文档库 最新最全的文档下载
当前位置:文档库 › Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins

Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins

Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins
Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins

Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins

S.P.Chawla *,Ramesh Chander,Arun Sharma

Food Technology Division,Bhabha Atomic Research Centre,Trombay,Mumbai 400085,India

a r t i c l e i n f o Article history:

Received 8September 2008

Received in revised form 12January 2009Accepted 12January 2009

Keywords:

Maillard reaction Gamma-irradiation Antioxidant Free radicals Whey protein

a b s t r a c t

The radiation processing of sugar–amino acid solutions results in formation of Maillard reaction products (MRPs).In the present study,the ef?cacy of gamma-irradiation in the formation of MRPs from whey pro-tein powder was investigated.The formation of MRPs in whey protein suspension was studied by mon-itoring spectrophotometeric and chemical changes.A dose-dependent increase in UV absorbance and development of ?uorescence was observed.Formation of brown pigments was established by increased A 420nm and Hunter colour upon irradiation.These MRPs exhibited antioxidant activity as measured by 1,1-diphenyl-2-picrylhydrazyl and b -carotene bleaching assays.Reducing power and iron-chelating abil-ities of MRPs also increased upon irradiation.These MRPs were able to scavenge hydroxyl and superoxide anion radicals under in vitro conditions.Dose-dependent decrease in free amino groups and lactose sug-gested the formation of glycated proteins upon irradiation treatment.SDS–PAGE analyses indicated for-mation of crosslinked proteins upon irradiation.

ó2009Elsevier Ltd.All rights reserved.

1.Introduction

The Maillard reaction or non-enzymatic browning corresponds to a set of reactions resulting from the initial condensation be-tween an available amino group and a carbonyl-containing moiety,usually a reducing sugar.This reaction is known to be responsible for the attractive ?avour and brown colour of some cooked foods (Jing &Kitts,2002).It is one of the major reactions taking place during thermal processing,cooking,and storage of foods.A myriad of products are formed,which have direct impact on nutritional and sensory qualities of foods.The Maillard reaction products (MRPs)formed in an amino acid–sugar model system have been known to be associated with the formation of compounds with pronounced antioxidant activity.The development of antioxidant molecules is one of the desirable effects of the Maillard reaction.The antioxidative properties of MRPs produced by heat treatment of amino acid–sugar have been studied in model systems (Jayathil-akan &Sharma,2006).

The majority of studies have been carried out on the sugar–ami-no acid and sugar–protein model systems.Radiation processing enhances shelf-life and/or improves the microbiological safety of raw and processed food materials without compromising nutri-tional quality (WHO,1999).The majority of chemical changes caused due to radiation processing of food are similar to those of

other preservation methods (Diehl,1995).The chemical changes taking place during irradiation are the result of the direct effect of radiation on the food components or by indirect action,through reactive intermediates formed by radiolysis of water (Diehl,1995).The majority of these chemical changes are similar to those pro-duced by heat treatment.However,information on the formation of MRPs by radiation processing is scanty.Non-enzymatic brown-ing in gamma-irradiated aqueous solutions of different sugars with lysine has been reported (Oh et al.,2006).Formation of antioxidant compounds in sugar–amino acid solutions upon irradiation has also been reported recently from this laboratory (Chawla,Chander,&Sharma,2007).

Whey is an abundant by-product of the dairy industry.It is the portion of milk left after the manufacture of cheese.It consists of about 96%water but also contains valuable proteins and lactose.The disposal of whey is dif?cult due to its high biological oxygen demand.In developing countries whey is dumped into streams thereby polluting them.The objective of the present study was to investigate radiation-induced changes in whey protein disper-sion in terms of formation of MRPs and to examine their antioxi-dant activity.

2.Materials and methods 2.1.Chemicals

b -Carotene,2,2,-diphenyl-1-picryl hydrazyl (DPPH),thiobarbi-turi

c aci

d (TBA),nitroblu

e tetrazolium (NBT)and linoleic acid were

0308-8146/$-see front matter ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.foodchem.2009.01.097

*Corresponding author.Tel.:+912225593296/25595374;fax:+912225505151/25519613.

E-mail address:spchawla@https://www.wendangku.net/doc/284698646.html,.in (S.P.Chawla).Food Chemistry 116(2009)

122–128

Contents lists available at ScienceDirect

Food Chemistry

j o u r n a l ho m e p a g e :w w w.e l s e v i e r.c o m /l o c a

te/foodchem

purchased from Sigma Chemical Co.(St.Louis,MO).All other chemicals used were of analytical grade and procured from HiMe-dia Laboratories(Mumbai,India)or Sisco Research Laboratories (Mumbai,India).

2.2.Preparation of radiation induced MRPs

Whey protein concentrate(WPC)solution was prepared in dis-tilled water to give a?nal concentration of1%.The WPC solutions were subjected to different doses of gamma-irradiation(0–100kGy)in a Gamma-Cell5000(BRIT,Mumbai)at a dose rate of 9.87kGy per hour.Dosimetry was performed by ceric-cerous dosimeter calibrated against Fricke’s dosimeter.Dosimetry inter-comparison was carried out with National Standards established by the Radiological Physics and Advisory Division(RP&AD),Bhabha Atomic Research Centre(BARC),Mumbai,India.

2.3.Spectrophotometric analyses

The radiation-treated whey protein dispersions were appropri-ately diluted and absorbance at284nm(early Maillard reaction products)and420nm(late Maillard reaction products)were mea-sured.Fluorescence of samples was determined after100-fold dilu-tion.The?uorescence intensity was measured at an excitation wavelength of365nm and emission wavelength of440nm using a?uorescence spectrophotometer(Chawla et al.,2007).

2.4.Measurement of colour

The evaluation of colour of the gamma-irradiated whey protein dispersion was carried out using a colorimeter(MiniScan MS/S-4000S;Associates Laboratory Inc.,Reston,VA)according to the CIE Lab scale.The system provides the values of three colour components:L*(black–white component,luminosity),and the chromaticity coordinates,a*(+red toàgreen component)and b* (+yellow toàblue component)(Hunter,1942).Samples were placed into a cell.The samples were illuminated with D65-Arti?-cial Daylight(10°standard angle),according to conditions pro-vided by the manufacturer.The E index is calculated from the equation:

E?eL?2ta?2tb?2T1=2

and chroma value according to the equation:

C?ea?2tb?2T1=2

Each colour value reported was the mean of four determina-tions at25±3°C.

2.5.Determination of reducing power

Reducing power was determined by the ferricyanide method of Yen and Duh(1993).Appropriately diluted sample(1ml)was added to2.5ml of phosphate buffer(200mM,pH6.6)followed by2.5ml of1%potassium ferricyanide.The reaction mixture was incubated for20min in a water bath at50°C.After incubation, 2.5ml of10%trichloroacetic acid(TCA)was added,followed by cen-trifugation at3000rpm for10min.The upper layer(5ml)was mixed with5ml distilled water and1ml of0.1%ferric chloride. Absorbance of the resultant solution was measured at700nm.A high absorbance was indicative of strong reducing power.

2.6.Determination of DPPH radical-scavenging activity

Electron-donating ability of radiation-induced MRPs was deter-mined by employing DPPH radical-scavenging assay(Blois,1958).To a1ml aliquot of appropriately diluted solution,1ml of etha-nolic DPPH solution(0.2mM)was added.The mixture was vor-texed and left to stand at ambient temperature for30min.A reaction mixture containing1ml distilled water and1ml of etha-nolic DPPH solution(0.2mM)served as the control.The absor-bance of the solution was measured spectrophotometrically at 517nm.The percentage of DPPH scavenging was calculated from the equation:

Radical scavenging activitye%T?100?eA controlàA sampleT=eA controlTwhere A control is the absorbance of the control and A sample the absor-bance of the sample.

2.7.Determination of antioxidant activity by b-Carotene bleaching assay

Antioxidant activity of the aqueous solution was determined by a b-carotene/linoleic acid system,as described by Matthaus(2002). Brie?y,1ml of b-carotene solution(1mg/ml in chloroform),40l l of linoleic acid,and400l l of Tween80were transferred into a round-bottomed?ask.Chloroform from the sample was evapo-rated using a stream of nitrogen.Then100ml of distilled water was added slowly to the residue and vigorously agitated to give a stable emulsion.To an aliquot of4.5ml of this emulsion,500l l of appropriately diluted samples were added.To the control reac-tion mixtures,500l l of distilled water were added.Absorbance was measured immediately at470nm.The tubes were placed in a water bath at50°C and the absorbance was measured after 120min.Antioxidant activity index(AAI)was calculated as

AAI?100?

A se0TàA se120T

A be0TàA be120T

where A s(0)is absorbance of the sample at0min,A s(120)is the absor-bance of the sample at120min,A b(0)is the absorbance of the con-trol at0min,A b(120)is the absorbance of the control at120min. 2.8.Determination of hydroxyl radical-scavenging activity

Hydroxyl radical-scavenging activity of radiation-induced MRPs was determined according to the modi?ed method of Halliwell, Gutteridge and Aruoma(1987).To1ml of the appropriately di-luted sample,1ml phosphate buffer(0.1M pH7.4)containing 1mM ferric chloride,1mM EDTA,1mM ascorbic acid,30mM deoxyribose,and20mM hydrogen peroxide were added.After incubation at37°C for90min,2ml of2%(w/v)TCA and2ml of 1%(w/v)TBA was added.The reaction mixture was heated in a boiling water bath for15min.The absorbance of the pink colour that developed was measured at532nm using a spectrophotome-ter.The percentage of hydroxyl radical-scavenging activity was calculated as:

%inhibition?100??eA ControlàA SampleT=A Control

where A Control is the absorbance of the control and A Sample the absor-bance of the sample.

