文档库 最新最全的文档下载
当前位置:文档库 › Cost prediction for global illumination using a fast rasterised scene previewing

Cost prediction for global illumination using a fast rasterised scene previewing

Cost prediction for global illumination using a fast rasterised scene previewing
Cost prediction for global illumination using a fast rasterised scene previewing

Cost Prediction for Global Illumination using a Fast Rasterised Scene Preview

Richard Gillibrand Peter Longhurst Kurt Debattista Alan Chalmers

Graphics Group

Dept of Computer Science

University of Bristol,UK

gillibrand@https://www.wendangku.net/doc/2f5469849.html,

ABSTRACT

The media industry is demanding increasing?delity for their rendered images.Despite the advent of modern GPUs,the computational requirements of physically based global il-lumination algorithms are such that it is still not possi-ble to render high-?delity images in real time.The time constraints of commercial rendering are such that the user would like to have an idea as to just how long it will take to render an animated sequence,prior the actual rendering. This information is necessary to determine whether the de-sired quality is achievable in the time available or indeed if it is possible to a?ord to carry out the work on a render farm for example.This paper presents a comparison of dif-ferent pixel pro?ling strategies which may be used to predict the overall rendering cost of a high?delity global illumina-tion solution.A fast rasterised scene preview is proposed which provides a more accurate positioning and weighting of samples,to achieve accurate cost prediction. Categories and Subject Descriptors

I.3.7[Computer Graphics]:Raytracing Keywords

Physically based global illumination,cost prediction,ray-tracing,pro?ling,Radiance

1.INTRODUCTION

High-?delity computer graphics is being increasingly used in the media industry.While existing physically based global illumination algorithms,such as Radiance[20],are quite capable of achieving the desired quality,the time to render such images is still signi?cant.In a commercial environment it is important to know at least the approximate time it will take to render a particular animation.Such knowledge enables computing resources to be made available,or time on a render farm to be booked.An accurate predicted cost can thus result in signi?cant monetary savings.In a selective rendering system such as that described by Cater et al.[2]the knowledge of costs associated with di?er-ent pixels can be used to provide additional information to determine the best use of the available resources for a time constrained rendering.

Pro?ling is a technique which traces a low number of rays in a global illumination solution and uses the time taken to compute these few pixels in order to predict overall com-putation time[6].One major problem of such an approach is the signi?cantly di?erent times it may take to compute di?erent pixels in a global illumination algorithm.A large number of pixels may thus need to be traced before an ac-curate cost prediction is possible.

In this paper we investigate a number of strategies for se-lecting which pixels to use for pro?ling.A novel approach, based on a fast scene preview using a GPU,is then pre-sented which demonstrates how knowledge of the scene ge-ometry and surface properties may be exploited in order to position the pro?ling samples to maximum e?ect and weight their contribution https://www.wendangku.net/doc/2f5469849.html,ing scenes representative of the types of scenes regularly rendered with global illumina-tion,we show the e?ectiveness of our method in producing an accurate cost prediction with minimal samples using the Radiance lighting simulation

suite.

Figure1:The kitchen and corridor scenes used for testing.

This paper is divided as follows.Section2presents related work in the?elds of cost prediction,sampling and rapid image estimates.Section3presents our pro?ling method based on the Snapshot preview.Section4describes the sampling methods compared and the two scenes used.Sec-

Figure2:Rasterised previews of the scenes coloured by object property.

tion5presents and discusses the results.Finally,Section6 presents the conclusions and further work.

2.PREVIOUS WORK

In this section we present previous work in cost prediction, sampling and rapid image estimates.

2.1Cost Prediction

Previous cost prediction research has mainly been con?ned to three main areas:spatial subdivision parameterisation, load balancing and guaranteeing a frame rate for real-time systems.

In order to optimise the parameterisation of spatial subdi-vision methods,researchers such as Aronov et al.[1]have tried to develop a cost function that minimises the traversal and intersection testing for their particular implementation of spatial subdivision.

Cost functions were developed by Reinhard et al.[16,15] to try to ensure the most e?cient balance of loading across parallel rendering systems.Their method used geometrical complexity to produce a probability of ray object intersec-tion based on the ratio of object to voxel surface areas for an octree subdivision structure.By then predicting the number of secondary rays produced per voxel,a calculation of ray tracing cost through the octree was used to allocate work on a parallel network.The predicted and actual ray counts di?ered too widely for their method to be directly applied to an overall scene cost however.

In order to guarantee a?xed frame rate in a real-time ren-dering system,Funkhouser and S′e quin[5]and Horvitz and Lengyel[8]both developed cost bene?t balance functions for determining the level of detail to be used in a rasterisation framework.The need to preprocess the level of detail and associated cost limits the techniques and is not necessarily applicable to a global illumination environment.

Wimmer and Wonka[21]compared several methods of cost prediction,ranging from measured to calculated,includ-ing per-object sampling,per view-point estimation and per view-cell estimation for their estimation function for GPU rendering.This estimation function was again for a rasteri-sation framework.

Rasterisation methods have the advantage that the costs in-volved in the rendering stage vary more linearly based on the number of polygons to be rendered,allowing the predic-tion to be undertaken using knowledge of scene geometry. Raytracing is not linearly dependent on polygon count and so predicting the ray count is not trivial,as Rienhard et al. demonstrated.

Gillibrand et al.[6]demonstrated the bene?ts of being able to predict the cost of rendering a globally illuminated scene before the actual rendering stage.A uniform grid based sampling strategy was used to provide a low resolution cost map of the primary ray contributions for a variety of scenes. These cost maps also showed the importance of a balanced spatial subdivision strategy as described above.While this method produced results that were applicable to the cost of the?nal large scale image,no di?erent pixel sampling strategies were explored for choosing the pro?ling rays. 2.2Sampling

Extensive research has been undertaken into the?eld of sam-pling strategies for a variety of reasons including obtaining acceptable results from algorithms such as anti-aliasing,ray-tracing and radiosity sampling,for examples see[10,4,3,13, 9,19].The underlying aim of all the methods is to provide the best means of choosing discreet samples of a continuous environment and from them recover a good approximation of the environment.

Sampling strategies can be loosely split between two ex-tremes,regular and random,with an associated trade o?with each method.Regular sample patterns are quick to cal-culate but can produce aliasing artifacts when used to render an image,whereas random sampling can remove aliasing but can produce noisy images and for a totally random sparse sample set can leave large areas unsampled.

Methods such as Halton and Hammersley point distributions produce a quasi-random set of points to give the impression of randomness but also provide good coverage of the entire area required[7].

Since the sampling method chosen is used to pro?le and pre-dict the cost of the image rather than provide information about the shading or other colour value it does not a?ect the rendering stage.The problems of visual aliasing do not therefore apply but we would still like to have good results for the di?erent costs associated with parts of the scene. Without any knowledge of the scene geometry it is best to use a method that gives good coverage of the whole image. Our method,as described later,allows us to place the sam-ples according to the actual locations of the di?erent costs we are trying to pro?le.

