文档库 最新最全的文档下载
当前位置:文档库 › 现代信号处理大作业题目+答案

现代信号处理大作业题目+答案

现代信号处理大作业题目+答案
现代信号处理大作业题目+答案

研究生“现代信号处理”课程大型作业

(以下四个题目任选三题做)

1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。

2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。

3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法

4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应:

1

2(2)[1cos(

)]1,2,3()20 n n h n W

π-?+=?=???其它

式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均

值为零、方差001.02

=v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基

于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

图1 横向或格-梯型自适应均衡器

参考文献

[1] 姚天任, 孙洪. 现代数字信号处理[M]. 武汉: 华中理工大学出版社, 2001

[2] 杨绿溪. 现代数字信号处理[M]. 北京: 科学出版社, 2007

[3] S. K. Mitra. 孙洪等译. 数字信号处理——基于计算机的方法(第三版)[M]. 北京: 电子工

业出版社, 2006

[4] S.Haykin, 郑宝玉等译. 自适应滤波器原理(第四版)[M].北京: 电子工业出版社, 2003

[5] J. G. Proakis, C. M. Rader, F. Y. Ling, etc. Algorithms for Statistical Signal Processing [M].

Beijing: Tsinghua University Press, 2003

一、请用多层感知器(MLP)神经网络误差反向传播(BP)算法实现异或问题(输入为[00;01;10;11]

,要求可以判别输出为0或1),并画出学习曲线。其X T

中,非线性函数采用S型Logistic函数。

1、原理:

反向传播(BP)算法:

(1)、多层感知器的中间隐层不直接与外界连接,其误差无法估计。

(2)、反向传播算法:从后向前(反向)逐层“传播”输出层的误差,以间接算

出隐层误差。分两个阶段:

正向过程:从输入层经隐层逐层正向计算各单元的输出

反向过程:由输出层误差逐层反向计算隐层各单元的误差,并用此误差修正前层的权值。

2、流程图:

开始

选择初始值

j

3、程序:

%使用了3层结构,第二层隐藏层4个单元。2,3层都使用Logisitic函数。%训练xor数据。

function mlp()

f= fopen('XOR.txt');

A = fscanf(f, '%g',[3 inf]);

A = A;

p = A(1:2, :)';%训练输入数据

t = A(3, :)';%desire out

[train_num , input_scale]= size(p) ;%规模

fclose(f);

accumulate_error=zeros(1,3001);

alpha = 0.5;%学习率

threshold = 0.005;% 收敛条件∑e^2 < threshold

wd1=0; wd2=0;

bd1=0; bd2=0;

circle_time =0;

hidden_unitnum = 4; %隐藏层的单元数

w1 = rand(hidden_unitnum,2);%4个神经元,每个神经元接受2个输入w2 = rand(1,hidden_unitnum);%一个神经元,每个神经元接受4个输入b1 = rand(hidden_unitnum,1);

b2 = rand(1,1);

while 1

temp=0;

circle_time = circle_time +1;

for i=1:train_num

%前向传播

a0 = double ( p(i,:)' );%第i行数据

n1 = w1*a0+b1;

a1 = Logistic(n1);%第一个的输出

n2 = w2*a1+b2;

a2 = Logistic(n2);%第二个的输出

a = a2;

%后向传播敏感性

e = t(i,:)-a;

accumulate_error(circle_time) = temp + abs(e)^2;

temp=accumulate_error(circle_time);

s2 = F(a2)*e; %输出层delta值

s1 = F(a1)*w2'*s2;%隐层delta值

%修改权值

wd1 = alpha .* s1*a0';

wd2 = alpha .* s2*a1';

w1 = w1 + wd1;

w2 = w2 + wd2;

bd1 = alpha .* s1;

bd2 = alpha .* s2;

b1 = b1 + bd1;

b2 = b2 + bd2;

end;%end of for

if accumulate_error(circle_time) <= threshold| circle_time>3001 %then break;

end;%end of if

end;%end of while

plot(accumulate_error,'m');

grid;

xlabel('学习次数')

ylabel('误差')

disp(['计算误差= ',num2str(accumulate_error(circle_time))] ) ;

disp(['迭代次数= ',num2str(circle_time)]);

%测试

a0 = double ([0 0]');

n1 = w1*a0+b1;

a1 = Logistic(n1);

n2 = w2*a1+b2;

a2 = Logistic(n2);

a = a2;

disp(['0 0 = ',num2str(a)]);

a0 = double ([0 1]');

n1 = w1*a0+b1;

a1 = Logistic(n1);

n2 = w2*a1+b2;

a2 = Logistic(n2);

a = a2;

disp(['0 1 = ',num2str(a)]);

a0 = double ([1 0]');

n1 = w1*a0+b1;

a1 = Logistic(n1);

n2 = w2*a1+b2;

a2 = Logistic(n2);

a = a2;

disp(['1 0 = ',num2str(a)]);

a0 = double ([1 1]');

n1 = w1*a0+b1;

a1 = Logistic(n1);

n2 = w2*a1+b2;

a2 = Logistic(n2);

a = a2;

disp(['1 1 = ',num2str(a)]);

m=0;

%---------------------------------------------------------- function [a]= Logistic(n)

a = 1./(1+exp(-n));

%---------------------------------------------------------- function [result]= F(a)

[r,c] = size(a);

result = zeros(r,r);

for i =1:r

result(i,i) = (1-a(i))*a(i);

end;

4、实验结果:

计算误差= 0.0049993

迭代次数= 2706

0 0 = 0.023182

0 1 = 0.963110

1 0 = 0.965390

1 1 = 0.043374

5、学习曲线图:

图1.MLP

二、试用用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。

1、设计步骤:

(1)对Fp 、Fr 进行预畸

);

();(

''Fs

Fr

tg Fs

Fp

tg r p ∏=Ω∏=Ω

(2)计算'''*r p c ΩΩ=Ω,判断'c Ω是否等于1,即该互补滤波器是否为互补镜像滤波器

(3)计算相关系数

?????-==+++=+-=-=ΩΩ=

--=偶数)N 为(;2

1

奇数)N 为 (;;lg /)16/1lg(;150152;

1121;

1;

;

])110

)(110[(1213

090500'

'

02'''2

11-min

1.0min

1.0i i u q k N q q q q q k k q k k k k r

p Ar Ap

;)

2cos()1(21))12(sin(

)

1(21

)1(21

'2

∑∑∞=∞

=+-++-=

Ωm m

m m m m m

i u N

m q u N

m q q ππ

;42??????=N N ;221N N N -???