2.9.Measurement of superoxide anion scavenging activity

Superoxide anion scavenging activities of radiation induced MRPs were determined according to the method of Liu,Ooi,and Chang(1997)with some modi?cations.The reaction mixture con-sisted of1ml of NBT(156l M in0.1M potassium phosphate buffer pH7.4), 1.0ml of nicotinamide adenine dinucleotide reduced (NADH468l M in0.1M potassium phosphate buffer pH7.4)and

S.P.Chawla et al./Food Chemistry116(2009)122–128123

0.5ml of appropriately diluted sample.The reaction was initiated by addition of100l l of phenazine methosulphate(PMS60l M in 0.1M potassium phosphate buffer pH7.4)to the mixture.The tubes were incubated at ambient temperature for5min.and the absorbance was measured at560nm.Decreased absorbance of the reaction mixture indicated increased superoxide anion scav-enging activity.The percentage inhibition of superoxide anion gen-eration was calculated using the following formula:

%inhibition?100?eA0àA sT

A0

where A0is the absorbance of the control and A s is the absorbance of the sample.

2.10.Determination of iron chelation activity

The ferrous ion chelation potentials of radiation-induced MRPs were investigated by estimating the ferrous iron–ferrozine com-plex at562nm(Decker&Welch,1990).Brie?y,the reaction mix-ture consisted of1.0ml of appropriately diluted sample,3.7ml distilled water,0.1ml ferrous chloride(2mM)and0.2ml ferrozine (5mM).The reaction mixture containing1ml of distilled water in-stead of sample served as control.Tubes were incubated at ambi-ent temperature for20min.The absorbance of the colour developed was measured at562nm.A high ferrous chelation abil-ity of sample results in low absorbance at562nm.The ability of sample to chelate ferrous ions was calculated using the following equation:

Chelation activitye%T?100?eA0àA ST

A0

where A o is absorbance of the control and A s is the absorbance of the sample.

2.11.Determination of free amino group content

Free amino group content was determined according to the method of Benjakul,Lertittikul,and Bauer(2005).Appropriate volume of sample was mixed with2ml of200mM phosphate buffer(pH8.2)and1ml of0.01%TNBS solution was added.The reaction mixture was vortexed and incubated in water bath at 50°C for30min in the dark.The reaction was stopped by adding 2ml of100mM sodium sul?te solution.The tubes were allowed to cool at room temperature.The absorbance was measured at 420nm.

2.12.SDS–polyacrylamide gel electrophoresis(SDS–PAGE)

SDS–PAGE was performed using4%stacking gel and10%run-ning gel,according to the method of Laemmli(1970),with a verti-cal gel electrophoresis unit(Mini-Kin,Techno Source,Mumbai, India).Protein(25l g)was applied to the gel.The electrophoresis was carried out at20mA.After separation,protein bands were stained using Coomassie Brilliant Blue R-250(0.2%)in25%metha-nol and10%acetic acid.Destaining was performed using40% methanol and10%acetic acid.

2.1

3.Fractionation of MRPs

The whey protein dispersion was subjected to fractionation using ethanol(Jing&Kitts,2004).The samples were mixed with absolute ethanol(9:1v/v)and allowed to stand for2h at4°C. The MRP ethanol suspension was centrifuged at5000g for10mins. The resulting supernatant which contained low molecular weight MRPs was decanted and separated from the precipitate.Both eth-anol-soluble supernatant and precipitate were analysed for DPPH radical-scavenging activity.

2.14.Statistical Analysis

All results given in the?gures are mean±standard deviation. Differences between the variables were tested for signi?cance by one-way ANOVA with Tukey’s post test using GraphPad InStat ver-sion3.05for Windows95,GraphPad Software,San Diego,CA.Dif-ferences at p<0.05were considered to be signi?cant.

3.Results

In the present study an aqueous suspension of whey protein concentrate was used as a representative of a natural food pro-tein/sugar mixture,to investigate the effect of radiation processing. Effect of gamma-irradiation on spectrophotometric analysis of whey protein dispersion is shown in Fig.1.A sharp increase in UV absorbance at284nm of samples was observed with irradia-tion dose(r2=0.99)(Fig.1A).The UV absorption of samples irradi-ated at100kGy was corrected for dilution factor and the value was found to be69.3,suggesting formation of UV-absorbing intermedi-ate products upon irradiation.The Maillard reaction is associated with development of UV-absorbing intermediate compounds,prior to generation of brown pigments.This increased UV absorbance is attributed to decomposition of sugars by dehydration and sugar fragmenation(Hodge,1953).Dose-dependent formation of UV-absorbing compounds upon irradiation of sugar/amino acid solu-tions has been reported previously(Chawla et al.,2007;Oh et al., 2006).UV-absorbing intermediate compounds are formed prior to heat-induced MRPs(Ajandouz,Tchiakpe,Ore,Benajiba,&Puig-server,2001).

It can be seen that the browning intensity,as measured by A420‘nm for whey protein dispersion increased(r2=0.99)with the radiation dose(Fig.1A).Dose-dependent increase in browning in sugar/amino acid solution has been reported previously(Chawla et al.,2007;Oh et al.,2006).These?ndings are in concurrence with other studies where browning of protein/sugar solutions due to heat-induced Maillard reaction is reported(Benjakul et al.,2005; Jing&Kitts2002).Development of brown colour,due to the forma-tion of chromophores,has been widely studied in different model systems,and studies on melanoidin formation have been summa-rised(Rizzi,1997).

The extent of browning due to Maillard reaction is regularly measured as a single wavelength absorbance.Wavelengths be-tween360and470nm are frequently used for the purpose.How-ever,it may not be a reliable way to describe visual colour changes, in terms of the visual properties of the coloured compounds.We attempted to correlate visual colour with browning,by applying the colour parameters provided by a tristimulus colourimeter. The CIE Lab system established a system of numerical coordinates to locate individual colour in uniform visual colour spacing.The re-sults of the evaluation of colour of the gamma-irradiated whey protein dispersion are shown in Table1.It can be seen that there was no signi?cant change in a*value whereas b*value increased with irradiation dose.These?ndings suggest a net increase in yel-low–brown colour as a result of radiation treatment of whey pro-tein dispersion.The colour index(E),which is in?uenced by L*,a* and b*values.It was observed that L*values decreased upon irradi-ation due to loss of lightness whereas b*values increased upon irradiation,due to formation of yellow–brown colour.The E index could describe how far apart two colours are in the colour space.It was seen that there was a slow increase in E index upon irradia-tion,as a net effect of reduced lightness and increased yellow–brown colour.The parameter C*indicates the degree of saturation,

124S.P.Chawla et al./Food Chemistry116(2009)122–128

purity or intensity of visual colour and is de?ned as the degree of departure from grey(a*and b*=0)towards pure chromatic colour. The increased values of C*signify that the irradiated model system shows more red or yellow characteristics and no saturation was observed at the doses investigated in the present study.In the heat-induced Maillard reaction of a sugar/amino acid model sys-tem it was reported that E index decreases signi?cantly with heat-ing time,whereas,the C*value increases with heating time to a maximum after which the colour of the system becomes more complicated(Morales&Jimenez-Perez,2001).

Development of?uorescent compounds has been reported to be associated with heat-induced Maillard reaction(Jing&Kitts,2000, 2002).In the present study dose-dependent formation of?uores-cent compounds was observed in irradiated whey protein disper-sion(Fig.1B).These?uorescent compounds are known to be precursors of brown pigments formed during the Maillard reaction. Similar results in heat-induced the Maillard reaction in a model system consisting of bovine serum albumin and sugar have been reported,where the?uorescence intensity of the system increased with time(Yeboah,Alli,&Yaylayan,1999).However,in a number of other studies it has been reported that?uorescence intensity reached a maximum during heat treatment and further heating re-sulted in a gradual decrease in intensity(Benjakul et al.,2005;Jing &Kitts,2002).

Iron reducing power of the whey protein dispersion before and after subjecting to gamma-irradiation is shown in Fig.1B.It was seen that non-irradiated whey protein dispersion had negligible reducing power,which increased signi?cantly(p<0.05)upon irradiation treatment.It has been reported that compounds responsible for reducing activity are formed during thermolysis of Amadori products in the primary phase of Maillard reactions (Hwang,Shue,&Chang,2001)or could be heterocyclic products of Maillard reaction or caramelisation of sugars(Charurin,Ames, &Castiello,2002).Possibly,gamma-irradiation induces similar changes in whey protein dispersion,resulting in the formation of products which contribute towards the reducing power. Heat-induced MRPs from xylose/lysine(Yen&Hsieh,1995),glu-cose/glycine(Yoshimura,Ujima,Watanabe,&Nakazawa,1997) and porcine plasma protein/glucose models(Benjakul et al., 2005;Lertittikul,Benjakul,&Tanaka,2007)possessed reducing power.