2.3Rapid Image Estimates

Due to the dramatic increase in processing power available on modern GPUs[14],many techniques that employ high-?delity rendering algorithms have been enhanced by the use of a quick rasterisation image preview rendered on the hard-ware.Yee[23]exploits this for a selective rendering system. Tole et al.’s Shading Cache[18]uses rendering hardware to interpolate cached shading values and uses what they term a patch identi?er map to determine which pixels need full evaluation.

The Snapshot system as developed by Longhurst et al.[11]is a fast rasterised scene previewer that uses OpenGL and the GPU to produce an image of the environment.By altering the parameters used for rendering the objects and materi-als,the Snapshot system can be used for a variety of tasks such as saliency map,task map[17]and anti-aliasing map generation[12].

3.FRAMEWORK

The?rst stage in our cost prediction system uses Snapshot to produce a fast rasterised preview of the scene geome-try.For each object and its material pair a unique RGB colour value is assigned for identi?cation.For presentation clarity the allocation of indenti?er has been split across the colour channels according to the material type of the object. For example,in the scenes used in this paper,transparent objects were assigned values in the red channel and main-tain transparency,specular and glossy objects were assigned values in the blue channel and the remaining objects were assigned values in the green channel.An example of the images that can be output from this allocation can be seen in?gure2.

From the Snapshot process the list of pixels corresponding to each colour and hence object and material is used to auto-matically generate samples,chosen so that a large selection of the di?erent types of object and materials are pro?led to give a better spread of costs.For example the method will identify and cluster samples around areas of complexity such as the toaster and glass jars in the kitchen scene and allocate fewer samples to the walls than would be produced in a typical even distributed sample method.The sample lo-cations chosen are output as a bitmap to serve as the input to the next stage.

We use a modi?ed version of the Radiance lighting simula-tion suite[20]as the renderer for our system,but instead of using the usual rendering order of bottom left to top right, our implementation takes the sample location map as input and traces these speci?ed pro?ling pixels?rst.

For each of these pixels a breakdown of the number of pri-mary,shadow,transparent,re?ected,refracted,ambient and specular rays traced is then output together with the time taken to trace that pixel and used to provide a prediction for the whole image.

Unlike previous methods,our prediction of the total cost is not just based on an average of the samples chosen.By using the Snapshot rasterised preview,we can identify the area a?ected by each sample and weight the contribution of the sample according to the appropriate number of pixels. For example,a ray traced for a plate in the kitchen scene is multiplied only by the number of pixels occupied by that plate in the preview image.If there is more than one sample for an object then these are combined to produce an average value for the object.

On completion of these pro?ling pixels,the remaining image is then rendered in the usual way.This method means that, with a negligible overhead,the pixels traced in the pro?ling stage contribute to the full rendering and unlike previous methods there is no need to re-trace any pixels.While the reuse of only a small number of pixels may not appear to be that important in isolation,the time taken to trace these pixels forms part of the rendering stage.If these pixels have to be retraced their cost is e?ectively doubled with no additional bene?t.

By placing the prediction process in the rendering stage our method allows the possibility of using a continuous updating of the estimation,based on each additional rendered pixel, since the pro?ling and rendering are no longer performed in isolation.

The additional possibility that it may have bene?ts for the seeding of the ambient cache is discussed in Section6. 4.EXPERIMENTS

In order to assess the e?ectiveness of our method against other sampling strategies,we tested?ve representative strate-

gies.

Figure3:The di?erent sampling strategies used in this paper,top left to bottom right-Regular Grid, Jittered,Halton,Hammersley,Random,Kitchen Snapshot.

4.1Grid with Centered Sample

For this strategy a grid of16×16squares each of16×16pixels was chosen and a single primary ray was traced through the center of each grid square.This gives a total of 256samples for a256×256pixel image,meaning that only 0.4percent of the image pixels are sampled,a value which was kept consistent for the other sampling strategies.This pro?ling is the same format as that used in[6].

4.2Grid with Random Sample or Jittered

For this strategy the same grid was used as described above but,instead of always tracing the center,the pixel traced was randomly chosen from within the grid square.The ra-tional for this is to remove the possibility of the regular sample strategy of the regular grid causing an unrepresen-tative average value in a geometrically regular scene.For example,a grid of identical small cubes aligned at the same spacing as the sampling grid,could appear to be a large sin-gle object if each sample hit a cube,or to be an empty scene if each sample missed.This is a cost equivalent of the visual aliasing that would be present if the scene was rendered with a sparse sampling.

4.3Quasi-Random Sample

The quasi-random methods produce a set of samples that give the impression of a random distribution,but with an even spread across the image space so that all areas are sampled.Two quasi-random methods were used,Halton and Hammersley point distributions[7]using the method described in Wong et al.[22].In this paper the results ob-tained with variable settings of p1=2,p2=7for the Hal-ton and p1=2for the Hammersley distribution are shown. Again256samples were chosen for each set.

For all the above sampling strategies,the even distribution of samples across the image space means that a reasonable assumption can be made that the average cost for the sam-ples taken can be taken as an average for each pixel in the image.

4.4Random Sample

The full image random sample strategy gives a set of256 sample locations with no regard to an even distribution across the image or scene.From this set of samples,two approaches were taken:a?at average in which the samples were simply averaged with equal weight,in a similar way to the methods described previously and an area weighted average,for which the areas a?ected by each samples were calculated on a nearest neighbor basis,giving an alternative value for the overall average pixel cost.

4.5Snapshot Based Sample

Each of the pro?ling strategies described above is based on the fact that with no knowledge of the scene,the required information has somehow to be gained from a few samples which are then extrapolated and applied to give a predic-tion for the whole https://www.wendangku.net/doc/2f5469849.html,ing the Snapshot fast rasterised preview of the scene however,extra knowledge of the scene objects and their materials can be gained before sample trac-ing.This can then be used to guide the location of areas of particular complexity of geometry or material so that more samples can be traced there and then accurately weighted according to the image areas appropriate to the samples traced as described in section3.

4.6Scenes

Each of the sampling methods above was tested with two scenes;the kitchen scene and the corridor scene(?gure1). Each scene contains a variety of objects,including both large and small surfaces,and a variety of material types with transparent,specular,glossy and di?use properties.The scenes are therefore representative of the types of environ-ments regularly rendered using global illumination.For each method and scene,a breakdown of the type and number of rays traced per sample pixel was output and used to produce an estimate for the cost of the?nal image.

Each scene and method was tested with four levels of ambi-ent illumination evaluation:

?No ambient calculation

?One level of ambient inter-re?ection calculation or am-bient bounce but no ambient caching i.e.each pixel has to be fully

evaluated Figure4:Cost results as cpu cycle count for the dif-ferent strategies for the kitchen scene,one ambient bounce with no cache.Top left to bottom right-Regular Grid,Jittered,Halton,Random,Snapshot, the actual timed

results.