???=

;)/1)(1(2'2'k k v i i i Ω-Ω-= 12

'1

21

2,1;12N i v i i i =Ω+=

--α 22'22,1;12N i v i

i

i =Ω+=

β

(4)互补镜像滤波器的数字实现

;22i i i A αα+-=

;22i

i

i B ββ+-= 1221,1;1)(N i Z A Z A Z H i i i =++=∏-- 22

21

2,1;1)(N i Z B Z B Z Z H i i

i =++=∏--- )];

()([21

)(21Z H Z H Z H L +=

2、程序:

function filter2()

Fp=1700;Fr=2300;Fs=8000; Wp=tan(pi*Fp/Fs); Wr=tan(pi*Fr/Fs); Wc=sqrt(Wp*Wr); k=Wp/Wr;

k1=sqrt(sqrt(1-k^2));

q0=0.5*(1-k1)/(1+k1);

q=q0+2*q0^5+15*q0^9+150*q0^13;

N=11;

N2=fix(N/4);

M=fix(N/2);

N1=M-N2;

for jj=1:M

a=0;

for m=0:5

a=a+(-1)^m*q^(m*(m+1))*sin((2*m+1)*pi*jj/N);%N is odd, u=j end

a

b=0;

for m=1:5

b=b+(-1)^m*q^(m^2)*cos(2*m*pi*jj/N);

end

b

W(jj)=2*q^0.25*a/(1+2*b);

V(jj)=sqrt((1-k*W(jj)^2)*(1-W(jj)^2/k));

end

for i=1:N1

alpha(i)=2*V(2*i-1)/(1+W(2*i-1)^2);

end

for i=1:N2

beta(i)=2*V(2*i)/(1+W(2*i)^2);

end

for i=1:N1

a(i)=(1-alpha(i)*Wc+Wc^2)/(1+alpha(i)*Wc+Wc^2);

end

for i=1:N2

b(i)=(1-beta(i)*Wc+Wc^2)/(1+beta(i)*Wc+Wc^2);

end

w=0:0.0001:0.5;

LP=zeros(size(w));HP=zeros(size(w));

for n=1:length(w)

z=exp(j*w(n)*2*pi);

H1=1;

for i=1:N1

H1=H1*(a(i)+z^(-2))/(1+a(i)*z^(-2)) ;

end

H2=1/z;

for i=1:N2

H2=H2*(b(i)+z^(-2))/(1+b(i)*z^(-2));

end

LP(n)=abs((H1+H2)/2);

HP(n)=abs((H1-H2)/2);

end

plot(w,LP,'k',w,HP,'m');

%hold on;

xlabel('数字频率');

ylabel('幅度');

3、实验结果:

图2.两带滤波器4、四带滤波器组程序:

function filterfour

Fp=1700;Fr=2300;Fs=8000;

Wp=tan(pi*Fp/Fs);

Wr=tan(pi*Fr/Fs);

Wc=sqrt(Wp*Wr);

k=Wp/Wr;

k1=sqrt(sqrt(1-k^2));

q0=0.5*(1-k1)/(1+k1);

q=q0+2*q0^5+15*q0^9+150*q0^13;

N=11;

N2=fix(N/4);

M=fix(N/2);

N1=M-N2;

for jj=1:M

a=0;

for m=0:5

a=a+(-1)^m*q^(m*(m+1))*sin((2*m+1)*pi*jj/N); % N is odd, u=j end

b=0;

for m=1:5

b=b+(-1)^m*q^(m^2)*cos(2*m*pi*jj/N);

end

W(jj)=2*q^0.25*a/(1+2*b);

V(jj)=sqrt((1-k*W(jj)^2)*(1-W(jj)^2/k));

end

for i=1:N1

alpha(i)=2*V(2*i-1)/(1+W(2*i-1)^2);

end

for i=1:N2

beta(i)=2*V(2*i)/(1+W(2*i)^2);

end

for i=1:N1

a(i)=(1-alpha(i)*Wc+Wc^2)/(1+alpha(i)*Wc+Wc^2);

end

for i=1:N2

b(i)=(1-beta(i)*Wc+Wc^2)/(1+beta(i)*Wc+Wc^2);

end

w=0:0.0001:0.5;

LLP=zeros(size(w));LHP=zeros(size(w));

HLP=zeros(size(w));HHP=zeros(size(w));

for n=1:length(w)

z=exp(j*w(n)*2*pi);

H1=1;

for i=1:N1

H1=H1*(a(i)+z^(-2))/(1+a(i)*z^(-2)) ;

end

H21=1;

for i=1:N1

H21=H21*(a(i)+z^(-4))/(1+a(i)*z^(-4)) ;

end

H2=1/z;

for i=1:N2

H2=H2*(b(i)+z^(-2))/(1+b(i)*z^(-2));

end

H22=1/(z^2);

for i=1:N2

H22=H22*(b(i)+z^(-4))/(1+b(i)*z^(-4));

end

LP=((H1+H2)/2);

HP=((H1-H2)/2);

LLP(n)=abs((H21+H22)/2*LP);

LHP(n)=abs((H21-H22)/2*LP);

HHP(n)=abs((H21+H22)/2*HP);

HLP(n)=abs((H21-H22)/2*HP);

end

plot(w,LLP,'k',w,LHP,'m',w,HLP,'g',w,HHP,'b');

xlabel('数字频率');

ylabel('幅度');

5、实验结果:

图3.四带滤波器组

三、根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线:

1)Levinson算法

2)Burg算法

3)ARMA模型法

4)MUSIC算法

1、Levinson算法

分析:

(1)、由输入数据估计自相关函数,一种渐近无偏估计(称之为取样自相关函数)的公式为:

∑--=-≤+=m

N n xx

N m n m x n x N

m R 10*1),

()(1)(?

(2)、根据估计所得到的自相关函数,用下面的迭代公式估算AR 模型参数:

)

()0(*1

,2i R a R k

i i k k

∑=+=σ

∑==-+=k

i k i k k a i k R a D 0

0,,0),

1(

2

1k k

k D σγ=

+

22

121)1(k k k σγσ++-=

k i a a a i k k k i k i k ,,2,1,

*

1,1,,1 =-=-+++γ

11,1+++-=k k k a γ

(3)、对于AR (p )模型,按以上述递推公式迭代计算直到p k =+1时为止。将算出的模型参数代入下式即可得到功率谱估计值:

2

1,21)(?∑=-+=p

i jwi

i p p

j xx

e a e S σω

程序:

function [sigma2,a]=levinson(signal_source,p)

%阶数由p 确定

N=length(signal_source); %确定自相关函数 for m=0:N-1

R(m+1)=sum(conj(signal_source([1:N-m])).*signal_source([m+1:N]))/N; end

%设置迭代初值 a1=-R(2)/R(1);

sigma2=(1-abs(a1)^2)*R(1); gamma=-a1; %开始迭代 for k=2:p

sigma2(k)=R(1)+sum(a1.*conj(R([2:k]))); D=R(k+1)+sum(a1.*R([k:-1:2])); gamma(k)=D/sigma2(k);

sigma2(k)=(1-abs(gamma(k))^2)*sigma2(k);

a1=[a1-gamma(k)*conj(fliplr(a1)),-gamma(k)];

end

a=[1 a1];

%计算功率谱估计值

sigma2=real(sigma2);

p=15;%p分别为15、30、45、60

[sigma2,a]=Levinson(signal_in_complex,p);

%计算功率谱

f1=linspace(-0.5,0.5,512);

%从-0.5到0.5生成512个等间隔数据

for k=1:512

S1(k)=10*log10(sigma2(end)/(abs(1+sum(a(2:end).*exp(-j*2*pi*f1(k)*[1:p])))^ 2)); %公式(2.3.7)并以dB表示

end;

实验结果:

图4.Levinson 算法

2、 Burg 算法

分析:

(1)、设输入数据序列为10)(-≤≤N n n x ,,对前后向预测误差之和求偏导,得反射系数

∑∑-=-

-+--=--+--+-=

1

2

1211

*

11)

)1()(()1()(2N k

n k k N k n k k k n e n e

n e n e γ

前后向预测误差递推公式:

???