We estimated the effect of radiation dose on free amino groups in whey protein dispersion.In the present study a dose-dependent reduction in free amino groups was observed in irradiated whey protein dispersion(Fig.2A).The decrease in free amino groups was coincidental with increase in the browning intensity (Fig.1A).A reduction of free amino groups,which are major reac-tants of the Maillard reaction is also reported in other studies in su-gar/amino acid systems(Sun,Hayakawa,&Izumori,2004).

The changes in sugar content of whey protein dispersion,as a function of irradiation dose,are also shown in Fig.2A.In the pres-ent study a signi?cant dose-dependent decrease in the reducing sugar content was observed in irradiated whey protein dispersion. Reduction in reducing sugar content during heat-induced Maillard reaction in fructose/lysine(Ajandouz et al.,2001)and porcine pro-tein/glucose(Lertittikul et al.,2007)model systems has been reported.

Table1

Effect of gamma-irradiation on Hunter colour values of whey protein dispersion.

Irradiation dose L*a*b*c E

Control86.7 1.259.119.287.4

20kGy85.60.0912.712.787.0

40kGy84.3à0.8822.122.187.1

60kGy82.3à0.9730.130.187.6

80kGy81.4à0.9835.935.988.9

100kGy80.9à0.9837.637.689.2

L*(black–white component,luminosity),chromaticity coordinates,

a*(+red toàgreen component),

b*(+yellow toàblue component),

C=(a*2+b*2)1/2,

E=(L*2+a*2+b*2)1/2.

Each colour value reported was the mean of four determinations at25±3°C.

S.P.Chawla et al./Food Chemistry116(2009)122–128125

These results indicated the involvement of amino group and reducing sugar in formation of MRPs during irradiation treatment, as substantiated by the lower free amino groups and reducing sug-ars remaining upon irradiation treatment.

To evaluate the free radical-scavenging,whey protein disper-sions subjected to different doses of gamma-irradiation were al-lowed to react with stable DPPH free radical.The scavenging of DPPH free radical,indicating a positive antiradical activity,was fol-lowed by monitoring reduction in the absorbance at517nm.DPPH free radical-scavenging activity increased with the irradiation dose in whey protein dispersion(r2=0.90).In whey protein dispersion irradiated at40kGy it was observed to be33.8%(Fig.2B).Upon fur-ther irradiation to80kGy,the increase was not linear and tended to plateau at a higher irradiation dose.Capability of heat-induced MRPs to scavenge DPPH radical have been reported in a number of studies(Benjakul et al.,2005;Jing&Kitts,2002;Lertittikul et al.,2007;Morales&Jimenez-Perez,2001).In our previous stud-ies,on radiation-induced Maillard reaction in sugar/amino acid model system,similar?ndings were observed,where the radical-scavenging activity saturated with an irradiation dose of40kGy (Chawla et al.,2007).These?nding are also in agreement with pre-vious studies on heat-induced MRPs,where radical-scavenging activities tend to saturate after a certain heating time(Jing&Kitts, 2002;Lertittikul et al.,2007;Morales&Jimenez-Perez,2001).

It was observed that b-carotene bleaching was signi?cantly (p<0.05)inhibited in the presence of irradiated whey protein dis-persion,compared to that offered by its non-irradiated counterpart (Fig.2B).These?ndings indicated that irradiation of whey protein dispersion resulted in formation of compounds having signi?cant antioxidant potential.These?ndings are similar to our previous re-sults on radiation induced Maillard reaction in sugar/amino acid model system(Chawla et al.,2007).As in the case of DPPH radi-cal-scavenging,inhibition of b-carotene bleaching tended to max-imize at a higher irradiation dose.Synthesis of antioxidative compounds upon heat treatment of sugar/amino acid solutions is reported in a number of studies(Jayathilakan&Sharma,2006;Jing &Kitts,2002;Morales&Jimenez-Perez,2001;Yoshimura et al., 1997).

The hydroxyl radical is the most reactive of species and induces most severe damage to adjacent biomolecules,resulting in lipid peroxidation in biological systems.In the present study the Fenton reaction system was used in deoxyribose degradation by generat-ing hydroxyl radicals.The treatment of deoxyribose with Fenton reaction reagent resulted in a high rate of deoxyribose degradation. Hydroxyl radical-scavenging activity of irradiated whey protein dispersion was signi?cantly higher than that of its non-irradiated counterpart(Fig.3A).These?ndings revealed that compounds formed upon irradiation treatment of whey protein dispersion have the potential of being antioxidants in biological systems. Development of compounds capable of scavenging hydroxyl radi-cals and the utility of this test in studies to demonstrate in vitro hy-droxyl radical-scavenging activity of heat-induced MRPs has been reported(Jing&Kitts,2000,2002).

The superoxide radicals are generated by a number of biological reactions.Although they do not directly initiate lipid oxidation, superoxide radical anions are precursors of highly reactive hydro-xyl radical,which contributes towards lipid peroxidation in biolog-ical systems.Thus superoxide anion scavenging activity indirectly contributes towards antioxidant potential.Irradiated whey protein dispersion showed dose-dependent superoxide anion radical-scav-enging activity(Fig.3A).Our results are in agreement with a pre-vious study on heat induced MRPs formed from glucose/glycine that were reported to scavenge superoxide anion radical(Yoshim-ura et al.,1997).Formation of compounds that are capable of scav-enging hydroxyl and superoxide anion radicals,as result of radiation-induced Maillard reaction in sugar/amino acid model systems,has been reported(Chawla et al.,2007).

In contrast to DPPH radical-scavenging and inhibition of b-car-otene bleaching activity,scavenging of hydroxyl and superoxide anion radical did not stabilise at higher irradiation dose.These ?ndings probably suggest involvement of different compounds in various radical-scavenging reactions.

Metal chelation activity plays an important role in antioxidant action as it results in reduction in the concentration of the transi-tion metals required for lipid peroxidation.The Fe2+ion is the most powerful pro-oxidant amongst various species of metal ions.In the

126S.P.Chawla et al./Food Chemistry116(2009)122–128

present study we studied the effect of gamma-irradiation on fer-rous ion chelating activities of whey protein dispersion(Fig.3B). It can be seen that iron chelation activity of whey protein disper-sion signi?cantly(p<0.05)increased upon irradiation at20kGy. However,further irradiation did not result in any signi?cant in-crease in iron chelation activity.Formation of compounds that are able to chelate ferrous ions as a result of radiation-induced Maillard reaction in sugar/amino acid model systems,has been re-ported in our previous study(Chawla et al.,2007).Our?ndings are in concurrence with an earlier report where iron chelation activity was observed in glucose/glycine model system,as a result of MRPs formed due to heat treatment(Yoshimura et al.,1997).

The SDS–PAGE pattern of the whey protein dispersion subjected to different doses of gamma-irradiation is shown in Fig.4.The non-irradiated whey protein dispersion consisted of a number of pro-teins with molecular weight in the range of14–97kDa.Low molec-ular weight proteins( 14and20kDa)were highly predominant (Fig.4,lane2).Upon irradiation there was a dose-dependent reduction in low molecular weight bands with coincidental forma-tion of high molecular weight bands(Fig.4,lanes3–7).At irradia-tion doses of60kGy and above a high molecular weight band, which was unable to move in gel,was formed.These results sug-gested that there was a dose-dependent polymerisation of whey proteins upon irradiation.The formation of high molecular weight proteins during heat-induced Maillard reaction in b-lactoglobulin/ chitosan(Miralles,Martinez-Rodriguez,Santiago,Lagemaat,& Heras,2007)and porcine plasma protein/glucose model(Lertittikul et al.,2007)has been reported.The formation of cross-linked pro-tein chains during the advanced and?nal stages of Maillard reac-tion,and the types of cross-link involved have been widely studied in different model systems(Oliver,Melton,&Stanley, 2006).

The results of DPPH-scavenging activity of ethanol-fractionated

radiation-induced MRPs in whey protein dispersion as a function of irradiation dose are shown in Fig.5.It can be seen that both etha-nol-soluble supernatant and precipitate from non-irradiated whey protein dispersion did not yield any DPPH-scavenging activity. However,DPPH radical-scavenging activity was evident in both the fractions of irradiated samples.When comparison was made between the supernatant and precipitate from samples subjected to the same irradiation dose,it was observed that the radical-scav-enging activity was signi?cantly higher in the precipitate fraction. These?ndings suggested that the high molecular weight fraction contained more potent antioxidants than the low molecular weight fraction.These results are in agreement with a previous study on

Fig.4.SDS–PAGE protein pattern of gamma-irradiated whey protein dispersion.

Lane1Molecular weight markers;lanes2–7,whey protein dispersion subjected to

0,20,40,60,80and100kGy,respectively.

S.P.Chawla et al./Food Chemistry116(2009)122–128127

heat-induced MRPs where both DPPH as well as hydroxyl radical-scavenging activity were greater in the high molecular weight frac-tion compared to the low molecular weight fraction(Jing&Kitts, 2004).

4.Conclusion

Ionizing radiation,such as gamma rays,can be successfully em-ployed to produce MRPs in whey protein dispersion.The MRPs are probably produced because of a carbonyl-amine reaction,similar to heat-induced Maillard reaction.This study con?rms our earlier report that compounds of antioxidant potential are formed upon irradiation of glucose/amino acid solutions(Chawla et al.,2007). Covalent bonding of proteins to reducing sugars has been shown to alter their functional properties.Maillard reaction is one of the technologically feasible methods to prepare conjugates(Oliver et al.,2006).The results of the present study demonstrated the for-mation of MRPs with antioxidant potential when whey protein dis-persion was irradiated.The formation of protein conjugates is evident from the results.Further studies are needed to elucidate the mechanism and explore radiation as a tool to form protein con-jugates with novel functional properties.