Figure5:Total ray count for the di?erent strate-gies for the kitchen scene,one ambient bounce with no cache.Top left to bottom right-Regular Grid, Jittered,Halton,Random,Snapshot,the actual re-sults.

?One ambient bounce with ambient caching i.e.the indirect lighting component can be interpolated if a suitable adjacent value can be found

?Two ambient bounces with ambient caching

Note that in practical terms a single ambient bounce repre-sents the limit of global illumination ray tracing using Ra-diance without some form of caching.Beyond this point the exponential increase in time taken to produce a fully rendered image makes running tests unfeasible.

5.RESULTS

Tables1to5give the overview of the total numerical val-ues obtained from the experiments and show the percentage error between the predictions produced by the di?erent sam-pling methods and the actual values for the fully rendered images.

Figures4to9show the results per pixel for a selection of the experiments as false coloured images of cost(in the form of cpu cycles)or ray count.The cost images,?gures4,6and8

Regular Grid 3.61E+05 3.66E+051 3.82E+10 4.27E+1010Jittered 3.55E+05 3.66E+053 4.64E+10 4.27E+109Halton

3.81E+05 3.66E+054

4.63E+10 4.27E+109Hammersley

3.61E+05 3.66E+051 3.81E+10

4.27E+1011Random Average

3.57E+05 3.66E+053 3.55E+10

4.27E+1017Random Area Weighted 3.47E+05 3.66E+055 3.47E+10 4.27E+1019SNAPSHOT 3.59E+05

3.66E+05

2 4.37E+10

4.27E+10

2

Table 1:Percentage error between predicted and actual ray counts and cost (cpu cycle count)for the kitchen scene,no ambient bounces.

Total Rays

Cost Method

Predicted Actual %Error

Predicted Actual %Error

Regular

Grid 1.68E+08 1.69E+081 1.70E+13 1.69E+1315Jittered 1.64E+08 1.69E+083 1.67E+13 1.69E+1313Halton

1.66E+08 1.69E+082 1.68E+13 1.69E+1314Hammersley

1.69E+08 1.69E+080 1.71E+13 1.69E+1316Random Average

1.69E+08 1.69E+080 1.71E+13 1.69E+1316Random Area Weighted 1.71E+08 1.69E+081 1.60E+13 1.69E+138SNAPSHOT

1.71E+08

1.69E+08

1

1.53E+13

1.69E+13

4

Table 2:Percentage error between predicted and actual ray counts and cost (cpu cycle count)for the kitchen scene,one ambient bounce no cache.

Figure 6:Cost results as cpu cycle count for the dif-ferent strategies for the corridor scene,one ambient bounce with no cache.Top left to bottom right -Regular Grid,Jittered,Halton,Random,Snapshot,the actual timed results.

use a colour scale in which the cyan represents the “cheap-est”areas through dark blue to the red areas which take the longest to trace and are therefore the most expensive.The pixel count images,?gures 5,7and 9use a grey scale in which the pixels with the most rays traced are white and the fewest are black.

From tables 1,4,2and 5,it can be seen that there is a good correlation between the predicted and actual costs for the two experiments when no ambient caching is used.Our method performs signi?cantly better for the prediction of cost than the other methods for the kitchen scene and equally well for the corridor scene.The di?erence in per-formance between the kitchen and corridor scene can be at-

Figure 7:Total ray count for the di?erent strate-gies for the corridor scene,one ambient bounce with no cache.Top left to bottom right -Regular Grid,Jittered,Halton,Random,Snapshot,the actual re-sults.

tributed to the di?erence in the type of scenes.

The kitchen scene contains many relatively small objects with a high cost variation across the image as can be seen from ?gure 4.This is picked up and dealt with better by our method as the samples are automatically distributed to gain knowledge of as many object and material combinations as possible and to weight their contribution appropriately.The other methods,which do not have any knowledge of the geometry,have an equal chance of averaging a high cost sample over a disproportionately large area or missing the high cost object completely,depending on where their sam-ples happen to fall.

Jittered 1.21E+08 1.46E+07727 1.29E+13 1.31E+12888Halton

1.29E+08 1.46E+07783 1.37E+13 1.31E+12946Hammersley

1.39E+08 1.46E+07805 1.39E+13 1.31E+12963Random Average

1.23E+08 1.46E+07739 1.30E+13 1.31E+12889Random Area Weighted 1.31E+08 1.46E+07791 1.26E+13 1.31E+12863SNAPSHOT 1.49E+08

1.46E+07

918 1.33E+13

1.31E+12

918

Table 3:Percentage error between predicted and actual ray counts and cost (cpu cycle count)for the kitchen scene,one ambient bounce with cache.

Total Rays

Cost Method

Predicted Actual %Error

Predicted Actual %Error

Regular Grid 6.41E+05 6.86E+057 4.83E+10 5.03E+104Jittered 6.78E+05 6.86E+051 5.11E+10 5.03E+101Halton

6.70E+05 6.86E+052 5.19E+10 5.03E+103Hammersley

6.49E+05 6.86E+055 5.16E+10 5.03E+103Random Average

6.72E+05 6.86E+052 5.18E+10 5.03E+103Random Area Weighted 6.51E+05 6.86E+055 5.05E+10 5.03E+100SNAPSHOT

6.65E+05

6.86E+05

3

5.14E+10

5.03E+10

2

Table 4:Percentage error between predicted and actual ray counts and cost (cpu cycle count)for the corridor scene,no ambient bounces.

Although the corridor scene,in contrast,has a higher total cost it has a smaller variation in the cost and number of object and material types and the view gives a largely rec-tilinear arrangement of the rasterised pixels,with the high cost objects occupying relatively large areas.All the meth-ods perform better in this situation than the kitchen scene as their samples are more likely to be evenly distributed across the objects.

For this situation our method still performs well but the other methods are now more likely to have a good set of one or more samples per object and so the average value pro-duced is less likely to be signi?cantly di?erent from reality.The associated false coloured images,?gures 4to 7show clearly that our method accurately weights the costs of the samples over the appropriate image pixels in contrast to the other methods.Although our method does not currently identify in the preview localisation of re?ections or lighting,which account for the areas of higher cost along the edge

of the extractor in the kitchen and on the ceiling above the doors in the corridor and the shadows of the glasses on the table,these are averaged over the areas as a whole depending on the amount of samples taken.

As shown in table 3,there is however a distinct lack of cor-relation between both the predicted and actual number of rays and predicted and actual costs for all methods when the caching is present.This is because when the irradiance cache is enabled in the “normal”production of a full resolu-tion image,not all rays have to be fully evaluated.Adjacent rays within a de?ned threshold both of geometry and mate-rial properties can utilise ambient values,already stored in the cache from previous fully evaluated rays,to interpolate

Figure 8:Cost results as cpu cycle count for the Snapshot prediction for the kitchen scene,one ambi-ent bounce with ambient caching against the actual results.

the indirect lighting contribution and thus save rendering time.As few as 1in 100rays may be fully evaluated in the fully rendered image.