? ??-???? ??--=???? ??--+

--+

)1()(11)()(11*n e n e n e n e k k k

k k k γγ 1,,...,3,2,1,0,1,1,1,==-=----k i k k k i k i k a k i a a a γ

(2)、重复以上步骤直至k =p ,根据迭代得到的AR 模型参数计算功率谱,计算功率谱的公式同上面算法。

程序:

function [sigma2,a]=burg(signal_source,p) N=length(signal_source);

ef=signal_source; eb=signal_source;

sigma2=sum(signal_source*signal_source')/N; a=[]; for k=1:p

efp=ef(k+1:end); ebp=eb(k:end-1);

gamma(k)=2*efp*ebp'/(efp*efp'+ebp*ebp'); sigma2(k+1)=(1-abs(gamma(k))^2)*sigma2(k); ef(k+1:end)=efp-gamma(k)*ebp; eb(k+1:end)=ebp-gamma(k)'*efp; a=[a-gamma(k)*conj(fliplr(a)),-gamma(k)];

end; a=[1 a];

sigma2=real(sigma2);

实验结果:

图5.Burg 算法

3、 ARMA 算法

分析:

(1)、用x (n )通过A (z ),得到y (n )。

(2)、用一无穷阶的AR 模型近似MA 模型。用Burg 算法可得到此近似AR 模型的参数以及激励白噪声的功率。一般此AR 模型的阶数应大于MA 模型阶数的两倍,以获得较好的近似效果。

(3)、可以证明,将上一步求出的近似AR 模型参数视为时间序列,则MA 模型就可视为一线性预测滤波器,按最小均方误差准则就可以求出MA 模型参数,方法同样可用Burg 算法。

这样,ARMA 模型的参数就全部估计出来了,根据以下公式即可算出功率谱:

2

1

2

1211)(?∑∑=-=-++=p

i jwi

i q

i jwi

i p

j xx e a e b e S σω

程序:

function [a,b,sigma2]=arma(signal_source,p,q) N=length(signal_source); M=N-1;

r=xcorr(signal_source,'unbiased'); for k=1:p

R(:,k)=(r([N+q-k+1:N+M-k])).'; end

a1=(-pinv(R)*(r([N+q+1:N+M]).')).'; a=[1 a1];

Y=filter([1 a1],[1],signal_source); pp=4*q;

[sigma,a1]=burg(Y ,pp); sigma2=sigma(2:end);

[sigma,a2]=burg(a1(2:end),q); b=a2;

实验结果:

图6.ARMA 算法

4、 MUSIC 算法

分析:

(1)构造自相关阵

?????

?

? ??-------=)0()2()1())2(()0()

1())1(()1()

0(R N R N R N R R R N R R R

R 自相关函数可用有偏估计代替。

(2)计算R 的特征向量i v

?,i =1,2,…,N 。 (3)估计R 的维数M ,方法有AIC 和MDL 法。

(4)根据剩余特征向量计算MUSIC 谱。

∑+==

N

M i f P 1

2

MUSIC ?1

)(?i H

v

e

程序:

function S=music(X,p,ii) N=length(X);

r=xcorr(X,'biased'); clear R for k=1:N

R(:,k)=(r([N-(k-1):2*N-k])).'; end

[V ,D] = eig(R);

f=linspace(-0.5,0.5,512); S0=fft(V(:,p+1:end),512); for k=1:512

S(k)=10*log10(1/(S0(k,:)*S0(k,:)')); end

S=[S(257:512) S(1:256)];

subplot(2,2,ii); plot(f,S,'b');

title(['MUSIC: ',int2str(p),' 维']);

xlabel('归一化频率'), ylabel('功率谱/dB'); hold on; 实验结果:

图7.MUSIC 算法

现代信号处理大作业

现代信号处理大作业 姓名:潘晓丹 学号:0140349045 班级:A1403492

作业1 LD 算法实现AR 过程估计 1.1 AR 模型 p 阶AR 模型的差分方程为: )()()(1 n w i n x a n x p i i =-+ ∑=,其中)(n w 是均值为0的白噪声。 AR 过程的线性预测方法为:先求得观测数据的自相关函数,然后利用Yule-Walker 方程递推求得模型参数,再根据公式求得功率谱的估计。 Yule-Walker 方程可写成矩阵形式: ??????? ? ????????= ??????? ? ?? ???? ????????????? ??? ??--+-+--000)()2()1(1) 0() 2()1()()2()0()1()2()1()1()0() 1()() 2()1()0(2 σp a a a r p r p r p r p r r r r p r r r r p r r r r p p p xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 1.2 LD 算法介绍 Levinson-Durbin 算法可求解上述问题,其一般步骤为: 1) 计算观测值各自相关系数p j j r xx ,,1, 0),( =;)0(0xx r =ρ;i=1; 2) 利用以下递推公式运算: ) 1(1,...,2,1),()()()() ()()(2 1111 1 1 1 i i i i i i i i i i i j xx i xx i k i j j i a k j a j a k i a j i r j a i r k -=-=--==-?+ -=-----=-∑ρρρ 3) i=i+1,若i>p ,则算法结束;否则,返回(2)。 1.3 matlab 编程实现 以AR 模型:xn=12xn-1-12xn-2+w(n)为例,Matlab 程序代码如下: clear; clc;