References

Ajandouz,E.H.,Tchiakpe,L.S.,Ore,F.D.,Benajiba,A.,&Puigserver,A.(2001).Effect

of pH on caramelization and Maillard reaction kinetics in fructose–lysine model

system.Journal of Food Science,66,926–931.

Benjakul,S.,Lertittikul,W.,&Bauer,F.(2005).Antioxidant activity of Maillard

reaction products from a porcine plasma protein–sugar model system.Food

Chemistry,93,189–196.

Blois,M.S.(1958).Antioxidant activity determination by the use of a stable free

radical.Nature,181,1199–1200.

Charurin,P.,Ames,J.M.,&Castiello,M.D.(2002).Antioxidant activity of coffee

model systems.Journal of Agricultural and Food Chemistry,50,3751–3756.

Chawla,S.P.,Chander,R.,&Sharma, A.(2007).Antioxidant formation by c-irradiation of glucose–amino acid model system.Food Chemistry,103,

1297–1304.

Decker,E.A.,&Welch,B.(1990).Role of ferritin as lipid oxidation catalyst in muscle

food.Journal of Agricultural and Food Chemistry,38,674–677.

Diehl,J.F.(1995).Safety of irradiated foods(2nd ed.).Basel,New York:Marcel

Dekker.

Halliwell,B.,Gutteridge,J.M.C.,&Aruoma,O.I.(1987).The deoxyribose method:A

simple test tube assay for determination of rate constants for reaction of

hydroxyl radical.Analytical Biochemistry,165,215–219.

Hodge,J.E.(1953).Dehydrated food:Chemistry of browning reaction in model

systems.Journal of Agricultural and Food Chemistry,1,928–943.Hunter,R.S.(1942).Photoelectric tristimulus colourimetry with three?lters.NBS Circular C24.Department of Commerce,Washington.

Hwang,J.Y.,Shue,Y.S.,&Chang,H.M.(2001).Antioxidative activity of roasted and defatted peanut kernels.Food Research International,34,639–647. Jayathilakan,K.,&Sharma,G.K.(2006).Role of sugar–amino acid interaction products(MRPs)as antioxidants in a methyl linoleate model system.Food Chemistry,95,620–626.

Jing,H.,&Kitts,D.D.(2004).Antioxidant activity of sugar–lysine Maillard reaction products in cell free and cell culture systems.Archives of Biochemistry and Biophysics,429,154–163.

Jing,H.,&Kitts,D.D.(2002).Chemical and biochemical properties of casein–sugar Maillard reaction products.Food and Chemical Toxicology,40,1007–1015. Jing,H.,&Kitts, D. D.(2000).Comparison of the antioxidative and cytotoxic properties of glucose–lysine and fructose–lysine Maillard reaction products.

Food Research International,33,509–516.

Laemmli,U.K.(1970).Cleavage of structural proteins during the assembly of head of bacteriophage T4.Nature,227,680–685.

Lertittikul,W.,Benjakul,S.,&Tanaka,M.(2007).Characteristics and antioxidant activity of Maillard reaction products from a porcine plasma protein–glucose model system as in?uenced by pH.Food Chemistry,100,669–677.

Liu, F.,Ooi,V. E. C.,&Chang,S.T.(1997).Free radical scavenging activity of mushroom polysaccharide extracts.Life Science,60,763–771.

Matthaus,B.(2002).Antioxidant activity of extracts obtained from residues of different oilseeds.Journal of Agricultural and Food Chemistry,50,3444–3452. Miralles,B.,Martinez-Rodriguez,A.,Santiago,A.,Lagemaat,J.,&Heras,A.(2007).

The occurrence of a Maillard type protein–polysaccharide reaction between of b-lactoglobulin and chitosan.Food Chemistry,100,1071–1075.

Morales, F.J.,&Jimenez-Perez,S.(2001).Free radical scavenging capacity of Maillard reaction product as related to colour and?orescence.Food Chemistry, 72,119–125.

Oh,S.H.,Lee,Y.S.,Lee,J.W.,Kim,M.R.,Yook,H.S.,&Byun,M.W.(2006).The effect of c-irradiation on the non-enzymatic browning reaction in the aqueous model solutions.Food Chemistry,92,357–363.

Oliver,C.M.,Melton,L.D.,&Stanley,R.A.(2006).Creating proteins with novel functionality via the Miallard reaction:A review.Critical Reviews in Food Science and Nutrition,46,337–350.

Rizzi,G.P.(1997).Chemical structure of coloured Maillard reaction products.Food Reviews International,13,1–28.

Sun,Y.,Hayakawa,S.,&Izumori,K.(2004).Modi?cation of ovalbumin with a rare ketohexose through the Maillard reaction:Effect of protein structure and gel properties.Journal of Agricultural and Food Chemistry,52,1293–1299.

WHO(1999).High-dose irradiation:Wholesomeness of food irradiation with doses above10kGy.Report of Joint FAO/IAEA/WHO Study Group.WHO Technical Report Series890,World Health Organization,Geneva.

Yeboah,F.K.,Alli,I.,&Yaylayan,V.A.(1999).Reactivities of D-glucose and D-fructose during glycation of bovine serum albumin.Journal of Agricultural and Food Chemistry,47,3164–3172.

Yen,G.C.,&Duh,P.D.(1993).Antioxidant properties of methanolic extracts from peanut hulls.Journal of the American Oil Chemists’Society,70,383–386.

Yen,G.C.,&Hsieh,P.P.(1995).Antioxidative activity and scavenging effects on xylose–lysine Maillard reaction products.Journal of the Science of Food and Agriculture,67,415–420.

Yoshimura,Y.,Ujima,T.,Watanabe,T.,&Nakazawa,H.(1997).Antioxidative effect of Maillard reaction products using glucose–glycine model system.Journal of Agricultural and Food Chemistry,45,4106–4109.

128S.P.Chawla et al./Food Chemistry116(2009)122–128

天然抗氧化剂的研究

天然抗氧化剂的研究现状 小组成员:莫娟兰,程小运,韦玲玲,李志宁,梁天贤,谢宏波,覃治达。 目录 中文文摘 [1].Liposomes和micelles结构对天然抗氧化剂稳定性的影响. [2].天然抗氧化剂对抗晶状体氧化损伤作用的实验研究 [3].大豆异黄酮的UV/vis的抗氧化作用 [4].天然抗氧化剂防止精炼油酸败的研究 英文文摘 [a].Antioxidant Activity of Wheat Germ Extracts [1] Liposomes和micelles结构对天然抗氧化剂稳定性的影响 儿茶素等类黄酮类物质广泛存在于茶叶、葡萄、柑橘、柿等多种天然植物中,它具有抗氧化、降血脂、消炎抗癌等多种功效,其保健功能已得到全世界医学界和食品营养界的公认,国内外很多学者对儿茶素等类黄酮类物质的自动氧化及抗氧化机理进行了详细而深入的研究。儿茶素类天然抗氧化剂在发挥其天然抗氧化保健作用的同时,其自身往往氧化成低活性甚至没有活性的氧化产物,特别是在天然植物原料加工过程中,这些天然抗氧化剂发生的自动氧化对其活性损失很大,因此,了解影响儿茶素自动氧化的因素,并寻找避免儿茶素自动氧化的方法以期提高其活性是医学界和食品营养界一直关注的课题。脂质体(Liposomes)和胶束体(micelles)类双亲和结构自发现以来,引起了科技界的高度重视,特别是脂质体结构的缓释性和靶向性在医药上的用途更为广泛,国外八十年代开始投入大量人力和财力进行研究,于九十年代开发出了脂质体靶向抗癌药物面市;我国九十年代引起重视并投入一定的经费开始研究,但到目前国内尚无一例成功开发上市的脂质体靶向药物。本试验试图将脂质体(Liposomes)和胶束体(micelles)类双亲和结构技术在儿茶素等类黄酮类物质。 [2] 天然抗氧化剂对抗晶状体氧化损伤作用的实验研究 目的:探讨五味子乙素(SchB)、水飞蓟宾(SIB)、没食子酸丙酯(PG)、阿魏酸钠(SF)和沙棘总黄酮(TFH)5种天然抗氧化剂对抗实验性晶状体氧化损伤的作用。 方法:将40只健康新西兰白兔麻醉后,无菌操作摘出80只眼球,游离出透明晶状体。将实验分成8组:(1)对照组,(2)Fenton组,(3)白内停组(PS),(4)五味子乙素组(SchB),(5)水飞蓟宾组(SIB),(6)没食子酸丙酯组(PG),(7)阿魏酸钠组(SF),(8)沙棘总黄酮组(TFH)。所配制的各组培养液,除对照组外,均含有Fenton反应液,并分别含有白内停或上述5种天然抗氧化剂。将晶状体随机分为8组分别放入培养液中,在37℃、5% cO2、95%空气的二氧化碳培养箱中温育。24 h后取出晶状体并在冰浴中做匀浆,测定晶状体总蛋白和可溶性蛋白、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽(SGH)、总抗氧化能力(TAO)、维生素(Vit c)和丙二醛(MDA)。结果以x±s表示,用SPSS统计软件包行t检验。探讨Fenton氧化损伤和5种抗氧化剂作用下对晶状体上述指标的影响。 结果:(1)各组总蛋白无差异。Fenton可溶性蛋白显著性低于其他组。对照组可溶性蛋白占总蛋白的90.74%,Fenton组仅占26.71%(丢失了71%),阿魏酸钠组可溶性蛋白占49.85%,是Fenton组的1.91倍,且高于白内停组(P<0.01)。(2)Fenton组SOD和GSH-Px活性分别丧失43.92%和49.22%。对照组、五味子乙素组、水飞蓟宾组、没食子酸丙酯组和阿魏酸钠组的SOD和GSH-Px活性均高于Fenton组,其中阿魏酸钠作用最强(P<0.01)。白内停没有提高SOD活性的作用仅有轻微增强GSH-Px活性的作用;(3)Fenton反应使晶状体中GSH和Vit c 分别丢失77.88%和80.95%,各种单体均显示较强的保护作用,且明显优于白内停滴眼液(P