In the usual rendering order,the fully evaluated samples are produced as required and end up spread across an image with higher clustering at material boundaries and areas of high geometric complexity.These fully evaluated and hence much more expensive samples can be seen as the red dots in ?gure 8against the much more numerous and cheaper interpolated pixels which thus form a blue background.Similarly the number of rays traced for a fully evaluated sample is much much higher that is needed for an interpo-lated value and this can be seen in the right image in ?gure 9in which the clusters of light pixels represent the fully eval-uated points.

Jittered 3.50E+08 3.45E+083 2.48E+13 2.34E+136

Halton 3.45E+08 3.45E+080 2.44E+13 2.34E+134

Hammersley 3.43E+08 3.45E+081 2.43E+13 2.34E+134

Random Average 3.41E+08 3.45E+081 2.41E+13 2.34E+133

Random Area Weighted 3.40E+08 3.45E+082 2.34E+13 2.34E+130

SNAPSHOT 3.45E+08 3.45E+080 2.42E+13 2.34E+134

Table5:Percentage error between predicted and actual ray counts and cost(cpu cycle count)for the corridor scene,one ambient bounce no cache.

Figure9:Total ray count for the Snapshot predic-tion for the kitchen scene,one ambient bounce with ambient caching against the actual results.

For the relatively small number of pro?ling rays traced in our experiments however,the comparatively large separa-tion of ray locations means that most rays are beyond the interpolation threshold and have to undergo full evaluation. The predicted values are therefore more indicative of the cost of tracing the scene without caching enabled,as can be seen in the correlation between the prediction results for the experiments for one ambient bounce,with and without caching.

In order to provide a more representative pro?le for the caching scenario,it may be better to trace a pair of ad-jacent samples in order to obtain both an evaluated and interpolated result set for each pixel position.

6.CONCLUSIONS

A rapid cost prediction scheme which enables the overall computational cost of a high-?delity global illumination so-lution to be accurately predicted,in advance of actually ren-dering the individual frames of an animation,can result in signi?cant resource saving by allocating computing resources appropriately.While pro?ling rays can be used to gain some idea of overall rendering costs for any frame,the large varia-tions of computational complexity between pixels,precludes a highly accurate solution for a low number of such pro?ling rays.In this paper we have presented an approach which is based on knowledge of the scene itself.This knowledge is rapidly extracted using a GPU based preview,or Snap-shot.The information Snapshot provides on the complexity of the scene geometry and surface properties enables the most appropriate pro?ling strategy to be determined.Pro-?ling pixels are then traced in order to acquire maximum information for the cost prediction for a minimal number of pixels.

As described in the results section,the use of caching cur-rently presents a challenge for our and any sparse sampling technique.There is however a possible bene?t from using our technique with caching and that is to produce a sampling map that distributes and uses the pro?ling rays to pre-seed the ambient cache in such a way that the rest of the image can achieve most of its ambient values from interpolation. This area forms an important subject of our future research. This could be of particular use in a network rendering sce-nario where an ambient cache could be built up relatively rapidly on a single machine and then copied across the re-maining machines.Similarly for an animation,the ambient cache could be obtained much quicker by tracing only the pro?ling rays rather than having to fully trace a selection of full frames as is the current practice.

The use of our technique for animations is also an area of future research.We believe that the current practice of pro-ducing an estimation for the whole animation from a full rendering of a single frame can be improved on by using our method to pro?le a selection of frames.This would account for changes in cost due to changes in position of objects, viewpoint and lighting,none of which are possible with a cost based on a single frame.

7.ACKNOWLEDGMENTS

We would like to thank Patrick Ledda and Veronica Sund-stedt for the use of the Kitchen and Corridor models.We would also like to thank the reviewers of this paper whose de-tailed and constructive critique was most helpful.The work reported in this paper has formed part of the Rendering on Demand(RoD)project within the3C Research programme whose funding and support is gratefully acknowledged.

8.REFERENCES

[1]B.Aronov,H.Bronnimann,A.Y.Chang,and Y.-J.

Chiang.Cost-driven octree construction schemes:an

experimental study.In SCG’03:Proceedings of the

nineteenth annual symposium on Computational

geometry,pages227–236.ACM Press,2003.

[2]K.Cater,A.Chalmers,and G.Ward.Detail to

attention:exploiting visual tasks for selective

rendering.In EGRW’03:Proceedings of the14th

Eurographics workshop on Rendering,pages270–280.

Eurographics Association,2003.

[3]R.L.Cook.Stochastic sampling in computer graphics.

ACM Trans.Graph.,5(1):51–72,1986.

[4]M.A.Z.Dipp′e and E.H.Wold.Antialiasing through

stochastic sampling.In SIGGRAPH’85:Proceedings

of the12th annual conference on Computer graphics

and interactive techniques,pages69–78,New York,

NY,USA,1985.ACM Press.

[5]T.A.Funkhouser and C.H.S′e quin.Adaptive display

algorithm for interactive frame rates during

visualization of complex virtual environments.In

SIGGRAPH’93:Proceedings of the20th annual

conference on Computer graphics and interactive

techniques,pages247–254.ACM Press,1993.

[6]R.Gillibrand,K.Debattista,and A.Chalmers.Cost

prediction maps for global illumination.In EG UK:

Theory and Practice of Computer Graphics,2005.

Eurographics Association,2005.

[7]J.H.Halton.Algorithm247:Radical-inverse

quasi-random point https://www.wendangku.net/doc/2f5469849.html,mun.ACM,

7(12):701–702,1964.

[8]E.Horvitz and J.Lengyel.Perception,attention,and

resources:A decision-theoretic approach to graphics

rendering.In Proceedings of the13th Conference on

Uncertainty in Arti?cial Intelligence,1997.

[9]A.Keller.Monte Carlo&Beyond-Course Material.

Technical Report320/02,University of Kaiserslautern, 2003.Published in Eurographics2003Tutorial Notes.

[10]M.E.Lee,R.A.Redner,and https://www.wendangku.net/doc/2f5469849.html,elton.

Statistically optimized sampling for distributed ray

tracing.In Proceedings of the12th annual conference

on Computer graphics and interactive techniques,

pages61–68.ACM Press,1985.

[11]P.Longhurst,K.Debattista,and A.Chalmers.

Snapshot:A rapid technique for driving a selective

global illumination renderer.In WSCG2005SHORT

papers proceedings,pages81–84,2005.

[12]P.Longhurst,K.Debattista,R.Gillibrand,and

A.Chalmers.Analytic antialiasing for selective high

?delity rendering.In SIBGRAPI2005,October2005.