2013现代信号处理试题

2013《现代信号处理》试题 1. (10分)设观察样本{x i }(i =1,…,n )的分布密度为 22 2exp{}0(,) 0 0x x i xe e x f x x λλλλ+??->?=?≤?? 其中未知参数0λ>.试求λ的极大似然估计。 2. (30分)现代信号处理与传统的数字信号处理相比,一个最大的区别在于处理的信号是统计性的随机信号而不再是确定性信号,请回答下述问题: (1)当研究宽平稳信号时,需要有各态历经性的理论基础来支撑,请对该性质加以 论述。 (2)白噪声是现代信号处理中常用的一种随机信号,请从时域和频域两个角度对其 加以阐述。 (3)为了便于分析和设计,白化滤波器被提了出来,请从其作用和应用两个方面对 其加以阐述。 3. (30分)与传统的数字信号处理相比,现代信号处理另一个最大的区别在于更多的关注信号之间的关系,如相关函数、功率谱密度函数、信噪比等,请回答下述问题: (1)Wiener 滤波器是现代信号滤波处理的经典,其核心在于考察滤波器输入输出信 号之间的关系,请用恰当的数学模型对其加以描述。 (2)功率谱密度是对时域自相关函数进行傅立叶变换得到的结果。请阐述在工程中 对功率谱密度进行测量有何应用? (3)高阶谱在传统功率谱的基础上发展起来的,请对其概念、特点与具体应用进行 简要介绍。 4. (15分)梯度搜索法的基本原理是什么?Widrow 提出的LMS 算法与基本的梯度法有何不同?试写出Widrow 提出的LMS 算法的基本步骤。 5. (15分)用计算机仿真计算功率谱,用下式生成一个随机序列 ()2cos(2.02)0.5sin(52)()x t t t e t ππ=?+?+ e (t )为白噪声,均值为零,方差为0.1~1(可任选)或为信号的5%~30%(可任选)。 (1)用周期图法求功率谱估计。 (2)用参数模型法求功率谱估计。 (3)采用Burg 算法求功率谱估计。

现代信号处理作业

信号时频分析技术及matlab仿真 电路与系统王冠军 201128013926153 摘要:本文介绍了时频分析的一些基础理论,对短时傅里叶变换Wigner-Ville分布做了简单介绍,运用MATLAB语言实现了旨在构造一种时间和频率的密度函数,以揭示信号中所包含的频率分量及其演化特性的wigner-ville分布。并对时频分析方法的优缺点进行了分析。 关键词:时频分析短时傅里叶变换wigner-ville分布 1 引言 基于Fourier变换的传统信号处理技术从信号频域表示及能量的频域分布的角度揭示了信号在频域的特征。但Fourier变换是一种整体变换,只能为人们提供信号在时域或频域的全局特性而无法了解信号频谱随时间变化的情况。因此,需要使用一种时间和频率的联合函数来表示信号,这种表示简称为信号,也就是信号的时频分析。 2 时频分析方法 信号时频分析主要研究非平稳信号或时变信号的频谱含量是怎样随时间变化的。时频分析是当今信号处理领域的一个主要研究热点,目前常用时频分析方法主要有短时傅里叶变换、Gabor展开、小波变换、Wigner-Ville分布。本文主要介绍了短时傅里叶变换和Wigner-Ville分布两种分析方法。 2.1 短时傅立叶变换STFT 从历史上看,信号的时频分析用的最多的是短时傅立叶变换,这种变换的基本思想是用一个窗函数乘时间信号,该窗函数的时宽足够窄,使取出的信号可以被看成是平稳的,然后进行的傅立叶变换可以反映该时宽中的频谱变化规律,如果让窗随时间轴移动,可以得到信号频谱随时间变化的规律。对于时变信号,了解不同时刻附近的频域特征是至关重要的。因此,人们采用时间—频率描述时变信号,将一维的时域信号映射到一个二维的时域平面,全面反映观测信号的时频联合特征。短时傅立叶变换反映了这一思想,对于时变信号,采用某一滑动窗函数截取信号,并认为这些信号是准平稳的,然后,再分别对其进行傅立叶变换,构成时变信号的时变谱。短时傅立叶变换是一种常用的时—频域分析方法,其基本思想

现代信号处理技术试题

学院________________班级_____________学号________姓名______ 现代信号处理技术试题 一、选择题(下面各题中只有一个答案是正确的,请将正确答案的序号写在每 小题的()上;每小题2分,共20分) 1. 下列四个离散信号,只有( )是周期序列。 A.)100sin(n B. n j e 3 C.)30sin()cos(n n +π D.5432π π j j e e + 2.x(n)非零范围为21N n N ≤≤,h(n)的非零范围为43N n N ≤≤,y(n)=x(n)*h(n) 的非零范围为( )。 A.4231N N n N N +≤≤+ B. 42311N N n N N +≤≤-+ C. 14231-+≤≤+N N n N N D. 114231-+≤≤-+N N n N N 3.求周期序列[]?? ? ??=k k x 5cos 2~π的DFS 系数为( )。 A.[]???==others m m x 09,12~ B. []???==others m m x 09,110~ C. []???==others m m x 0510~ D. []? ??==others m m x 05,15~ 4.序列[]{}210121,,:,,==k k x 的幅度谱和相位谱为( ) 。 A.()()02cos 42=ΩΩ=Ωφ,j e X B. ()()Ω-=ΩΩ=Ωφ,2 cos 42j e X C. () ()2 -2cos 42πφ+Ω=ΩΩ=Ω,j e X D. ()()Ω-=Ω=Ωφ,4j e X 5.当序列x[k]为实序列,且具有周期偶对称性,则序列的DFT 满足( )。 A.X[m]周期共轭对称 B. X[m]虚部为零,实部周期奇对称 C.X[m]实部为零,虚部周期奇对称 D. X[m]虚部为零,实部周期偶对称 6.与512点的DFT 相比,512点的FFT 只需( )。 A.1/2的计算量 B.1/100的计算量 C.2倍的计算量 D.1/10的计算量 7.通带和阻带内均有波纹的IIR 滤波器是( )。 A.Butterworth B.Chebyshev I C.Chebyshev II D.椭圆 8.M 阶FIR 滤波器具有线性相位的条件是( )。 A. ()()n h n h -= B. ()()n M h n h -±=

现代信号处理方法1-3

1.3 时频分布及其性质 1.3.1 单分量信号与多分量信号 从物理学的角度看,信号可以分为单分量信号和多分量信号两类,而时-频分布的一个主要优点就是能够确定一个信号是单分量的还是多分量的。所谓单分量信号就是在任一时间只有一个频率或一个频率窄带的信号。一般地,单分量信号看上去只有一个山峰(如图 1.2.2),图中所示的是信号)()()(t j e t A t s ?=的时-频表示,在每一个时间,山峰的峰值有明显的不同。如果它是充分局部化的,那么峰值就是瞬时频率;山峰的宽度就是瞬时带宽。一般地,如果)(t z 是信号)(cos )()(t t a t s φ=的解析信号,)(f Z 是)(t z 对应的频谱, 图1.2.2 单分量信号时-频表示及其特征 则其瞬时频率定义如下: )]([arg 21)(t z dt d t f i π= (1.2.1) 与瞬时频率对偶的物理量叫做群延迟,定义如下: )]([arg 21)(f Z dt d f g πτ= (1.2.2) 而多分量信号是由两个(或多个)山峰构成, 每一个山峰都有它自己不同的瞬时 频率和瞬时带宽。(如图1.2.3所示)。 图1.2.3 多分量信号时-频表示及特征