聚氨酯新材料项目职业病危害检测评价分析

聚氨酯新材料项目职业病危害检测评价分析 根据5中华人民共和国职业病防治法6和5建设项目职业病危害评价规范6等法律法规、卫生标准要求, 我们对某聚氨酯( PU )新材料工程项目职业病危害控制效果进行评价。现将评价结果报告如下。 1 评价内容、方法 1. 1 评价内容1 分析评价该项目生产或操作过程中产生的有毒有害物质、生产性噪声等职业病危害因素的种类、分布、浓度或强度及其对工人健康的影响。o 分析评价职业病防护措施实施情况, 包括总平面布置、生产工艺及设备布局、车间建筑设计卫生要求、卫生工程防护设施的控制效果、应急救援措施、个人防护设施, 辅助卫生用室设置、职业卫生管理措施等。 1. 2 评价方法按5建设项目职业病危害评价规范6 [ 1] 要求,用检查表和定量分级法评价该扩建项目中职业病危害因素对健康的影响、职业病防护措施实施情况[2] 。 1. 2. 1 职业卫生检测方法按5全国疾病预防控制机构工作规范6 [ 3] ( 2001年版)选择采样点。粉尘浓度检测用称重法( DS-21B 粉尘采样器), 噪声强度检测用直读方法( AWA6218B 噪声统计分析仪), TDI和二氯甲烷的检测用色谱分析法; CO2 用直读式仪器法。 1. 3 控制效果评价主要依据1 5中华人民共和国职业病防治法6 ( 2002- 05- 01); o 5建设项目职业病危害评价规范6 [ 1] ;. 5工业企业设计卫生标准6 [4] GBZ 1- 2002; . 5工作场所有害因素职业接触限值6 [ 5] GBZ 2- 2002; . 委托方提供的有关技术文件和资料。 2 结果分析 2. 1 项目工程分析及主要职业病危害因素 2. 1. 1 项目工程分析该新建项目主要产品为聚氨酯软泡塑料,生产工艺流程如下: 将原料罐的物料聚醚( PPG)、甲苯-2, 4二异氰酸酯(TDI)、三乙烯二胺、硅油、辛酸亚锡、水、色料、填料、阻燃剂、抗氧化剂、CO2 按一定量的配比经计量泵送入混合头。通过自控仪表装置将混合头的物料送入发泡头, 发泡头的压力为2. 5MPa, 通过发泡段输送带经走纸装置、红外线加热装置和真空抽气装置, 成形后由输送带送入切割输送带, 得成品, 发泡温度控制在20~ 24 c,再将成品经平切机分别切出所需成品。 2. 1. 2 主要职业病危害因素根据现场职业卫生调查, 该新建工程项目主要职业病危害因素有粉尘、TDI、二氯甲烷、CO2 及噪声等等。 2. 2 现场检测结果分析 2. 2. 1 作业场所粉尘对生产车间颜料粉碎机、混配槽等作业岗位粉尘浓度进行检测, 并按5生产性粉尘作业危害程度分级6 [ 6] ( GB 5817- 86)对粉尘危害程度进行分级, 结果见表1。

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺 一、石墨电极的原料 1、石墨电极 是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。2、石墨电极的原料 生产石墨电极的原料有石油焦、针状焦和煤沥青 (1)石油焦 石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫%以上)、中硫焦(含硫%%)、和低硫焦(含硫%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 (2)针状焦 针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。 (3)煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为-cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中温沥青。 二、石墨电极的制造工艺

浇注型聚氨酯..

浇注型聚氨酯 1概述 聚氨酯弹性体(PUE,PolyurethaneElastomer)是一类综合性能优良的高分子合成材料,包含有浇注型聚氨酯弹性体(CPU)、热塑型聚氨酯弹性体(TPU)和混炼型聚氨酯弹性体(MPU),微孔聚氨酯弹性体、聚氨酯防水材料、鞋底材料、铺装材料等。 CPU 在加工前成型前为粘性液体,故有“液体橡胶”之称,它是以液态低聚物多元醇、异氰酸酯和小分子扩链剂为原料,使用液体混合浇注的加工成型方法,经扩链交联反应得到固化交联的高弹性产物。CPU 成型工艺简单,形成的弹性体分子完整程度高,最大限度发挥了聚氨酯弹性体的特点,综合性能也优于 MPU 和 TPU,因而成为聚氨酯弹性体中产量最大、应用范围最广的品种。在许多工业领域中,CPU 正在逐步地取代传统金属和硫化橡胶,取得越来越广泛的应用。浇注法也是本课题制备聚氨酯弹性体采用的方法。MPU 加工的第一步是合成高粘度、储存稳定、可以混炼加工的聚氨酯生胶(线性分子,分子量为 20 000~30 000),然后在开炼机或密炼机中将其与硫化剂、促进剂、补强性填料等相混合,经成型最后硫化成具有弹性体物理化学性能的聚氨酯弹性体,可以看到,MPU 的加工方法和传统橡胶相似,因而是最早获得工业生产和应用的一种聚氨酯弹性体,但 MPU 的性能比 CPU 和 TPU 差,硬度一般在 ShoreA55~A80,工艺复杂,产量较小。TPU 常采用一步法生产,即将聚合物多元醇、二异氰酸酯和小分子扩链剂混合,在双螺杆反应器中反应,然后切粒和干燥,使用塑料挤出、注射成型的加工方法进行生产。TPU 的数均分子量较大,硬度较高。 聚氨酯弹性体是由相对分子质量大的聚醇软段和相对分子质量低的二异氰酸酯与二胺或二醇合成的硬段所构成的弹性体。软段提供弹性体的韧性、弹性和低温性能;硬段贡献弹性体的刚性、强度以及耐热性[1]。 聚氨酯弹性体具有优异的综合性能,因而广泛应用于各种领域。聚氨酯胶辊、胶轮、筛板、密封件等仍然是浇注型聚氨酯弹性体的重要产品,质量在提高、品种在增加、应用领域在扩大是其发展趋势。阻燃、耐热、阻尼、低摩擦型等聚氨酯弹性体具有广阔的市场空间和发展前景,已引起业界的高度重视。 聚氨酯弹性体分子中有大量的极性基团,同时氨基甲酸酯键可以使分子链之间形成较强的氢键交联。有效地防止了应力作用下分子链之间的滑移,使其不仅具有较高的力学性能、突出的耐磨性,还具有耐油、耐水、耐臭氧、耐辐射、耐低温、气密性 1

石墨电极在黄磷冶炼中的应用

石墨电极在黄磷冶炼中的应用 近年来我国的黄磷企业迅速扩增,其产品不仅遍及全国各地,而且已形成了大量出口的趋势。黄磷冶炼行业的崛起,为炭素厂家又增加了一大市场。仅我国西南地区年产黄磷制品就近百万吨,年耗石墨电极约3万t。因此,石墨电极如何适用于电炉冶炼黄磷的技术课题,已经提到电极生产厂家的面前。人造石墨电极具有良好的导电、导热、耐高温氧化、耐腐蚀性能,是黄磷冶炼炉理想的导电电极。石墨电极的生产工艺过程,一般是将石油焦、沥青焦等炭质原料经煅烧后,再加粘结剂沥青进行混捏、凉料后经挤压成型而形成生制品,生制品再经过1 300 ℃焙烧后成为半成品,半成品再经过2 300 ℃石墨化、机械加工而得到石墨电极成品。目前,炭素企业生产的石墨电极,其部分规格的理化指标列于表1。表1 石墨电极的主要理化指标 规格/mm 品种电阻率/μΩ.m 体积密度/kg/cm3 抗折强度/MPa 弹性模量/GPa 热膨胀系数/×10-6/℃灰分/% 本体接头本体接头本体接头本体接头本体接头 600 UHP 6.5 4.5 1.66 1.75 10.0 18.0 14.0 22.0 1.40 1.20 0.5 500 HP 7.0 6.5 1.60 1.70 9.8 14.0 12.0 14.0 2.20 2.40 0.3 500UHP NP 9.0 8.5 1.52 1.68 6.4 12.7 9.3 13.7 2.90 3.20 0.5 1 黄磷冶炼与石墨电极的消耗 工业上依黄磷冶炼中的热源不同,黄磷冶炼方法可分为电炉法和高炉法。目前我国的黄磷冶炼工业主要以电炉法为主,这种冶炼方法实收率高,产品纯度高。电炉法生产是将磷矿石、硅石和焦炭的混合料加入电炉内,由通过炉盖的石墨电极(作为导电极)将电能转变成热能,从而把混合料加热至熔融状态,使元素磷升华后再将含磷气体进行冷凝、分离和精制而得到元素磷。黄磷冶炼的工艺过程如图1。

