折成的图形中,△ABC 为等边三角形。 9、如图所示,E 、F 分别是正方形SD 1DD 2的边D 1D 、、DD 2的中点, 沿SE,SF,EF 将其折成一个几何体,使D 1,D,D 2重合,记作D 。 给出下列位置关系:①SD ⊥面DEF; ②SE ⊥面DEF; ③DF ⊥SE; ④EF ⊥面SED,其中成立的有: . A B C D A 1 B 1 C 1 D 1 第1题图 主 视图 左视图 俯视图

2020高考数学大一轮复习第八章立体几何1第1讲空间几何体的结构特征及三视图和直观图练习(理)(含解析)

第1讲空间几何体的结构特征及三视图和直观图 [基础题组练] 1.如图所示是水平放置的三角形的直观图,点D是△ABC的BC边的 中点,AB,BC分别与y′轴,x′轴平行,则在原图中三条线段AB, AD,AC中( ) A.最长的是AB,最短的是AC B.最长的是AC,最短的是AB C.最长的是AB,最短的是AD D.最长的是AC,最短的是AD 解析:选B.由条件知,原平面图形中AB⊥BC,从而AB

解析:选C.当正视图为等腰三角形时,则高应为2,且应为虚 线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C. 4.如图,一个三棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( ) 解析:选D.由正视图和侧视图可知,这是一个水平放置的正三棱柱.故选D. 5.(2019·福建漳州调研)某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为( ) A. 5 B.2 2 C.3 D.2 3 解析:选C.在棱长为2的正方体ABCD-A1B1C1D1中,M为AD的中点,该几何体的直观图如图中三棱锥D1-MB1C.故通过计算可得D1C=D1B1=B1C=22,D1M=MC=5,MB1=3,故最长棱的长度为3,故选C.

空间向量与立体几何(1)s

立体几何与空间向量(1) 知识点1 空间向量的坐标运算 设a=(1,5,-1),b=(-2,3,5). (1)若(k a+b)∥(a-3b),求k; (2)若(k a+b)⊥(a-3b),求k. 已知A(3,3,1),B(1,0,5),求: (1)线段AB的中点坐标和长度; (2)到A,B两点距离相等的点P(x,y,z)的坐标x,y,z满足的条件.知识点2 证明线面的平行、垂直 在正方体ABCD-A1B1C1D1中,E,F分别为BB1,CD的中点,求证:D1F⊥平面ADE.

已知A (-2,3,1),B (2,-5,3),C (8,1,8),D (4,9,6),求证:四边形ABCD 为平行四边形. 证明 知识点3 向量坐标的应用 棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为DD 1的中点,O 1、O 2、O 3分别是 平面A 1B 1C 1D 1、平面BB 1C 1C 、平面ABCD 的中心. (1)求证:B 1O 3⊥PA ; (2)求异面直线PO 3与O 1O 2所成角的余弦值; (3)求PO 2的长. 直三棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1 =2,N 是AA 1的中点. (1)求BN 的长; (2)求BA 1,B 1C 所成角的余弦值. 解 以C 为原点建立空间直角坐标系,则 知识点4 棱柱、棱锥和棱台 圆柱、圆锥、圆台和球 例1:如图,用过BC 的一个平面(此平面不过D A '')截去长方体的一个角,剩下的几何 体是什么?截去的几何体是什么?请说出各部分的名称. A ' D ' B ' C '

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

高中数学第一章立体几何初步1.1简单旋转体学案北师大版必修212250513

高中数学第一章立体几何初步1.1简单旋转体学案北师 大版必修212250513 [学习目标] 1.通过实物操作,增强直观感知. 2.能根据几何结构特征对空间物体进行分类. 3.会用语言概述球、圆柱、圆锥、圆台的结构特征. 4.会表示有关几何体以及柱、锥、台的分类. 【主干自填】 几种简单旋转体