[13]D.P.Mitchell.Consequences of strati?ed sampling in

graphics.In SIGGRAPH’96:Proceedings of the23rd annual conference on Computer graphics and

interactive techniques,pages277–280,New York,NY, USA,1996.ACM Press.[14]J.D.Owens,D.Luebke,https://www.wendangku.net/doc/2f5469849.html,indaraju,M.Harris,

J.Kr¨u ger,A.E.Lefohn,and T.J.Purcell.A survey

of general-purpose computation on graphics hardware.

In Eurographics2005,State of the Art Reports,pages 21–51,Aug.2005.

[15]E.Reinhard,A.J.F.Kok,and A.Chalmers.Cost

distribution prediction for parallel ray tracing.In

Second Eurographics Workshop on Parallel Graphics

and Visualisation,pages77–90.Eurographics,

September1998.

[16]E.Reinhard,A.J.F.Kok,and F.W.Jansen.Cost

prediction in ray tracing.In Proceedings of the

eurographics workshop on Rendering techniques’96,

pages41–50.Springer-Verlag,1996.

[17]V.Sundstedt,K.Debattista,P.Longhurst,

A.Chalmers,and T.Troscianko.Visual attention for

e?cient high-?delity graphics.In Spring Conference

on Computer Graphics(SCCG2005),pages162–168, May2005.

[18]P.Tole,F.Pellacini,B.Walter,and D.P.Greenberg.

Interactive global illumination in dynamic scenes.In

SIGGRAPH’02:Proceedings of the29th annual

conference on Computer graphics and interactive

techniques,pages537–546,New York,NY,USA,2002.

ACM Press.

[19]B.Walter,G.Drettakis,and D.P.Greenberg.

Enhancing and optimizing the render cache.In EGRW ’02:Proceedings of the13th Eurographics workshop on Rendering,pages37–42,Aire-la-Ville,Switzerland,

Switzerland,2002.Eurographics Association.

[20]G.J.Ward.The radiance lighting simulation and

rendering system.In SIGGRAPH’94:Proceedings of

the21st annual conference on Computer graphics and interactive techniques,pages459–472.ACM Press,

1994.

[21]M.Wimmer and P.Wonka.Rendering time estimation

for real-time rendering.In EGRW’03:Proceedings of the14th Eurographics workshop on Rendering,pages

118–129.Eurographics Association,2003.

[22]T.-T.Wong,W.-S.Luk,and P.-A.Heng.Sampling

with hammersley and halton points.Journal of

Graphics Tools,2(2):9–24,1997.

[23]H.Yee,S.Pattanaik,and D.P.Greenberg.

Spatiotemporal sensitivity and visual attention for

e?cient rendering of dynamic environments.ACM

Trans.Graph.,20(1):39–65,2001.

Figure 10:Colour images used in the paper Top left:Figure 1Top Right:Figure 2

Middle left:Figure 6Middle right:Figure 8Bottom:Figure 4

DNA测序原理和方法.

DNA测序原理和方法 DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。 【原理】ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA 测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。 由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】 1.BigDye测序反应试剂盒主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP 和普通dNTP,AmpliTaq DNA polymerase FS,反应缓冲液等。 2.pGEM-3Zf (+) 双链DNA对照模板0.2g/L,试剂盒配套试剂。 3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。 4.DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR 反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。 5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。 6.灭菌去离子水或三蒸水。 7.0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。 8.3mol/L 醋酸钠(pH5.2) 称取40.8g NaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。 9.70%乙醇和无水乙醇。 10.NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。11.POP 6测序胶ABI产品。

DNA测序结果分析

学习 通常一份测序结果图由红、黑、绿和蓝色测序峰组成,代表不同的碱基序列。测序图的两端(本图原图的后半段被剪切掉了)大约50个碱基的测序图部分通常杂质的干扰较大,无法判读,这是正常现象。这也提醒我们在做引物设计时,要避免将所研究的位点离PCR序列的两端太近(通常要大于50个碱基距离),以免测序后难以分析比对。 我的课题是研究基因多态性的,因此下面要介绍的内容也主要以判读测序图中的等位基因突变位点为主。 实际上,要在一份测序图中找到真正确实的等位基因多态位点并不是一件容易的事情。由于临床专业的研究生,这些东西是没人带的,只好自己研究。开始时大概的知道等位基因位点在假如在测序图上出现像套叠的两个峰,就是杂合子位点。实际比对了数千份序列后才知道,情况并非那么简单,下面测序图中标出的两

个套峰均不是杂合子位点,如图并说明如下: 说明:第一组套峰,两峰的轴线并不在同一位置,左侧的T峰是干扰峰;第二组套峰,虽两峰轴线位置相同,但两峰的位置太靠近了,不是杂合子峰,蓝色的C峰是干扰峰通常的杂合子峰由一高一略低的两个轴线相同的峰组成,此处的序列被机器误判为“C”,实际的序列应为“A”,通常一个高大碱基峰的前面1~2个位点很容易产生一个相同碱基的干扰峰,峰的高度大约是高大碱基峰的1/2,离得越近受干扰越大。一个摸索出来的规律是:主峰通常在干扰峰的右侧,干扰峰并不一定比主峰低。最关键的一点是一定要拿疑似为杂合子峰的测序图位点与测序结果的文本序列和基因库中的比对结果相比较;一个位点的多个样本相比较;你得出的该位点的突变率与权威文献或数据库中的突变率相比较。通常,对于一个疑似突变位点来说,即使是国际上权威组织大样本的测序结果中都没有报道的话,那么单纯通过测序结果就判定它是突变点,是并不严谨的,因一份PCR产物中各个碱基的实际含量并不相同,很难避免不产生误差的。对于一个未知

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

高通量测序RNA-seq数据的常规分析

案例一 虽然RNA-seq早已被大家所熟知,特别是在高通量测序越来越便宜的今天,但是RNA-seq数据的分析仍令多数小菜抓狂。多个软件的使用,参数设置,参考基因组准备,输出结果的解读等等,都让很多初次接触测序数据或者非生物信息专业的人头疼不已。 哈哈,不用怕,有云生信,这都不是事儿!今天我就向大家简单介绍一下如何用云生信做RNA-seq数据的常规分析。不过在此之前,我要稍稍啰嗦一下RNA-seq的常规分析流程,请不要拍砖头。图1是RNA-seq数据从产生到分析的常规分析流程:根据实验设计,提取细胞RNA,并将RNA提交给测序公司,就可以坐等测序数据了。测序公司会根据客户提供的RNA进行建库,上机测序。拿到测序数据后,就到了我们大显身手的时候了。首先,我们要对测序结果做个简单的质量评估,剔除低质量的数据。然后,根据基因组数据(这里我们讲的是基因组数据已知的物种,基因组未知的有套独立的流程,这里不讲),将测序数据组装。根据组装结果,计算基因或转录本的表达量。最后,同芯片数据一样,我们可以根据表达量数据做很多分析,如差异表达分析,网络分析(包括蛋白互作网络,共表达网络等),也可以结合临床数据做分析(如预后,亚型分类、关联,药效等)。 图1. RNA-seq常规分析流程