迷迭香天然抗氧化剂产业化项目可行性研究报告

迷迭香天然抗氧化剂产业化项目可行性 研究报告 第一章总论 一、项目提出的背景及必要性 1.1.1. 本项目是国家确保食品安全的战略性项目 化学合成抗氧剂作为食品添加剂,是世界在20世纪及之前的普遍选择。由于化学合成抗氧化剂对人体肝、脾、肺等器官均有较大的毒、副作用,在二十世纪中期,曾造成影响较大的中毒事件,世界卫生组织(FAO/WHO)、欧共体儿童保护组织(HACSG)、英国生物工业协会(BIBRA)等一些机构和组织对化学合成抗氧化剂的安全性问题进行了广泛的研究。研究表明,化学合成抗氧化剂对人体肝、脾、肺等器官均有较大的毒、副作用。一直延续到2010年的麦当劳“麦乐鸡事件”就是使用化学合成抗氧化剂导致食品安全问题的延续。但由于世界性市场大流通的需要,人们一时找不到没有毒副作用的抗氧化剂来取代它们,为此,各国相关机构对现行抗氧化剂进行了严格、细致的毒理学研究和评价,制定了详细的使用标准,来减少化学合成抗氧化剂对人的毒副作用。但世界各国及相关机构,出于对人类健康的关注,均希望找到一种对人类没有毒副作用的天然抗氧化剂来确保食品安全。 从植物中提取的天然植物成分,由于其安全、无毒或基本无毒,受到了人们的广泛欢迎,成为研究开发的热点。从20世纪以来,国外相继研究开发了从茶叶、山嵛菜、西红柿、葡萄籽、甘草、烤烟及迷迭香等植物中提取对人体无毒害的天然抗氧化剂。这一发现也导致目前北欧国家禁止使用化学合成抗氧化剂,发达国家--欧盟、美国、日本等严格限制使用对人体有毒、副作用的化学合成抗氧化剂,而寻求并鼓励推广天然抗氧化剂,同时还限制或禁止使用了化学合成抗氧化剂的食品进口。 研究发现,在众多的天然抗氧化剂中,迷迭香天然抗氧化剂,不仅具有很好的抗氧化性,而且对人体还有很好的保健作用,更难得目前只有迷迭香天然抗氧化剂具有高效、稳定、耐高温的特点,这一发现,推动了世界各国对迷迭香天然抗氧化剂的研究开发。迷迭香抗氧化剂成为世界发达国家竞相开发的目标。

《第三类体外诊断试剂产品技术要求附录编写要求》(征求意见稿)

第三类体外诊断试剂产品技术要求 附录编写要求(征求意见稿) 一、前言: 根据《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号,以下简称《办法》)第四章的规定,第三类体外诊断试剂(IVD)的产品技术要求中应当以附录形式明确主要原材料、生产工艺及半成品要求。《办法》第七章要求,已注册的体外诊断试剂,其注册证及附件载明内容发生变化,注册人应当向原注册部门申请注册变更,产品技术要求(包括附录)属于注册证的附件,申请人应对其中发生变化的内容提出注册变更申请。体外诊断试剂产品种类繁多,预期用途及方法学各异,即使是同类产品,不同的生产企业在原料的选择及制备、生产工艺及半成品检定方面也可能存在较大差异。因此,有必要制定相应的指导性文件,对技术要求附录的内容进行规范。 本文内容旨在指导注册申请人对第三类体外诊断试剂产品技术要求附录的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。本文是对第三类体外诊断试剂技术要求附录的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,在做出科学合理性解释的前提下,可以依据产品特性对具体内容进行修订。本文内容依据现行法律法规并参考《中国生物制品规程》(2000年版)制定,随着相关法规和标准体系的不断完善,本文内容也将适时进行修订或调整。

二、适用范围 本文针对不同方法学的第三类体外诊断试剂技术要求附录中的主要材料、生产工艺及半成品检定等内容进行规范,明确附录内容编写要求,适用于第三类体外诊断试剂注册、延续注册及注册变更申请。 三、基本要求 (一)主要材料 1.通用要求。 主要原材料来源一般有两种途径,生产企业自行制备或外购于其他供货商。申请人在编写产品技术要求附录时,针对不同来源的原材料须明确的内容也不相同,具体要求如下。 (1)企业外购原材料:生产企业应明确供货商名称,供货商应相对固定,不得随意更换。生产企业还应确定主要原材料的质量控制标准,下面对几种常见的原材料进行描述。 a、抗原:应明确抗原名称、生物学来源、供货商名称等信息,应对抗原技术指标的要求进行详述。 b、抗体:应描述抗体名称、克隆号、生物学来源,供货商名称及刺激免疫原等信息,应对抗体技术指标的要求进行详述。 c、引物、探针:应明确所有引物、探针的供货商、核酸序列及主要技术指标要求。 (2)企业自制原材料:生产企业应明确原材料的制备原理,摘要性描述制备过程,确定主要原材料的质量控制标准。 a、抗原:如为天然抗原,例如病原体检测试剂所用抗原应明确

茶叶中天然抗氧化剂茶多酚的提取方法及应用研究进展

茶叶中天然抗氧化剂茶多酚的提取方法与应用研究进展 1引言 1.1研究目的和意义 由于人们生产、生活需求的不断扩大,天然产物有效成分的提取分离与应用研究获得了前所未有的发展。绿色天然提取物茶多酚,在绿色的二十一世纪极具发展潜力。据有关专业人士介绍,目前,茶多酚在全球年消耗量约1800吨,其中,美国约700吨,西欧500吨,日本500吨,其他国家和地区约400吨。近年来除欧美国家需求逐年增加外,东南亚、南亚等消费量也有较快增长。因此,当前茶多酚的市场前景广阔,有关专家预计,未来几年,国内外茶多酚需求量将迅速从目前的1800吨攀升至2100吨以上,其市场规模可达十几亿元。我国是世界茶叶生产大国之一,每年约有70万吨茶叶,其中有约15万吨茶片、茶末,可供提取2.3吨食品级茶多酚。因此开发天然抗氧化剂茶多酚将有充足的资源保证。自从新世纪对茶多酚类开展系统研究以来,茶多酚的许多功能被陆续发现。大量的研究表明,茶多酚不仅是一种天然的无毒的抗氧化剂,而且也是一种理想的天然药物,具有清除自由基和抗氧化等生物活性。 1.2国内外研究现状 我国对茶多酚的研究开始于五六十年代,而专业研究开始于七十年代,目前我国对茶多酚的研究在国际上处与领先水平。国内生产的茶多酚含量大于89%,咖啡碱小于2%。当前茶多酚已被广泛应用于食品工业与医药行业。由于茶多酚具有生物活性的特性,不断地对茶多酚进行研究,不断地出现新的研究成果。王玉春在茶多酚的提取方法及应用研究进展一文中就茶多酚提取的各种方法的基本流程及各自得优缺点和茶多酚的用途做一综述。曹群在茶多酚的提取方法研究中对现如今对茶多酚的提取方法进行简单的归纳,并比较各种提取工艺的优缺点。李俊华在茶多酚的提取工艺研究中经过对茶多酚的性质及现有提取方法利弊的分析,确定采用超临界二氧化碳萃取技术对茶叶中的茶多酚进行了萃取研究,结果表明超临界二氧化碳萃取技术是可行的,并探讨了其较佳的提取工艺参数。王艳在天然抗氧化剂—茶多酚提取、分离和纯化方法一文对其性质、结构和组成做了简单的介绍,重点介绍了茶多酚的主要提取、分离和纯化方法。王学松在茶叶中茶多酚的提取方法研究一文中综述了从茶叶中提取茶多酚的方法、特点以及改