1.3.2 时-频分布定义 Fourier 变换的另一种形式 ?∞ ∞ --=dt e t s f S ft j π2)()( ?∞ ∞ -=df e f S t s tf j π2)()( Cohen 指出,尽管信号)(t z 的时-频分布有许多形式,但不同的时-频分布只是体现 在积分变换核的函数形式上,而对于时-频分布各种性质的要求则反映在对核函数的约束条件上,因此它可以用一个统一形式来表示,通常把它叫做Cohen 类时-频分布,连续时间信号)(t z ()(t z 为连续时间信号)(t s 的解析信号)的Cohen 类时-频分布定义为 ττφτττπdudvd e v u z u z f t P vu f vt j ) (2*),()2 1()21(),(-+-∞ ∞ -∞ ∞ -∞ ∞ --+=?? ? (1.3.1) 式中),(v τφ称为核函数。原则上,核函数可以是时间和频率两者的函数,但常用的核函数与时间和频率无关,只是时延τ和频偏v 的函数,即核函数具有时、频移不变性。这个定义提供了全面理解任何一种时-频分析方法的通用工具,而且能够在信号分析中将信号的一种时-频表示及其性质同另一种时-频表示及其性质联系在一起。进一步可将(1.3.1)简记为 ττφττπdvd e v v A f t P f vt j z )(2),(),(),(+-∞ ∞ -∞ ∞ -? ? = (1.3.2) 式中),(v A z τ是双线性变换(双时间信号))2 ()2(),(*τ τ τ-+ =t z t z t k z 关于时间t 作 Fourier 反变换得到的一种二维时-频分布函数,称为模糊函数,即 dt e t z t z v A tv j z πτ ττ2*)2 ()2(),(-+=?∞ ∞- (1.3.3) 因为Cohen 类时-频分布是以核函数加权的模糊函数的二维Fourier 变换,所以Cohen 类 时-频分布又称为广义双线性时-频分布。 两个连续信号)(t x ,)(t y 的互时-频分布定义为: ???∞ ∞-∞ ∞--+-∞ ∞ --+= ττφτττπdudvd e v u y u x f t P vu f vt j xy ) (2*),()2 1()21(),( ? ? ∞ ∞-∞ ∞ -+-=dv d e v v A f tv j xy ττφττπ)(2),(),( (1.3.4) 式中 du e u y u x v A vu j xy πτ ττ2*)2 ()2(),(?∞ ∞--+= (1.3.5) 是)(t x 和)(t y 的互模函数。

现代信号处理教程 - 胡广书(清华)

81 为了看清图3.3.4中交叉项的行为,我们将该图作了旋转,因此,水平方向为频率,垂直方向为时间。 图3.3.3 例3.3.3的WVD 图3.3.4 例3.3.4的WVD 例3.3.5 令 ()21 4 2 t x t e ααπ-??= ??? (3.3.5) 可求出其WVD 为 ()22,2exp[]x W t t ααΩ=--Ω (3.3.6) 这是一个二维的高斯函数,,且()Ω,t W x 是恒正的,如图3.3.5所示。 由该图可以看出,该高斯信号的WVD 的中心在()()0,0,=Ωt 处,峰值为2。参数α控制了WVD 在时间和频率方向上的扩展。α越大,在时域扩展越小,而在频域扩展越大,反之亦然。其WVD 的等高线为一椭圆。当WVD 由峰值降到1 -e 时,该椭圆的面积π=A 。它反映了时-频平面上的分辨率。 如果令 ()21 42t h t e ααπ-??= ???,()214 2 t x t e ββπ-??= ??? ,则()t x 的谱图 ()?? ????Ω+-+-+=Ω222 1exp 2,βαβααββααβ t t STFT x (3.3.7)

82 图3.3.5 例3.3.5的WVD,(a )高斯信号,(b )高斯信号的WVD 它也是时-频平面上的高斯函数。当其峰值降到1 -e 时,椭圆面积π2=A 。这一结果说明,WVD 比STFT 有着更好的时-频分辨率。 如果令 ()()t j e t t x t x 001Ω-= (3.3.8) 式中()t x 是(3.3.5)式的高斯函数。()t x 1是()t x 的时移加调制,其WVD 是: ()12 2 00,2exp[()()/]x W t t t ααΩ=---Ω-Ω (3.3.9) 它将(3.3.6)式的()Ω,t W x 由()()0,0,=Ωt 移至()()00,,Ω=Ωt t 处。其WVD 图形请读者自己画出。 例3.3.6 令 ()2201 4 22j t t j t z t e e e αβαπΩ-??= ??? (3.3.10) 它是由(3.3.5)式的()t x 与

现代信号处理大作业题目+答案

研究生“现代信号处理”课程大型作业 (以下四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

西南交大现代信号处理作业

现代信号处理作业 1.(5″)证明下面定理:任何一个无偏估计子方差的下界叫作Cramer-Rao 下界 定理:令1(,,)N x x x =为一样本向量,(|)f x θ是x 的条件密度,若?θ是θ的一个无偏估计子,且(|)/f x θθ??存在,则 22 1 ??var()()[ln (|)]E E f x θ θθθθ =-≥? ? 式中?ln (|)()()f x K θθθθθ ?=-?。其中()K θ是θ的某个不包含x 的正函数。 2.(10″)Wiener 滤波是信号处理中最常用和基础的波形估计工具之一,对其在自己研究领域的应用情况进行一个简单综述。 3.(5″)二阶滑动平均过程由 2()()1(1)2(2), {()~(0,)}x n w n b w n b w n w n N σ=+-+- 定义,式中2(0,)N σ表示正态分布,其均值为零、方差为2σ。求x(n)的功率谱。 4.(20″)信号的函数表达式为: ()sin(2100)sin(2300)()sin(2200)()()x t t t A t t dn t n t πππ=++++,其中,A(t)为一随时间 变化的随机过程,dn(t)为经过390-410Hz 带通滤波器后的高斯白噪声,n(t)为高斯白噪声,采样频率为1kHz ,采样时间为2.048s 。 (1) 利用现代信号处理知识进行信号的谱估计; (2) 利用现代信号处理知识进行信号的频率提取; (3) 分别利用Wiener 滤波和Kalman 滤波进行去噪; (4) 利用Wigner-Ville 分布分析信号的时频特征。 5.(10″)附件中表sheet1 为某地2008年4月28日凌晨12点至2008年5月4日凌晨12点的电力系统负荷数据,采样时间间隔为1小时,利用ARMA 方法预测该地5月5日的电力系统负荷,并给出预测误差(5月5日的实际负荷数据如表sheet2)。

南邮现代信号处理最后大作业4道题目(含答案)