叨叨完毕,进入正题。 进入尔云后,打开“测序数据处理”模块,我们会看到图2的结果。在这一模块,我们可以完成RNA-seq数据分析的前两步:1、数据质控和过滤低质量数据;2、基因组组装,计算基因表达量。对于上面两部,尔云又根据是双端测序还是单端测序,分了两块。以edgeR 为例,输出的DEGs.txt就是根据我们设定的参数得到的差异表达基因的列表,有geneSymbol, logCPM, PVlue信息。 图2. 测序数据处理模块 质控结束后,尔云会给出全部的质控结果。图3是以demo数据为例的双端测序的质控结果,好多好多呀,可以下了慢慢看。建议主要关注一下xxx_qc_TABLE,该表格是对质控前后的数据统计,反应了测序的好坏。Clean_xxx.fq是质控后的干净的fastq数据,是第2步组装的输入文件。 图3.质控结果 组装完成后,会返回一个expression.txt的表达矩阵文件,该文件是下一步差异表达分析的输入分析。 得到表达矩阵后,我们就可以进入到第3步差异表达数据分析。进入尔云的“差异分析”模块(如下图所示),它针对芯片和测序两种检测技术提供了不同的分析方案。对于RNA-seq

高通量测序的生物信息学分析

附件三生物信息学分析 一、基础生物信息学分析 1.有效测序序列结果统计 有效测序序列:所有含样品barcode(标签序列)的测序序列。 统计该部分序列的长度分布情况。 注:合同中约定测序序列条数以有效测序序列为准。 图形示例为: 2.优质序列统计 优质序列:有效测序序列中含有特异性扩增引物、不含模糊碱基、长度大于可供分析标准的序列。 统计该部分序列的长度分布情况。 图形示例为:

3.各样本序列数目统计: 统计各个样本所含有效测序序列和优质序列数目。 结果示例为: 4.OTU生成: 根据序列的相似性,将序列归为多个OTU(操作分类单元),以便后续分析。 5.稀释曲线(rarefaction 分析) 根据第4条中获得的OTU数据,做出每个样品的Rarefaction曲线。本合同默认生成OTU相似水平为0.03的rarefaction曲线。 rarefaction曲线结果示例:

6.指数分析 计算各个样品的相关分析指数,包括: ?丰度指数:ace\chao ?多样性指数:shannon\simpson ?本合同默认生成OTU相似水平为0.03的上述指数值。 多样性指数分析结果示例: 注:默认分析以上所列指数,如有特殊需要请说明。 7.Shannon-Wiener曲线 利用各样品的测序量在不同测序深度时的微生物多样性指数构建曲线,反映各样本在不同测序数量时的微生物多样性。当曲线趋向平坦时,说明测序数据量足够大,可以反映样品中绝大多数的微生物信息。绘制默认水平为:0.03。 例图:

8.Rank_Abuance 曲线 根据各样品的OTU丰度大小排序作丰度分布曲线图。结果文件默认为PDF格式(其它格式请注明)。 例图: 9.Specaccum物种累积曲线(大于10个样品) 物种累积曲线( species accumulation curves) 用于描述随着抽样量的加大物种增加的状况,是理解调查样地物种组成和预测物种丰富度的有效工具,在生物多样性和群落调查中,被广泛用于抽样量充分性的判断以及物种丰富度( species richness) 的估计。因此,通过物种累积曲线不仅可以判断抽样量是否充分,在抽样量充分的前提下,运用物种累积曲线还可以对物种丰富度进行预测。

高通量测序:第二代测序技术详细介绍

高通量测序:第二代测序技 术详细介绍 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96 或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa 高通量测序原理 --采用大规模并行合成测序法(SBS, Sequencing-By-Synthesis)和可逆性末端终结技术(Reversible Terminator Chemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经 PCR 扩增后制成 Library 。 ----随后在含有接头(单链引物)的芯片( flow cell )上将已加入接头的 DNA 片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段 = 一个磁珠 = 一条读长(One fragment =One bead = One read)”

高通量测序及分析

高通量测序与功能分析 微生物群落测序是指对微生物群体进行高通量测序,通过分析测序序列的构成分析特定环境中微生物群体的构成情况或基因的组成以及功能。借助不同环境下微生物群落的构成差异分析我们可以分析微生物与环境因素或宿主之间的关系,寻找标志性菌群或特定功能的基因。对微生物群落进行测序包括两类,一类是通过16s rDNA,18s rDNA,ITS区域进行扩增测序分析微生物的群体构成和多样性;还有一类是宏基因组测序,是不经过分离培养微生物,而对所有微生物DNA进行测序,从而分析微生物群落构成,基因构成,挖掘有应用价值的基因资源。 以16s rDNA扩增进行测序分析主要用于微生物群落多样性和构成的分析,目前的生物信息学分析也可以基于16s rDNA的测序对微生物群落的基因构成和代谢途径进行预测分析,大大拓展了我们对于环境微生物的微生态认知。 目前我们根据16s的测序数据可以将微生物群落分类到种(species)(一般只能对部分菌进行种的鉴定),甚至对亚种级别进行分析, 几个概念: 16S rDNA(或16S rRNA):16S rRNA基因是编码原核生物核糖体小亚基的基因,长度约为1542bp,其分子大小适中,突变率小,是细菌系统分类学研究中最常用和最有用的标志。16S rRNA基因序列包括9个可变区和10个保守区,保守区序列反映了物种间的亲缘关系,而可变区序列则能体现物种间的差异。16S rRNA基因测序以细菌16S rRNA基因测序为主,核心是研究样品中的物种分类、物种丰度以及系统进化。 OTU:operational taxonomic units (OTUs)在微生物的免培养分析中经常用到,通过提取样品的总基因组DNA,利用16S rRNA或ITS的通用引物进行PCR 扩增,通过测序以后就可以分析样品中的微生物多样性,那怎么区分这些不同的序列呢,这个时候就需要引入operational taxonomic units,一般情况下,如