【即时小测】 1.思考下列问题 (1)铅球和乒乓球都是球吗? 提示:铅球是球,乒乓球不是球,铅球是实心球,符合球的定义,乒乓球是空心球,不符合球的定义. (2)圆柱、圆锥、圆台的底面都是圆吗? 提示:它们的底面都不是圆,而是圆面. 2.用一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥 C.球D.圆台 提示:C 由球的性质可知,用平面截球所得截面都是圆面. 3.给出下列命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线; ③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线; ④圆柱的任意两条母线所在的直线是互相平行的. 其中正确的是( ) A.①② B.②③ C.①③ D.②④ 提示:D 依据圆柱、圆锥和圆台的定义及母线的性质可知,②④正确,①③错误. 例1 有下列说法: ①球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体;

②球的直径是球面上任意两点间的连线; ③用一个平面截一个球,得到的是一个圆; ④空间中到一定点距离等于定长的点的集合是球. 其中正确的序号是________. [解析]球可看作是半圆面绕其直径所在的直线旋转形成的,因此①正确;如果球面上的两点连线经过球心,则这条线段就是球的直径,因此②错误;球是一个几何体,平面截它应得到一个面而不是一条曲线,所以③错误;空间中到一定点距离等于定长的点的集合是一个球面,而不是一个球体,所以④错误. [答案]① 类题通法 透析球的概念 (1)球是旋转体,球的表面是旋转形成的曲面,球是球面及其内部空间组成的几何体,球体与球面是两个不同的概念,用一个平面截球得到的是圆面而不是圆. (2)根据球的定义,篮球、排球等虽然它们的名字中都有一个“球”字,但它们都是空心的,不符合球的定义. [变式训练1]下列命题: ①球面上四个不同的点一定不在同一平面内; ②球面上任意三点可能在一条直线上; ③空间中到定点的距离等于定长的点的集合构成球面. 其中正确的命题序号为________. 答案③ 解析①中作球的截面,在截面圆周上任取四点,则这四点在同一平面内,所以①错; ②球面上任意三点一定不能共线,所以②错;③由球的定义可知③正确. 例2 下列命题: ①用一个平面去截圆锥得到一个圆锥和一个圆台; ②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台; ③圆柱的任意两条母线平行; ④以等腰三角形的底边上的高所在的直线为旋转轴,其余各边旋转一周形成的曲面围成的几何体叫圆锥. 其中正确命题的个数为( ) A.0 B.1 C.2 D.3 [解析]本题主要考查圆柱、圆锥、圆台的概念,关键理解它们的形成过程.①用平行

1立体几何的基本概念.

高中数学总复习 立体几何的基本概念 【知识要点】 【基本概念】 一.空间几何体的结构特征 【棱柱、棱锥、棱台和多面体】 : 1.棱柱是由满足下列三个条件的面围成的几何体: ①有两个面互相平行; ②其余各面都是四边形; ③每相邻两个四边形的公共边都互相平行; 棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等. 棱柱性质: ①棱柱的各个侧面都是平行四边形,所有的侧棱都相等; ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等 .. 多边形 . ③过棱柱不相邻的两条侧棱的截面都是平行四边形 . 2.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质: ①底面是多边形;

②侧面是以棱锥的顶点为公共点的三角形; ③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方. 3.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分. 由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥. 4.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体. 【圆柱、圆锥、圆台、球】 : 分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球 圆柱、圆锥和圆台的性质主要有: ①平行于底面的截面都是圆; ②过轴的截面(轴截面分别是全等的矩形、等腰三角形、等腰梯形; ③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥. 附表: 1. 几种常凸多面体间的关系

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

(完整版)非常好高考立体几何专题复习

立体几何综合习题 一、考点分析 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ①? ? ??????→?? ?????→? ? ?? L 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱 ★ 底面为矩形 底面为正方形侧棱与底面边长相等 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3 .球 球的性质: ①球心与截面圆心的连线垂直于截面; ★②r(其中,球心到截面的距离为 d、球的半径为R、截面的半径为r) ★球与多面体的组合体:球与正四面体,球与长 方体,球与正方体等的内接与外切. 注:球的有关问题转化为圆的问题解决. B

1.求异面直线所成的角(]0,90θ∈??: 解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角; 2求直线与平面所成的角[]0,90θ∈??:关键找“两足”:垂足与斜足 解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。 3求二面角的平面角[]0,θπ∈ 解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。