南邮研究生“现代信号处理”期末课程大作业 (四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

现代信号处理试题

1、已知X a (t) 2COS (2 f o t)式中f o =1OOH Z,以采样频率f s =400Hz 对X a (t)进行采样,得 到采样信号X a (t)和时域离散信号X(n),试完成下面各题: (1) 写出X a (t)的傅里叶变换表示式 X a (j ); (2) 写出X a (t)和x(n)的表达式; (3 )分别求出X a (t)的傅里叶变换和x(n)的傅里叶变换。 解:( 1) j t j t X a (j ) X a (t)e j dt 2cos( o t)e j dt 3、在时域对一有限长的模拟信号以 4KHZ 采样,然后对采到的N 个抽样做N 点DFT ,所得离 散谱线的间距相当于模拟频率 100HZ 。某人想使频率能被看得清楚些,每 50HZ 能有一根谱 线,于是他用8KHZ 采样,对采到的2N 个样点做2N 点DFT 。问:他的目的能达到吗? 答:不能,因为他忽略了数字频率和模拟频率的区别。 提高采样频率f s ,N 固然大了,数字频率(单位圆)上的样点数确实增加了,但从 模拟频率谱看,样点一点也没有变得密集,这是因为数字频率 2总是对应模拟频率 f s 。 2 f s f s 采样频率由f s 到2 f s 增加一倍,N 也增加一倍,但模拟频率的采样间隔 s s 100Hz 2N N 2 ),不能提 2N 高模拟频率的分辨 (e j 0 t e j 0 t 上式中指数函数和傅里叶变换不存在, X a (j ) 2 [ ( ) (2) x a (t ) X a (t) (t )e j t dt 引入奇异函数 )] 函数,它的傅里叶变换可以表示成: nT) 2cos( 0nT) (t nT) n 2cos( 0nT), 2、用微处理器对实数序列作谱分析, 以下各参数: (1) x(n) 最小记录时间 (2) (3) (4) 解:( 1) T pmin T max N min 要求谱分辨率F 最大取样时间 最少采样点数 在频带宽度不变的情况下将频率分辨率提高一倍的 已知 (2) F 50Hz 1 F 1 T pmin 1 0.02s 50 1 (3) N min 1 s min T P T 0.02s 0.5 10 3s (4) 辩率提高1倍(F 变成原来的12) T p 0.04s N min ~ T 0.5 10 s 频带宽度不变就意味着采样间隔 5OHZ ,信号最高频率1KHz,是确定 N 值。 3 0.5ms 103 40 T 不变,应该使记录时间扩大一倍为 0.04s 实频率分 80 一 2 一点也没有变。所以,增大采样频率,只能提高数字频率的分辨率 (一 N

现代信号处理教程 - 胡广书(清华)

320 第11章 正交小波构造 我们在上一章中集中讨论了离散小波变换中的多分辨率分析,证明了在空间0V 中存在正交归一基}),({Z k k t ∈-φ,由)(t φ作尺度伸缩及位移所产生的},),({,Z k j t k j ∈φ是j V 中的正交归一基。)(t φ是尺度函数,在有的文献中又称其为“父小波”。同时,我们假定j V 的正交补空间j W 中也存在正交归一基},),({,Z k j t k j ∈ψ,它即是小波基,)(t ψ为小波函数,又称“母小波”。本章,我们集中讨论如何构造出一个正交小波)(t ψ。所谓“正交小波”,指的 是由)(t ψ生成的}),({Z k k t ∈-ψ,或j W 空间中的正交归一基},),({,Z k j t k j ∈ψ。 Daubechies 在正交小波的构造中作出了突出的贡献。本章所讨论的正交小波的构造方法即是以她的理论为基础的。 11.1 正交小波概述 现在举两个大家熟知的例子来说明什么是正交小波及对正交小波的要求, 一是Haar 小波,二是Shannon 小波。 1.Haar 小波 我们在10.1节中已给出Haar 小波的定义及其波形,见图10.1.1(d),Haar 小波的尺度函数 )(t φ如图10.1.1(a)所示。重写其定义,即 ??? ??-=011 )(t ψ 其它12/12/10<≤<≤t t (11.1.1) ? ??=01 )(t φ 其它10<≤t (11.1.2) 显然, )(t ψ的整数位移互相之间没有重叠,所以)()(),(' 'k k k t k t -=--δψψ,即它们

321 是正交的。同理, )()(),(',,' k k t t k j k j -=δψψ。 很容易推出)(t ψ和)(t φ的傅里叶变换是 4 /4 /sin )(22 /ωωωωj je -=ψ 2 /2 /sin )(2 /ωωωωj e -=Φ 注意式中ω实际上应为Ω。由于Haar 小波在时域是有限支撑的,因此它在时域有着极好的定位功能。但是,由于时域的不连续引起频域的无限扩展,因此,它在频域的定位功能极差,或者说频域的分辨率极差。 上一章指出,Haar 小波对应的二尺度差分方程中的滤波器是: ??????=21,21)(0n h ,??????-=21,2 1 )(1 n h (11.1.5) 它们是最简单的两系数滤波器。 2.Shannon 小波 令 t t t ππφsin )(= (11.1.6) 则 ?? ?=Φ01)(ω 其它π ω≤ (11.1.7) 由于 ?ΦΦ= --ωωωπ φφd k t k t k k )()(21 )(),(',0*,0' )(21')(' k k d e k k j -==? ---δωπ π π ω (11.1.8) 所以{}Z k k t ∈-),(φ构成0V 中的正交归一基。)(t φ称为Shannon 小波的尺度函数。 由于0,0)(V t k ∈φ,100-=⊕V W V ,由二尺度性质,1)2(V k t ∈-φ,因此 ???=Φ-0 1 )(,1ωk 其它πω2≤ (11.1.9) 这样,对0)(W t ∈ψ,有

现代信号处理作业

1.总结学过的滤波器设计方法,用matlab 仿真例子分析不同设计方法的滤波器的性能及适应场合。 答: 1.1模拟低通滤波器的设计方法 1.1.1 Butterworth 滤波器设计步骤: ⑴.确定阶次N ① 已知Ωc 、Ωs 和As 求Butterworth DF 阶数N ② 已知Ωc 、Ωs 和Ω=Ωp()的衰减 Ap 求Butterworth DF 阶数N ③ 已知Ωp 、Ωs 和 Ω=Ωp 的衰减Ap 和As 求Butterworth DF 阶数N 3dB p Ω≠-/10 /1022(/)10 1,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:

⑵.用阶次N 确定 根据公式: 在左半平面的极点即为的极点,因而 1.1.2 切比雪夫低通滤波器设计步骤: ⑴.确定技术指标 归一化: ⑵.根据技术指标求出滤波器阶数N 及: ⑶.求出归一化系统函数 其中极点由下式求出: ()a H s 2,2N ()()a a H s H s -()a H s ,2,,N p Ωp αs Ωs α/1p p p λ=ΩΩ=/s s p λ=ΩΩε0.12 10 1δε=-p δα=

或者由和S 直接查表得 2.数字低通滤波器的设计步骤: (1) 确定数字低通滤波器的技术指标:通带截止频率p ω、通带最大衰减系数 p α、 阻带截止频率ω、阻带最小衰减系数s α。 (2)将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: 切比雪夫: N ()a H p /s s p λ=ΩΩ0.1210 1δ ε=-p δα=

现代信号处理大作业题目 答案.