DNA第一代,第二代,第三代测序的介绍

原理是:核酸模板在DNA聚合酶、引物、4 种单脱氧核苷三磷酸 ( d NTP,其中的一种用放射性P32标记 )存在条件下复制时,在四管反应系统中分别按比例引入4种双脱氧核苷三磷酸 ( dd NTP ),因为双脱氧核苷没有3’-O H,所以只要双脱氧核苷掺入链的末端,该链就停止延长,若链端掺入单脱氧核苷,链就可以继续延长。如此每管反应体系中便合成以各自 的双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分4个泳道进行凝胶电泳,分离长短不一的核酸片段,长度相邻的片段相差一个碱基。经过放射自显影后,根据片段3’端的双脱氧核苷,便可依次阅读合成片段的碱基排列顺序。Sanger法因操作简便,得到广泛的应用。后来在此基础上发展出多种DNA 测序技术,其中最重要的是荧光自动测序技术。 荧光自动测序技术荧光自动测序技术基于Sanger 原理,用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了D NA测序的速度和准确性。20世纪80 年代初Jorgenson 和 Lukacs提出了毛细管电泳技术( c a p il l ar y el ect r ophor es i s )。1992 年美国的Mathies实验室首先提出阵列毛细管电泳 ( c a p il l ar y ar r a y el ectr ophor es i s ) 新方法,并采用激光聚焦荧光扫描检测装置,25只毛细管并列电泳,每只毛细管在内可读出350 bp,DNA 序列,分析效率可达6 000 bp/h。1995年Woolley研究组用该技术进行测序研究,使用四色荧光标记法,每个毛细管长,在9min内可读取150个碱基,准确率约 97 % 。目前, 应用最广泛的应用生物系统公司 ( ABI ) 37 30 系列自动测序仪即是基于毛细管电泳和荧光标记技术的D NA测序仪。如ABI3730XL 测序仪拥有 96 道毛细管, 4 种双脱氧核苷酸的碱基分别用不同的荧光标记, 在通过毛细管时 不同长度的 DNA 片段上的 4 种荧光基团被激光激发, 发出不同颜色的荧光, 被 CCD 检测系统识别, 并直接翻译成 DNA 序列。 杂交测序技术杂交法测序是20世纪80年代末出现的一种测序方法, 该方法不同于化学降解法和Sanger 法, 而是利用 DNA杂交原理, 将一系列已知序列的单链寡核苷酸片段固定在基片上, 把待测的 DN A 样品片段变性后与其杂交, 根据杂交情况排列出样品的序列

DNA测序结果分析比对(实例)

DNA测序结果分析比对(实例) 关键词:dna测序结果2013-08-22 11:59来源:互联网点击次数:14423 从测序公司得到的一份DNA测序结果通常包含.seq格式的测序结果序列文本和.ab1格式的测序图两个文件,下面是一份测序结果的实例: CYP3A4-E1-1-1(E1B).ab1 CYP3A4-E1-1-1(E1B).seq .seq文件可以用系统自带的记事本程序打开,.ab1文件需要用专门的软件打开。软件名称:Chromas 软件Chromas下载 .seq文件打开后如下图: .ab1文件打开后如下图: 通常一份测序结果图由红、黑、绿和蓝色测序峰组成,代表不同的碱基序列。测序图的两端(下图原图的后半段被剪切掉了)大约50个碱

基的测序图部分通常杂质的干扰较大,无法判读,这是正常现象。这也提醒我们在做引物设计时,要避免将所研究的位点离PCR序列的两端太近(通常要大于50个碱基距离),以免测序后难以分析比对。 我的课题是研究基因多态性的,因此下面要介绍的内容也主要以判读测序图中的等位基因突变位点为主。 实际上,要在一份测序图中找到真正确实的等位基因多态位点并不是一件容易的事情。一般认为等位基因位点假如在测序图上出现像套叠的两个峰,就是杂合子位点。实际比对后才知道,情况并非那么简单,下面测序图中标出的两个套峰均不是杂合子位点,如图并说明如下:

说明: 第一组套峰,两峰的轴线并不在同一位置,左侧的T峰是干扰峰;第二组套峰,虽两峰轴线位置相同,但两峰的位置太靠近了,不是杂合子峰,蓝色的C峰是干扰峰通常的杂合子峰由一高一略低的两个轴线相同的峰组成,此处的序列被机器误判为“C”,实际的序列应为“A”,通常一个高大碱基峰的前面 1~2个位点很容易产生一个相同碱基的干扰峰,峰的高度大约是高大碱基峰的1/2,离得越近受干扰越大。 一个摸索出来的规律是:主峰通常在干扰峰的右侧,干扰峰并不一定比主峰低。最关键的一点是一定要拿疑似为杂合子峰的测序图位点与测序结果的文本序列和基因库中的比对结果相比较;一个位点的多个样本相比较;你得出的该位点的突变率与权威文献或数据库中的突变率相比较。 通常,对于一个疑似突变位点来说,即使是国际上权威组织大样本的测序结果中都没有报道的话,那么单纯通过测序结果就判定它是突变点,是并不严谨的,因一份 PCR产物中各个碱基的实际含量并不相同,很难避免不产生误差的。对于一个未知突变位点的发现,通常还需要用到更精确的酶切技术。 (责任编辑:大汉昆仑王)

picbio 三代测序原理

三代测序之PacBio SMRT技术全解析2017-05-11 11:29 来源:基因谷技术 气温回升,天气渐暖, 花儿开了一簇又一簇~ 在这美好的季节里, 我们准备聊点新话题。 今天小编要来和你分享: PacBio SMRT测序那些事儿~

测序技术在近几年中又有里程碑的发展,Pacific Biosciences公司成功推出商业化的第三代测序仪平台,让三代测序正式走入我们的视线。与前两代相比,第三代测序有什么不同呢?今天小编带大家详细了解测序界新宠-PacBio SMRT测序平台。 PacBio SMRT测序原理 Pacific Biosciences公司研发的单分子实时测序系统(Single Molecule Real Time,SMRT)应用了边合成边测序的原理,并以SMRT芯片为测序载体。基本原理如下: 聚合酶捕获文库DNA序列,锚定在零模波导孔底部 4种不同荧光标记的dNTP随机进入零模波导孔底部 荧光dNTP被激光照射,发出荧光,检测荧光 荧光dNTP与DNA模板的碱基匹配,在酶的作用下合成一个碱基 统计荧光信号存在时间长短,区分匹配碱基与游离碱基,获得DNA序列 酶反应过程中,一方面使链延伸,另一方面使dNTP上的荧光基团脱落 聚合反应持续进行,测序同时持续进行 PacBio SMRT测序原理 PacBio SMRT的单分子测序和超长读长是如何实现的?我们重点看一下该技术的两点关键创新:分别是零模波导孔(zero-mode waveguides, ZMWs)和荧光标记在核苷酸焦磷酸链上(Phospholinked nucleotides)。

高通量测序:第二代测序技术详细介绍

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa高通量测序原理 --采用大规模并行合成测序法(SBS,Sequencing-By-Synthesis)和可逆性末端终结技术(ReversibleTerminatorChemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经PCR扩增后制成Library。 ----随后在含有接头(单链引物)的芯片(flowcell)上将已加入接头的DNA片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段= 一个磁珠= 一条读长(One fragment =One bead = One read)”

基因测序的前世今生(一代测序,二代测序,三代测序最详原理)

测序技术的前世今生 测序技术的发展历程 第一代测序技术(Sanger测序) 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解),在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 原理:ddNTP的3’无羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP (分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。