立体几何证明方法大全

(二)立体几何证明方法汇总 1、线线平行判定定理 一个平面 点 平行于同一条直线的两条直线的 两条直线平行 线面平行性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 面面平行的性一个平面与两个平行平面相交 则交线平行 线面垂直的性垂直于同 行

两条直线所成的角是 线面垂直的性质一条直线垂直于一个平面任何一条直线 一条直线垂直三角形两边则垂直一条直线垂直于三角形的两条边 第三边 三垂线定理 个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线定理逆定三垂线逆定理 这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

一条直线与平面没有交点 线面平行判两个平面平行, 平行于另一个平面 如果一条直线垂直于平面内的任何一条 直线,则直线与平面垂直。 的一条直线垂直于平面内两条相交直线, 则平行于这个平面。 的推一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 的若二平面垂直,那么在一个平面内垂直 于它们的交线的直线垂直于另一个平面

如果两个平面没有公共点,则两个平面平行。 面面平行的如果一个平面内有两条相交直线平行于另一 个平面,那么这两个平面平行 面面平行的判定定理推如果两个平面内两条相交直线平行于另一个平面内两条相交直线,则两个平面平行。 线面垂直的 垂直于同一直线的两个平面平行 两个平面相交, 这两个平面垂直。 面面垂直的判如果平面经过另一个平面的一条垂线, 面垂直。

公理 么这条直线上的所有点都在这个平面内。( ( 公理 它公共点,这些公共点的集合是一条直线( ( 公理 个平面。 干个点共面的依据 推论 有一个平面。 ( ( 推论 推论

立体几何1

空间几何体的结构及其三视图和直观图 一、选择题: 1.充满气的车轮内胎可由下面某个图形绕对称轴旋转而成,这个图形是 2.在斜二测画法的规则下,下列结论正确的是 C .相等的线段在直观图中仍然相等 若两条线段平行,且相等,则在直观图中对应的两条线段仍然平行且相等 5.—梯形的直观图是一个如图所示的等腰梯形,且该梯形面积为 B.V2 A 3. F图所示的四个几何体,其中判断正确的是( (1)不是棱 柱 ⑵⑶⑷ B . (2)是棱 柱 (3)是圆 台 D . (4)是棱 锥 4.下列几何体各自的三视图中,有且仅有两个视图相同的是() ④正四棱锥 ①正方体②圆锥③三陵合 A .①② B .①③C.①④ D .②④ A ?角的水平放置的直观图不一定是角 B .相等的角在直观图中仍然相等 则原梯形的面积为( 1

二、填空题: 6.—正方体内接于一个球,经过球心作一个截面,则截面的可能图形为 7 .已知三棱锥的底面是边长为1的正三角形,两条侧棱长为,则第三条侧棱长的取值范围是 三、解答题: + EC的最小值. 為】 9 .有三个球,第一个球内切于正方体,第二个球与这个正方体的各条棱相切, 各个顶点?求这三个球的半径之比. 家庭作业: 视图是 2 ?如果用□表示一个立方体,用逐表示两个立方体叠加,用 &已知正方体ABCD —A i B i C i D i的棱长为1 , P是AA i的中点, E是BB i上一点,如图所示,求PE (只填写序号). 第三个球过这个正方体的 、选择题 i .如图,已知三棱锥的底面是直角三角形, 直角边长分别为3和4,过直角顶点的侧 棱长为4,且垂直于底面,该三棱锥的正 表示三个立方体叠加,那么右图中有 4 A 3 C 4 D 2