研究生“现代信号处理”课程大型作业 (以下四个题目任选三题做 1. 请用多层感知器(MLP 神经网络误差反向传播(BP 算法实现异或问题(输入为 [00;01;10;11]X T =,要求可以判别输出为0或1 ,并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补,进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001第四章附录提供的数据(pp.352-353,试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1 Levinson 算法 2 Burg 算法 3 ARMA 模型法 4 MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11, 系统输入是取值为±1的随机序列(n x ,其均值为零;参考信号7((-=n x n d ;信道具有脉冲响应: 12(2[1cos(]1,2,3(20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等,且信道受到均

值为零、方差001.02=v σ(相当于信噪比为30dB的高斯白噪声(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线: 1 横向/格-梯型结构LMS 算法 2 横向/格-梯型结构RLS 算法 并分析其结果。 图1 横向或格-梯型自适应均衡器 参考文献 [1] 姚天任, 孙洪. 现代数字信号处理[M]. 武汉: 华中理工大学出版社, 2001 [2] 杨绿溪. 现代数字信号处理[M]. 北京: 科学出版社, 2007 [3] S. K. Mitra. 孙洪等译. 数字信号处理——基于计算机的方法(第三版[M]. 北京: 电子工

现代信号处理试题(习题教学)

1、已知0()2cos(2)a x t f t π=式中0f =100HZ,以采样频率s f =400Hz 对()a x t 进行采样,得 到采样信号?()a x t 和时域离散信号()x n ,试完成下面各题: (1)写出()a x t 的傅里叶变换表示式()a X j Ω; (2)写出()a x t 和()x n 的表达式; (3)分别求出()a x t 的傅里叶变换和()x n 的傅里叶变换。 解:(1)000()()2cos()()j t j t a a j t j t j t X j x t e dt t e dt e e e dt ∞∞-Ω-Ω-∞-∞∞ Ω-Ω-Ω-∞Ω==Ω=+??? 上式中指数函数和傅里叶变换不存在,引入奇异函数δ函数,它的傅里叶变换可以表示成:00()2[()()]a X j πδδΩ=Ω-Ω+Ω+Ω (2) 00?()()()2cos()()()2cos(),a a n n x t x t t nT nT t nT x n nT n δδ∞∞=-∞=-∞=-=Ω-=Ω-∞<<∞ ∑∑ 2、用微处理器对实数序列作谱分析,要求谱分辨率50F Hz ≤,信号最高频率1KHz,是确定以下各参数: (1)最小记录时间min p T (2)最大取样时间max T (3)最少采样点数min N (4)在频带宽度不变的情况下将频率分辨率提高一倍的N 值。 解:(1)已知50F Hz ≤ min 110.0250 p T s F = == (2) max 3 min max 1110.52210s T ms f f ====? (3) min 30.02400.510p T s N T s -===? (4)频带宽度不变就意味着采样间隔T 不变,应该使记录时间扩大一倍为0.04s 实频率分辩率提高1倍(F 变成原来的12) min 30.04800.510p T s N T s -===? 3、在时域对一有限长的模拟信号以4KHZ 采样,然后对采到的N 个抽样做N 点DFT ,所得离散谱线的间距相当于模拟频率100HZ 。某人想使频率能被看得清楚些,每50HZ 能有一根谱线,于是他用8KHZ 采样,对采到的2N 个样点做2N 点DFT 。问:他的目的能达到吗? 答:不能,因为他忽略了数字频率和模拟频率的区别。 提高采样频率s f ,N 固然大了,数字频率(单位圆)上的样点数确实增加了,但从模拟频率谱看,样点一点也没有变得密集,这是因为数字频率π2总是对应模拟频率s f 。 采样频率由s f 到2s f 增加一倍,N 也增加一倍,但模拟频率的采样间隔Hz N f N f s s 10022== 一点也没有变。所以,增大采样频率,只能提高数字频率的分辨率)222(N N ππ→ ,不能提高模拟频率的分辨率。

现代信号处理期末试题

2011年的题(大概) P29采样、频率混叠,画图说明 P33列举时域参数(有量纲和无量纲),说明其意义与作用 P37~自相关互相关及作用(举例说明) P51~蝶形算法 P61频谱细化过程,如何复调制 P67Hilbert 变换过程,瞬时频率 循环平稳信号,调频调幅信号边频带的分析 小波双尺度方程 P128下方的图 第六章三种连续小波的原理性质及应用 P157算法图示 P196图7.1.1和图7.1.2 P219EMD 基本流程 P230端点效应的处理 2012年1月9日现代信号处理试题(无敌回忆版) 一、必选题 1.请说明基函数在信号分解与特征提取中的作用。 2.什么是信号的相关分析?试举一例说明其工程应用。 3.什么是倒频谱?倒频谱的量纲单位是什么?如何利用倒频谱实现时域信号解卷积? 4.解释尺度函数和小波函数的功能,并给出小波分解三层和小波包分解三层的频带划分示意图。 5.试举例说明将任意2种信号处理方法相结合的特征提取技术及其故障诊断工程应用案例。 二、选答题(7选5) 1.请列出你认为重要的小波基函数两种性质,说明理由。 2.解释机械信号在离散化过程中产生的频率混叠现象及其原因?在实践中如何避免发生频率混叠现象? 3.试说明旋转机械故障诊断中二维全息谱的原理,工频全息谱椭圆较扁说明转子系统存在什么状态现象? 4.以五点序列为例,给出预测器系数为N=2,更新器系数为2=-N 时的第二代小波分解图。 5.给出经验模式分解(EMD )的基本过程,并分析出现端点效应的原因与两种减弱或消除端点效应的措施。 6.给出循环平稳信号的定义,并列出机械设备循环平稳信号的特点。 7.根据你的学习体会,谈谈实现故障定量诊断的重要性,并举例说明某一种故障定量诊断方法。

现代信号处理论文(1)

AR 模型的功率谱估计BURG 算法的分析与仿真 钱平 (信号与信息处理 S101904010) 一.引言 现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。 现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR 模型、MA 模型、ARMA 模型,其中基于AR 模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR 模型参数的精确估计可以通过解一组线性方程求得,而对于MA 和ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。在利用AR 模型进行功率谱估计时,必须计算出AR 模型的参数和激励白噪声序列的方差。这些参数的提取算法主要包括自相关法、Burg 算法、协方差法、 改进的协方差法,以及最大似然估计法。本章主要针对采用AR 模型的两种方法:Levinson-Durbin 递推算法、Burg 递推算法。 实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR 模型谱估计就是现代谱估计常用的方法之一。 信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。 二.AR 模型的构建 假定u(n)、x(n)都是实平稳的随机信号,u(n)为白噪声,方差为 ,现在,我们希望建立AR 模型 的参数和x(n)的自相关函数的关系,也即AR 模型的正则方程(normal equation)。 由 )}()]()({[)}()({)(1 n x m n u k m n x E m n x n x E m p k k x a r ++-+-=+=∑= )()()(1 m k m m r r a r xu x p k k x +--=∑= (1) 由于u(n)是方差为 的白噪声,有 ?? ?=≠=-0 00)}()({2 m m m n x n u E σ (2) 由Z 变换的定义, ,当 时,有h(0)=1。综合(1)及(2)两式, ???????=-≥--=∑∑==0)(1)()(1 2 1 m k m k m m p k x k p k x k x r a r a r σ (3) 在上面的推导中,应用了自相关函数的偶对称性。上式可写成矩阵式:

现代信号处理教程 - 胡广书(清华)

1 第1章 信号分析基础 1.1 信号的时-频联合分析 我们生活在一个信息社会里,而信息的载体就是我们本书要讨论的主题——信号。在我们身边以及在我们身上,信号是无处不在的。如我们随时可听到的语音信号,随时可看到的视频图像信号,伴随着我们生命始终的心电信号,脑电信号以及心音、脉搏、血压、呼吸等众多的生理信号。 对一个给定的信号,如)(t x ,我们可以用众多的方法来描述它,如)(t x 的函数表达式, 通过傅立叶变换所得到的)(t x 的频谱,即)(Ωj X ,再如)(t x 的相关函数,其能量谱或功率谱等。在这些众多的描述方法中,有两个最基本的物理量,即时间和频率。显然,时间和频率与我们的日常生活关系最为密切,我们时时可以感受到它们的存在。时间自不必说,对频率,如夕阳西下时多变的彩霞,音乐会上那优美动听的旋律以及在一片寂静中突然冒出的一声刺耳的尖叫等,这些都包含了丰富的频率内容。正因为如此,时间和频率也成了描述信号行为的两个最重要的物理量。 信号是变化着的,变化着的信号构成了我们周围五彩斑斓的世界。此处所说的“变化”,一是指信号的幅度随时间变化,二是指信号的频率内容随时间变化。幅度不变的信号是“直流”信号,而频率内容不变的信号是由单频率信号,或多频率信号所组成的信号,如正弦波、方波、三角波等。不论是“直流”信号还是正弦类信号都只携带着最简单的信息。 给定了信号)(t x 的函数表达式,或x 随t 变化的曲线,我们可以由此得出在任一时刻处 该信号的幅值。如果想要了解该信号的频率成分,即“在××Hz 处频率分量的大小”,则可通过傅立叶变换来实现,即 ?∞ ∞ -Ω-=Ωdt e t x j X t j )()( (1.1.1a ) ? ∞ ∞ -ΩΩΩ= d e j X t x t j )()(21π (1.1.1b ) 式中f π2=Ω,单位为弧度/秒,将)(Ωj X 表示成) (|)(|ΩΩ?j e j X 的形式,即可得到 |)(|Ωj X 和)(Ω?随Ω变化的曲线,我们分别称之为)(t x 的幅频特性和相频特性。 如果我们想知道在某一个特定时间,如0t ,所对应的频率是多少,或对某一个特点的频

现代信号处理考试题

一、 基本概念填空 1、 统计检测理论是利用 信号 与 噪声 的统计特性等信息来建立最佳判决的数学理论。 2、 主要解决在受噪声干扰的观测中信号有无的判决问题 3、 信号估计主要解决的是在受噪声干扰的观测中,信号参量 和 波形 的确定问题。 4、 在二元假设检验中,如果发送端发送为H 1,而检测为H 0,则成为 漏警 ,发送端发送H 0,而检测为H 1,则称为 虚警 。 5、 若滤波器的冲激响应时无限长,称为 IIR 滤波器,反之,称为 FIR 滤波器 6、 若滤波器的输出到达 最大信噪比 成为 匹配 滤波器;若使输出滤波器的 均方估计误差 为最小,称为 维纳 滤波器。 7、 在参量估计中,所包含的转换空间有 参量空间 和 观测空间 8、 在小波分析中,小波函数应满足 ∫φφ(tt )ddtt =0+∞?∞ 和 ∫|φφ(tt )|ddtt =1+∞ ?∞ 两个数学条件。 9、 在小波的基本概念中,主要存在 F (w )=∫ff (tt )ee ?ii ii ii ddtt +∞?∞和f(t)=12ππ∫FF (ww )ee ii ii ii ddww +∞?∞ 两个基本方程。(这个不确定答案,个人感觉是) 10、 在谱估计中,有 经典谱估计 和 现代谱估计 组成了完整的谱估计。 11、 如果系统为一个稳定系统,则在Z 变换中,零极点的分布

应在单位圆内,如果系统为因果系统,在拉普拉斯变换中, 零极点的分布应在左边平面。 二、问题 1、在信号检测中,在什么条件下,使用贝叶斯准则,什么条 件下使用极大极小准则?什么条件下使用Neyman-Pearson准 则? 答:先验概率和代价函数均已知的情况下,使用贝叶斯准则,先验概率未知,但可选代价函数时,使用极大极小准则,先验 概率和代价函数均未知的情况下,使用Neyman-Pearson准则。 2、在参量估计中,无偏估计和渐进无偏估计的定义是什么? 答:无偏估计:若估计量的均值等于被估计量的均值(随机变 量),即E?θθ??=EE(θθ)或等于被估计量的真值(非随机参 量)E?θθ??=θθ,则称θθ?为θ的无偏估计。 渐进无偏估计:若lim NN→∞EE?θθ??=EE(θ ),称θθ?为θ的渐进无偏估计。 3、卡尔曼滤波器的主要特征是什么? 答:随机过程的状态空间模型,用矩阵表示,可同时估计多参 量,根据观测数据,提出递推算法,便于实时处理。 4、在现代信号处理中,对信号的处理通常是给出一个算法, 对一个算法性能的评价,应从那些方面进行评价。 答:算法的复杂度,算法的稳定性和现有算法的比较,算法的 运算速度、可靠性、算法的收敛速度。

现代信号处理教程---胡广书(清华)

第5章信号的抽取与插值 5.1前言 至今,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率 f视为恒定值,即在一个数字系统中只有一个抽样率。但是,在实际工作中,我们经常会s 遇到抽样率转换的问题。一方面,要求一个数字系统能工作在“多抽样率(multirate)”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。例如: 1. 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换; 2. 如在音频世界,就存在着多种抽样频率。得到立体声声音信号(Studio work)所用的抽样频率是48kHz,CD产品用的抽样率是44.1kHz,而数字音频广播用的是32kHz[15]。 3. 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换; 4.对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的; 5. 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。 以上几个方面都是希望能对抽样率进行转换,或要求数字系统能工作在多抽样率状态。近20年来,建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。“多抽样率数字信号处理”的核心内容是信号抽样率的转换及滤波器组。 减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim)”,增加抽样率以增加数据的过程称为信号的“插值(interpolation)。抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。 推荐精选

相关文档