第二代测序技术(NGS) 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。经过不断的技术开发和改进,以Roche公司的454技术、illumina公司的Solexa、Hiseq技术和ABI公司的Solid技术为标记的第二代测序技术诞生了。其大大降低了测序成本的同时,还大幅提高了测序速度,并且保持了高准确性,以前完成一个人类基因组的测序需要3年时间,而使用二代测序技术则仅仅需要1周,但在序列读长方面比起第一代测序技术则要短很多,大多只有100bp-150bp。 1.illumina Illumina公司的Solexa和Hiseq是目前全球使用量最大的第二代测序机器,占全球75%以上,以HiSeq系列为主,技术核心原理都是边合成边测序的方法,测序过程主要分为以下4步:

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

一代、二代、三代测序技术

三代基因组测序技术原理简介 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和 ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

DNA测序结果分析

DNA果套峰分析 Q-12. 测序结果有很多套峰(出现很多N),还照常收费,为什么? 返回顶端 A-12. DNA模板上出现二处以上的引物结合位点,或者DNA模板上有严重的重复序列,以及测序引物不纯时, 测序结果便会出现套峰现象(见图4)。出现这种现象的原因由DNA模板本身或者引物本身所造成,对这些结果(公司保证进行2次以上的测序工作),公司会根据具体情况进行收费(详细见测序结果说明)。 Q-13. 为什么用PCR产物测序时,经常会出现套峰现象? 返回顶端 A-13. PCR产物测序出现套峰现象,一般有以下几种原因: 1)PCR用模板不纯或PCR用引物特异性不好,扩增出的产物除了目的片段外,还有与目的片段长度相近的片段,即使用凝胶电泳也无法分离开,这样的PCR产物测序结果是套峰。 2)结构上的原因,造成了PCR产物测序出现套峰的现象。PolyA/G/C/T以及原因不明的复杂结构的存在,都会出现测序结果套峰的情况。 Q-14. 出现套峰的原因是什么?返回顶端 A-14. 在测序反应中,模板或引物的原因都可能造成套峰的形成,归结其形成原因有以下几点 1)测序引物在模板上有两个结合位点形成套峰 2)模板不纯,如果是质粒或是菌液,原因是非单克隆,如果是PCR,原因为非特异性条带 3)模板序列的特殊结构,如poly结构、发卡结构等 4)引物降解,引物不纯,或引物的特异性不好 Q-15. 测序结果不到800 Bases,还照常收费了,为什么? 返回顶端 A-15. 如在DNA样品中的DNA序列分布匀称,没有复杂结构时,正常的测序反应能保证达到800 Bases以上。但有一些DNA样品立体结构复杂,造成聚合酶延伸反应终止,测序信号突然减弱或消失,或者测序结果出现套峰现象。出现这些现象的原因由DNA模板本身所造成(公司保证进行2次以上的测序工作)。对这些结果,公司会根据具体测序情况,进行收费(详细见测序结果说明)。出现这些情况的原因分析如下: 1) G/C rich、G/C Cluster:这种情况一般表现为测序信号突然减弱或消失(见图1); 2) A、T的连续结构:这种情况一般表现为A、T连续结构后面的测序结果出现套峰(见图2)。根据文献记载,原因在于聚合酶进行聚合反应时,由于A或T的连续,聚合酶难以识别完整的每个A或T,在某个A或T的后面便开始进行A或T连续结构以后序列的聚合反应(打滑现象),造成测序结果紊乱,出现套峰。出现这样的情况,建议反向测序。 一般在多少个A或T的后面能出现这种情况呢? 现在还没有这方面的报道。根据我们的经验,这一情况的出现和A或T的连续结构后面的序列的排列情况有着直接的关系。有时10多个A或T的连续结构后面便出现套峰,但有时60~70个A或T的连续结构后面的序列也一样可以完整地读出来。具体情况还有待考证。 一般来说,PCR片段直接测序时,A或T的连续结构后面的序列测序结果都会出现套峰。原因在于测序时经历了PCR反应及测序反应(测序反应本身也是PCR 反应)二次聚合酶的打滑现象。 3)原因不明的复杂结构,测序结果出现突然信号减弱或消失。从序列上看,DNA碱基排列并无特别异常。估计是DNA整体出现复杂结构,从某一位置开始聚合酶的聚合反应便无法进行(见图3)。 查看大图

高通量测序(NGS)数据分析中的质控

高通量测序错误总结 一、生信分析部分 1)Q20/Q30 碱基质量分数与错误率是衡量测序质量的重要指标,质量值越高代表碱基被测错的概率越小。Q30代表碱基的正确判别率是99.9%,错误率为0.1%。同时我们也可以理解为1000个碱基里有1个碱基是错误的。Q20代表该位点碱基的正确判别率是99%,错误率为1%。对于整个数据来说,我们可以认为100个碱基里可能有一个是错误的, 在碱基质量模块报告的坐标图中,背景颜色沿y-轴将坐标图分为3个区:最上面的绿色是碱基质量很好的区,Q值在30以上。中间的橘色是碱基质量在一些分析中可以接受的区,Q值在20-30之间。最下面红色的是碱基质量很差的区。在一些生信分析中,比如以检查差异表达为目的的RNA-seq分析,一般要求碱基质量在Q在Q20以上就可以了。但以检查变异为目的的数据分析中,一般要求碱基质量要在Q30以上。 一般来说,测序质量分数的分布有两个特点: 1.测序质量分数会随着测序循环的进行而降低。 2.有时每条序列前几个碱基的位置测序错误率较高,质量值相对较低。

在图中这个例子里,左边的数据碱基质量很好,而右边的数据碱基质量就比较差,需要做剪切(trimming),根据生信分析的目的不同,要将质量低于Q20或者低于Q30的碱基剪切掉。

2)序列的平均质量 这个是碱基序列平均质量报告图。横坐标为序列平均碱基质量值,纵坐标代表序列数量。通过序列的平均质量报告,我们可以查看是否存在整条序列所有的碱基质量都普遍过低的情况。一般来说,当绝大部分碱基序列的平均质量值的峰值大于30,可以判断序列质量较好。如这里左边的图,我们可以判断样品里没有显著数量的低质量序列。但如果曲线如右边的图所示,在质量较低的坐标位置出现另外一个或者多个峰,说明测序数据中有一部分序列质量较差,需要过滤掉。

一代、二代、三代测序技术

一代、二代、三代测序技术 (2014-01-22 10:42:13) 转载▼ 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD 测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序 被称为第三代的测序的He-licos单分子测序仪,PacificBioscience的SMRT技术和 Oxford Nanopore Technologies 公司正在研究的纳米孔单分子测序技术正向着高通量低成 本长读取长度的方向发展。不同于第二代测序依赖于DNA模板与固体表面相结合然后边合成边测序,第三代分子测序,不需要进行PCR扩增。(1)Helico BioScience 单分子测序技术。该测序是基于边合成边测序的思想,将待测序列随机打断成小分子片段并用末端转移

相关文档
相关文档 最新文档