新型聚氨酯固化剂的研究与发展

新型聚氨酯固化剂的研究与发展 张修景(菏泽学院化学与化工系,山东菏泽274015) 摘要:阐述了颜色低于铁钴比色计1号,游离TDI含量小于0.5%,贮存稳定性达2年以上的新型聚氨酯固化剂的生产工艺;确定了含羟基丙烯酸树脂与该固化剂的质量比为:m(含羟基丙烯酸树脂)∶m(新型聚氨酯固化剂)=10∶4~6;分析了碱性物质是导致聚氨酯固化剂成胶的原因;提出了保证聚氨酯固化剂低色值、低游离TDI含量和高贮存稳定性的方法。 关键词:新型聚氨酯固化剂;色值;游离TDI含量;稳定性 0.引言 国内科研单位及相关企业、院校对于聚氨酯固化剂的研究做了大量工作,朱吕民[1]介绍了色泽为8号(铁钴比色计)TDI加成物的制法;彭红为,等[2-3]报道的产品的游离TDI含量高达3.0%~5.0%,配制的涂料在施工过程中对人体伤害很大,环境污染严重,不仅远远高出世界卫生组织游离TDI含量≤0.5%的要求,而且很难达到我国《室内装饰装修材料溶剂型木器涂料中有害物质限量》GB18581—2001强制标准中≤0.7%的规定。国外通常采用薄膜蒸发法,如Bayer公司采用该技术产品的游离TDI含量<0.5%。国内相关研究[4-10]对于降低游离TDI做了大量积极工作,并提出了在聚氨酯生产中推行清洁生产的建议和措施,但实现工业化生产的报道很少。赵文斌,等[10]的产品通过热重分析(TG)显示,改性TDI三聚体的热稳定性有一定下降。为此,本文研究了颜色低于铁钴比色计1号,游离TDI<0.5%,贮存稳定性达2年以上的TDI-TMP加成物,找到了该固化剂与含羟基丙烯酸树脂的最佳配比,可赋于漆膜多种优良的性能。 1.实验部分 1.1原料 甲苯二异氰酸酯(TDI):80/20,国产;三羟甲基丙烷(TMP):美国产;乙酸丁酯:工业一级品,无水;二月桂酸二丁基锡、缩二脲:工业一级品;磷酸(85%)、三正丁基膦、对硝基苯甲酰氯:分析纯;氮气(99199%)。 1.2反应原理 TDI-TMP加成物主要是指3分子的甲苯二异氰酸酯(TDI)与1分子的三羟甲基丙烷(TMP)的加成物,反应如式1。 1.3方法 新型聚氨酯固化剂的中试配方见表1。

石墨电极

石墨电极 石墨电极(graphite electrode) 以石油焦、沥青焦为颗粒料,煤沥青为黏结剂,经过}昆捏、成型、焙烧、石墨化和机械加工而制成的一种耐高温的石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼或电解设备也常使用石墨电极为导电材料。2000年全世界消耗石墨电极100万t左右,中国2000年消耗石墨电极25万t左右。利用石墨电极优良的物理化学性能,在其他工业部门中也有广泛的用途,以生产石墨电极为主要品种的炭素制品工业已经成为当代原材料工业的重要组成部门。 简史早在1810年汉佛莱?戴维(Humphry Davy)利用木炭制成通电后能产生电弧的炭质电极,开辟了使用炭素材料作为高温导电电极的广阔前景,1846年斯泰特(Stair)和爱德华(Edwards)用焦炭粉及蔗糖混合后加压成型,并在高温下焙烧从而制造出另一种炭质电极,再将这种炭质电极浸在浓糖水中以提高其体积密度,他们获得了生产这种电极的专利权。1877年美国克利夫兰(Cleveland)的勃洛希(C.F.Brush)和劳伦斯(https://www.wendangku.net/doc/284698646.html,wrence)采用煅烧过的石油焦研制低灰分的炭质电极获得成功。1899年普利查德(O.G.Pritchard)首先报道了用锡兰天然石墨为原料制造天然石墨电极的方法。1896年卡斯特纳(H.Y.Gastner)获得了使用电力将炭质电极直接通电加热到高温,而生产出比天然石墨电极使用性能更好的人造石墨电极的专利权。1897年美国金刚砂公司(Carborundum Co.)的艾奇逊(E.G.Acheson)在生产金刚砂的电阻炉中制造了第一批以石油焦为原料的人造石墨电极,产品规格为22mm×32m mX380mm,这种人造石墨电极当时用于电化学工业生产烧碱,在此基础上设计的“艾奇逊”石墨化炉将由石油焦生产的炭质电极及少量电阻料(冶

抗氧化因子与天然抗氧化剂研究综述

万方数据

万方数据

万方数据

万方数据

万方数据

抗氧化因子与天然抗氧化剂研究综述 作者:乔凤云, 陈欣, 余柳青, QIAO Feng-yun, CHEN Xin, YU Liu-qing 作者单位:乔凤云,QIAO Feng-yun(浙江大学,生命科学学院,杭州,310029;中国水稻研究所,杭州 ,310006), 陈欣,CHEN Xin(浙江大学,生命科学学院,杭州,310029), 余柳青,YU Liu- qing(中国水稻研究所,杭州,310006) 刊名: 科技通报 英文刊名:BULLETIN OF SCIENCE AND TECHNOLOGY 年,卷(期):2006,22(3) 被引用次数:9次 参考文献(22条) 1.Hallwell B Free Radical and antioxidation 1990 2.Wu G;Fang Y Z;Yang S Glutathione metabolism in antimals:nutritional regulation and physiologyical signi-ficance 2003 3.Jacob;Robert A The integrated antioxidant system 1995(05) 4.Arora A;Nair M G;Strasburg G M Antioxidant activities of isoflavones and their metabolites in a liposomel system 1998 5.Kameoka S;Leavitt P;Chang C Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids[外文期刊] 1999 6.句海松抗氧化剂研究进展 1990(12) 7.Ng T B;Liu F;Wang Z T Antioxidative activity of nature products from plants[外文期刊] 2000(08) 8.Morel I;Cillard J;Lescoat G Antioxidant and free radical scavenging activities of the iron chelators pyoverdin and hydroxypyrid-4-ones in iron-loaded hepatocyte cultures:comparison of their mechanism of protection with that of desferrioxamine 1992(05) 9.Ozturk G;Erol D D;Uzbay T Synthesis of 4(1H)-pyridinone derivatives and investi-gation of analgesic and anti-inflammatory activities 2001(04) 10.Huang D R;Proctor G R;Driscoll S D Pyridones as potential antitumor agents Ⅱ:4-pyridones and bioisosteres of 3-acetoxy-2-pyridone 1980(03) 11.Cragg L;Hebbel R P;Miller W The iron chelator L1 potentiates oxidative DNA damage in iron-loaded liver cells 1998(02) 12.Sadrzadeh S M;Nanji A A;Price P L The oral iron chelator,1,2-dimethyl-3-hydroxypyrid -4-one reduces hepatic-free iron,lipid peroxidation and fat accumulation in chronically ethanol-fed rats 1994(02) 13.Helliwell B;Jello M C Gutteridge Free Radicals in Biology and Medicine 1985 14.Wickens;Andrew P Ageing and the free radical theory[外文期刊] 2001(03) 15.Vimala S & Adenan MI Malaysian tropical forest medicinal plants:a source of natural antioxidants 1999 16.Loliger Free Radicals and food additive 1991 17.Hudson B J F Food Antioxidants.Elsevier 1990 18.LOLIGER Free Radicals and Food Additive 1991 19.Arora A;Byrem T M;Nair M G Modulation of liposomeal membrane fluidity by flavonoids and

石墨电极的生产工艺流程和质量指标的及消耗原理知识讲解

石墨电极的生产工艺流程和质量指标的及 消耗原理

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混 捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑 多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于 易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟 焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中 硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石 墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结 构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具 有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青 原料生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合 物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。

腰果酚应用研究进展..

12应用化学(职教本科1班彭思20120651 腰果酚应用研究进展 摘要:本文从官能团改性方面,综述了近几年国内外腰果酚衍生物的化学合成及在材料与精细化学品中的潜在应用,其中包括腰果酚酚羟基、腰果酚苯环及腰果酚侧链的改性。 关键词:腰果酚;腰果壳油;衍生物;应用;进展 前言:随着全球化石资源日趋减少,可再生资源的开发利用越来越引起人们的重视[1]。腰果壳液(CNSL)是腰果加工中的一种副产品,其含量约占腰果的25%-30%,世界年产量约50万吨,是一种价廉丰富的可再生资源[2-3]。CNSL 的最主要成分是腰果酚(cardanol)(1),含量可达90%。从结构来看,腰果酚属于苯酚的衍生物,在苯酚的间位被15个碳的直链(含0-3个碳碳双键)所取代(图1)(如无特殊说明,本文其它图中的R基团都代表腰果酚的侧链)。腰果酚可改性合成很多衍生物,包括功能小分子与聚合物,它们在涂料、摩擦材料、抗氧化剂、杀虫杀菌剂等方面都极具应用价值[4]。本文主要从腰果酚所含的三种官能团出发,总结通过酚羟基、苯环、不饱和侧链上的反应来制备各种有价值的腰果酚衍生物。 1利用腰果酚的羟基制备腰果酚衍生物 1.1腰果酚的酯类衍生物 腰果酚分子中含有活泼的酚羟基,可通过酯化、醚化反应制备相应的衍生物。例如张中云等[5]在-15℃左右使腰果酚与ClCN反应,生成腰果酚氰酸酯(2),2再与双酚A型氰酸酯(NCO-BPA-OCN)反应,制得了新型热固性树脂(图2)。由于树脂中引进了腰果酚所含的15个碳的柔性链,有效地提高了氰酸酯树脂的柔韧性,同时提高了其介电性能和耐吸水性能。

林金火课题组[6]用马来酸酐和腰果酚反应得到马来酸腰果酚单酯,然后与乙二醇进一步发生酯化反应 (图3),最后将酯化产物进行缩甲醛化反应,合成了同时具有软段结构(顺丁烯二酸乙二醇酯结构单元)和硬段结构(酚醛结构单元)的多羟基腰果酚醛树脂,该树脂具有优良的涂膜性能;所得的多羟基腰果酚醛树脂 也可与聚氨酯预聚体组成性能优良的双组分聚氨酯漆,可改善普通腰果漆的柔韧性和附着力。 为了制备新型抗氧化剂,Lomonaco等[7]用腰果酚和强心酚(cardol,腰果壳油的另一种成分)与二乙氧基硫代磷酰氯反应,制备了相应的硫代磷酸酯化合物(3)和(4)(图4)。将所制硫代磷酸酯在聚甲基丙烯酸甲酯中掺入1%的量,结果聚合物的热稳定性提高了很多。特别是化合物4中既含有硫代磷酸酯结构,又含有酚羟基结构,同时具有一类和二类抗氧化剂的功能,因此对材料的热稳定性提高最明显。