第一章立体几何初步单元教学分析

必修2 第一章《立体几何初步》单元教学分析 (一)教材分析 2、本章节在整个教材体系中的地位和作用 本章教材是高中数学学习的重点之一,通过研究空间几何体的结构特征、三视图和直观图、表面积和体积等,运用直观感知、操作确认、度量计算等方法,认识和探索空间图形及其性质,使学生建立空间概念,掌握思考空间几何体的分类方法,在认识空间点、直线、平面位置的过程中,进一步提高学生的空间想像能力,发展推理能力,通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言;以具体的长方体中的点、线、面之间的关系作为载体,使学生在直观感知的基础上,认识空间中点、线、面之间的位置关系;通过对图形的观察和实验,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,并能解决一些简单的推理论证及应用。本章内容在每年的高考中都必考,在选择题、填空题和解答题中均能出现,分值约20分左右,主要考查线、面之间的平行、垂直关系。 3、本章节的教学目标、数学思想、数学方法 通过对空间几何体的整体观察,使学生直观认识空间几何体的结构特征,理解空间点、线、面的位置关系,并会用数学语言表述空间有关平行、垂直的判定与性质,能运用这些结论对有关空间图形位置关系的简单命题进行论证,了解一些简单几何体的表面积与体积的计算方法。培养和发展学生的空间想象能力、推理论证能力、合情推理能力、运用图形语言进行交流的能力。 4、本章节的教学重点、教学难点、教学特点: 本章的重点是空间中的直线与直线、直线与平面、平面与平面的平行和垂直的判定和性质。本章的难点是建立空间概念,培养学生的空间想象,空间识图能力。

立体几何1 单元测试

立体几何一 一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.从长方体一个顶点出发的三个面的面积分别为6,8,12,则其对角线的长为 (A)3 (B)5 (C) 26 (D)29 2.在空间,下列命题中正确的个数为 ①平行于同一直线的两条直线平行;②垂直于同一直线的两条直线平行; ③平行于同一平面的两条直线平行;④垂直于同一平面的两条直线平行; (A )0 (B )1 (C )2 (D )3 3.棱长为a 的正方体外接球的表面积为 22224.3.2..a D a C a B a A ππππ 4. 在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立... 是 A .BC//平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PAE ⊥平面ABC 5.已知直线m 、n 、l 与平面βα,,给出下列六个命题: ①若;,,//m n n m ⊥⊥则αα②若.,//,βαβα⊥⊥则m m ③若m l m l //,//,//,//则βαβα ④若不共面与则点m l m A A l m ,,,?=??αα ⑤若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ⑥.//,//,//,,,βαββαα则点m l A m l m l =?? 其中假命题有 A.0 B .1 C .2 D .3 6.设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是 A . l m l ⊥=?⊥,,βαβα B . γβγαγα⊥⊥=?,,m C . αγβγα⊥⊥⊥m ,, D . αβα⊥⊥ ⊥m n n ,, 7.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为 A .16 V B .14 V C .13 V D .12 V 8.对于不重合的两个平面α与β,给定下列条件中,可以判定α与β平行的条件有 ①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等; ④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β,

高中立体几何证明垂直的专题训练

高中立体几何证明垂直的专题训练 深圳龙岗区东升学校—— 罗虎胜 立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。 (1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC 2.如图,四棱锥P -ABCD ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 分析:取PC 的中点G ,易证EG//AF ,又易证A F 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD 3 、如图所示,在四棱锥P ABCD -中, (第2题图)

AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且 1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB 4.如图所示, 四棱锥P -ABCD 底面是直角梯形 ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面; 分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC (2)利用等腰三角形底边上的中线的性质 5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==, PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 6、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 o A C B P

第一章空间几何体综合检测-附答案

第一章综合检测题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.如下图所示,观察四个几何体,其中判断正确的是( ) A .①是棱台 B .②是圆台 C .③是棱锥 D .④不是棱柱 2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( ) A.12倍 B .2倍 C.24倍 D.22倍 3.(2012·湖南卷)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ) 4.已知某几何体的三视图如图所示,那么这个几何体是( )

A .长方体 B .圆柱 C .四棱锥 D .四棱台 5.正方体的体积是64,则其表面积是( ) A .64 B .16 C .96 D .无法确定 6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆 锥的体积( ) A .缩小到原来的一半 B .扩大到原来的2倍 C .不变 D .缩小到原来的16 7.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( ) A .1倍 B .2倍 C.95倍 D.74倍 8.(2011~2012·浙江龙岩一模)有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )

A .12πcm 2 B .15πcm 2 C .24πcm 2 D .36πcm 2 9.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B .6 C .5 D .3 10.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( ) A.32,1 B.23,1 C.32,32 D.23,32 11.(2011-2012·广东惠州一模)某几何体的俯视图是如图所示的

相关文档
相关文档 最新文档