聚氨酯

聚氨酯基本理论知识 一. 聚氨酯(polyurethane)大分子主链上含有许多氨基甲酸酯基: 它由二(或多)异氰酸酯、二(或多)元醇与二(或多)元胺通过逐步聚合反应生成,除了氨基甲酸酯基(简称为氨酯基)外,大分子链上还往往含有 醚基 、酯基、脲基、 酰胺基 等基团,因此大分子间很容易生成氢键。 二.聚氨酯主要原料 N H C O O O C O O NH O NH NH O

1、异氰酸酯及其结构特征 一、结构特点 在分子结构中含有异氰酸酯基团(-N=C=O)的化合物,均称为异氰酸酯(isocyanate),其结构通式如下:R-(NCO)n式中R为烷基、芳基、脂环基等;n=1、2、3….整数。在聚氨酯材料合成中,主要使用n≥2的异氰酸酯化合物。 二、异氰酸酯的分类 (1)异氰酸酯基团数量 1.异氰酸酯 异氰酸酯(Isocyanate)是一大类含有异氰酸基(—N=C=O)的 有机化合物。异氰酸酯基由于其累积双键和碳原子两边的电负性很 大的氮氧原子作用,使之具有很高的反应活性,能与绝大多数含活 泼氢的物质发生反应。常用的异氰酸酯主要有芳香族类和脂肪类两种。⑴芳香族类的主要有:TDI(2, 4—甲苯二异氰酸酯或2, 6—甲 苯二异氰酸酯)、MDI(二苯基甲烷- 4, 4’二异氰酸酯)、NDI (1, 5—萘二异氰酸酯)、PAPI(多亚甲基多苯基多异氰酸酯)等;芳 香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化, 属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;聚氨酯树脂中90%以上属于芳香族

多异氰酸酯。与芳基相连的异氰酸酯基对水和羟基的活性比脂肪基异氰酸酯基团更活泼。基于TDI 的聚氨酯由于高的苯环密度,其力学性能也较脂肪族多异氰酸酯的聚氨酯更为优异。以下是一些常用的产品。 (1)甲苯二异氰酸酯(tolulene diisocyanate ,TDI ) 甲苯二异氰酸酯是最早开发、应用最广、产量最大的二异氰酸酯单体;根据其两个异氰酸酯(—NCO )基团在苯环上的位置不同,可分为2,4-甲苯二异氰酸酯(2,4-TDI,简称2,4-体)和2,6-甲苯二异氰酸酯(2,6-TDI ,2,6-体)。 室温下,甲苯二异氰酸酯为无色或微黄色透明液体,具有强烈的刺激性气味。市场上有3种规格的甲苯二异氰酸酯出售,T-65为2,4-TDI 、2,6-TDI 两种异构体质量比为65%/35%的混合体;T-80为2,4-TDI 、2,6-TDI 两种异构体质量比为80%/20%的混合体,其产量最高、用量最大,性价比高,涂料工业常用该牌号产品;T-100为2,4-TDI 含量大于95%的产品,2,6-TDI 含量甚微,其价格较贵。2,4-TDI 其结构存在不对称性,由于-CH3的空间位阻效应,4位上的-NCO 的活性比2位上的-NCO 的活性大,50℃反应时相差约8倍,随着温度的提高,活性越来越靠近,到100 ℃时,二者即具有相同的活性。因此,设计聚合反应时,可以利用这一特点合成出结构规整的聚合物。TDI 的弱点是蒸汽压大,易挥发,毒性大,通常将其转变成齐聚物(oligomer )后使用;而且由其合成的聚氨酯制品存在比较严重的黄变性。黄变性的原因在于芳香族聚氨酯的光化学反应,生成芳胺,进而转化成了醌式或偶氮结构的生色团。2,4-TDI 凝固点6-20度,TDI 的含量越高凝固点。 NCO CH 3NC O O CH 3 OCN 2,6-TDI 2,4-TDI

碳素材料简介

碳素材料简介 炭和石墨材料是以碳元素为主的非金属固体材料,其中炭材料基本上由非石墨质碳组成的材料,而石墨材料则是基本上由石墨质碳组成的材料。为了简便起见,有时也把炭和石墨材料统称为炭素材料(或碳材料)。 主要分类: 碳素散热片是以不干胶的形色直接将碳素散热片贴在芯片表面,碳素散热片因其柔软可与所贴附对象十分紧密的粘合,另外因其高热传导性(树脂的5-15倍)、横向的高热传导性(铜的两倍),与传统使用中的导热硅胶、硅胶片、金属片等比较,高碳素散热片能将热量均匀扩散更大幅度的散热。 高热传导平面用散热片: 利用其平面的高热传导性(铜的两倍),可将热迅速传递到金属壳以及散热型材上,降低发热点的温度,从而达到更好的散热效果。 炭素制品按产品用途可分为石墨电极类、炭块类、石墨阳极类、炭电极类、糊类、电炭类、炭素纤维类、特种石墨类、石墨热交换器类等。石墨电极类根据允许使用电流密度大小,可分为普通功率石墨电极、高功率电极、超高功率电极。炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等。炭素制品按原

料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。炭素制品按其所含灰分大小,又可分为多灰制品和少灰制品(含灰分低于l%)。 我国炭素制品的国家技术标准和部颁技术标准是按产品不同的用途和不同的生产工艺过程进行分类的。这种分类方法,基本上反映了产品的不同用途和不同生产过程,也便于进行核算,因此其计算方法也采用这种分类标准。下面介绍炭素制品的分类及说明。 主要制品 碳素行业的上游企业主要有:1、无烟煤的煅烧企业;2、煤焦油加工生产企业;3、石油焦生产及煅烧企业。炭和石墨制品: (一)石墨电极类 主要以石油焦、针状焦为原料,煤沥青作结合剂,经煅烧、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能对炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。石墨电极包括:(1)普通功率石墨电极。允许使用电流密度低于17A/厘米2的石墨电极,主要用于炼钢、炼硅、炼黄磷等的普通功率电炉。 (2)抗氧化涂层石墨电极。表面涂覆一层抗氧化保护层的石墨电极,形成既能导电又耐高温氧化的保护层,降低炼钢时的电极消耗。

(整理)体外诊断试剂分析性能评估系列指导原则.

附件: 《体外诊断试剂分析性能评估系列指导原则(征求意见稿)》

目录 1.体外诊断试剂分析性能评估指导原则――编制说明 2.体外诊断试剂分析性能评估指导原则——检测限 3.体外诊断试剂分析性能评估指导原则——线性范围 4.体外诊断试剂分析性能评估指导原则——可报告范围 5.体外诊断试剂分析性能评估指导原则——准确度(回收实验) 6.体外诊断试剂分析性能评估指导原则——准确度(方法学比对) 7.体外诊断试剂分析性能评估指导原则——精密度 8.体外诊断试剂分析性能评估指导原则——干扰实验 9.体外诊断试剂分析性能评估指导原则——稳定性 10.体外诊断试剂分析性能评估指导原则——参考值(参考区

间) 附件1: 体外诊断试剂分析性能评估指导原则 编制说明 《体外诊断试剂注册管理办法(试行)》颁布后,体外诊断试剂产品的注册过程中要求提供申报产品的分析性能评估资料,产品性能评估是产品研发、制定产品标准等过程的重要技术支持研究过程,并可能对产品的质量造成一定的影响。 目前国际上对体外诊断试剂的性能评估通常是以美国临床实验室标准化组织(Clinical and Laboratory Standards Institude以下称为CLSI)的相关标准为依据,也是美国FDA 推荐采用的评价标准,但我国还没有相关的标准及指导原则的要求。 为进一步明确体外诊断试剂分析性能评估的技术要求,

我中心组织有关专家起草产品分析性能评估指导原则,以明确体外诊断试剂产品性能评估的技术要求。体外诊断试剂产品性能评估包括检测限、线性范围、可报告范围、准确度(回收实验)、准确度(方法学比较)、精密度、干扰实验、稳定性、参考区间共九个项目。起草的主要依据CLSI发布的以下标准: 1. C28-A2: How to define and determine reference intervals in the clinical laboratory; Approved Guideline-Second Edition. 2. EP5-A: Evaluation of precision performance of clinical chemistry devices; Approved Guideline. 3. EP6-A: Evaluation of the linearity of quantitative measurement procedures; A Statistical Approach; Approved Guideline. 4. EP7-A: Interference testing in clinical chemistry; Approved Guideline. 5. EP9-A2: Method comparison and bias estimation using patient samples; Approved Guideline-Second Edition. 每项性能的主要研究方法均采用以上标准和国内实际采用的评价方法相结合的方法。 我中心对于专家起草的指导原则的初稿进行了适当的文字调整,之后将分析性能评估指导原则发给十位相关专业的专家征求意见。意见返回后我们对专家的回复意见进行了

相关文档