文档库 最新最全的文档下载
当前位置:文档库 › 第5章 回溯算法实验指导

第5章 回溯算法实验指导

第5章 回溯算法实验指导
第5章 回溯算法实验指导

第5章回溯算法

实验5.1 回溯算法的实现和时间复杂度测试

1. 实验目的

编程实现经典的回溯算法,理解回溯算法设计的基本思想、程序实现的相关技巧,加深对回溯算法设计与分析思想的理解。通过程序的执行时间测试结果,与理论上的时间复杂度结论进行对比、分析和验证。

2. 算法原理

回溯算法的基本思想

回溯算法是一个既带有系统性又带有跳跃性的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先策略从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则进入该子树,继续按深度优先的策略进行搜索。回溯算法的基本设计范式如下:Backtrack(n)

k=1

while (k>0) do

if Tk(x1, x2, ..., x(k-1))的值还未取遍 then

xk=Tk(x1, x2, ..., x(k-1))中未取遍过的值

if Bk(x1, x2, ..., xk) then //可行解//

(x1, x2, ..., xk)被激活

end if

if k==n then 输出(x1, x2, …, xn)

else k=k+1; //深度扩展搜索//

end if

end if

else k=k-1 // 试探完了所有的xk,回溯//

end while

测试算法

n皇后问题是使用回溯算法求解的代表问题,算法如下:

NQueens(n)

x1=0;k=1 //k是当前行;xk是当前列//

while k>0 do //对所有的行执行以下语句//

xk=xk+1 //移到下一列//

while xk≤n and not Place(k) do //不可放置// xk=xk+l

if xk≤n then //找到一个位置//

if k=n then //是否是一个完整的解//

print(x) //是,则打印这个数组//

else

k=k+1

xk=0

end if

else k=k 1 //回溯//

end if

end while

最坏情况下,算法具有指数计算时间O(n n);而实际中,由于剪枝策略的应用,使得实际计算时间远远低于最坏情况下的计算时间。

3. 实验内容

(1)编程实现以上n皇后问题的回溯算法,记录随着皇后数n增加算法的执行时间,分析并以图形方式展现增长率;测试、验证、对比算法的时间复杂度。

(2)回溯算法应用:编程实现批处理处业调度问题。

4. 实验步骤和要求

(1) 编程实现以上NQueens算法,并进行测试,保证程序正确无误。其中,分别在程序开始和结束处设置记录系统当前时间的变量、用于计算程序执行的时间(以毫秒(ms)作为时间的计数单位)。

(2) 测试随着n增加程序执行时间增加的趋势(n=4, 8, 15, 20, 25, 30, 35),并使用MS Excel图表绘制工具生成程序执行时间的曲线图。

(3) 与理论时间复杂度结论对比分析,完成实验报告。

(4)算法应用编程:利用回溯法编程实现批处理处业调度问题,要求有较好的数据输入输出设计、程序中关键位置给出文字注释,实验报告中就给出求解该问题的分析过程。

回溯法实验(0-1背包问题)

算法分析与设计实验报告第五次附加实验

附录: 完整代码(回溯法) //0-1背包问题回溯法求解 #include using namespace std; template class Knap //Knap类记录解空间树的结点信息 { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i); //计算上界的函数 void Backtrack(int i); //回溯求最优解函数

Typew c; //背包容量 int n; //物品数 Typew *w; //物品重量数组| Typep *p; //物品价值数组 Typew cw; //当前重量 Typep cp; //当前价值 Typep bestp; //当前最后价值 }; template Typep Knapsack(Typep p[],Typew w[],Typew c,int n); //声明背包问题求解函数template inline void Swap(Type &a,Type &b); //声明交换函数 template void BubbleSort(Type a[],int n); //声明冒泡排序函数 int main() { int n ;//物品数 int c ;//背包容量 cout<<"物品个数为:"; cin>>n; cout<<"背包容量为:"; cin>>c; int *p = new int[n];//物品价值下标从1开始 int *w = new int[n];//物品重量下标从1开始 cout<<"物品重量分别为:"<>w[i]; } cout<<"物品价值分别为:"<>p[i]; } cout<<"物品重量和价值分别为:"<

子集和数的回溯算法

设计四 子集和数的回溯算法 班级通信08-2BF 学号1408230929 姓名杨福 成绩 分 一、 设计目的 1.掌握回溯法解题的基本思想; 2.掌握子集和数问题的回溯算法; 3.进一步掌握子集和数问题的回溯递归算法、迭代算法的基本思想和算法设计方法; 二、 设计内容 a) 任务描述 1)子集和数问题简介 子集和数问题是假定有n 个不同的正数(通常称为权),要求找出这些数中所有事的某和数为M 的组合。 2)设计任务简介 设计、编程、测试求解子集和数问题的回溯算法。 1. 子集和数问题的表示方案 本设计利用大小固定的元组来研究回溯算法,在此情况下,解向量的元素X (i )取1或0值,它表示是否包含了权数W (i ). 生成图中任一结点的儿子是很容易的。对于i 级上的一个结点,其左儿子对应于X (i )=1,右儿子对应于X(i)=0。对于限界函数的 一种简单选择是,当且仅当∑∑+==≥+ n k i k i M i W i X i W 11)()()(时,B(X(1),〃〃〃,X (k ))=true 。 显然,如果这个条件不满足,X(1),〃〃〃,X (k )就不能导致一个答案结点。如果假定这些W (i )一开始就是按非降次序列排列的,那么这些限界函数可以被强化。在这种情 况下,如果M k W i X i W k i >++∑=)1()()(1 ,则X(1),〃〃〃,X (k )就不能导致一个答案结 点。因此,将要使用的限界函数是B k (X (1),〃〃〃,X (k ))=true,当且仅当 M i W i X i W n k i k i =+∑∑+==11)()()(。 2. 主要数据类型与变量 int M ; // 表示要求得到的子集和; int s; // 表示所选当前元素之前所选的元素和;

实验6 子集和问题的回溯算法设计与实现(报告)

实验6 子集和问题的回溯算法设计与实现 一、实验目的 1、掌握回溯法解题的基本思想; 2、掌握回溯算法的设计方法; 3、针对子集和数问题,熟练掌握回溯递归算法、迭代算法的设计与实现。 二、实验内容 1、认真阅读教材或参考书, 掌握回溯法解题的基本思想, 算法的抽象控制策略; 2、了解子集和数问题及解向量的定长和变长状态空间表示; 3、针对解向量的定长表示, 设计状态空间树节点扩展的规范(限界)函数及实现方法; 4、分析深度优先扩展状态空间树节点或回溯的条件; 5、分析和设计生成解向量各分量可选值的实现方法; 6、设计和编制回溯算法的递归和迭代程序。 【实验题】: 组合数问题:找出从自然数1,2,…,n中任取r个数的所有组合。 三、算法的原理方法 回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。 当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。 如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。 在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。 可以采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质: (1)a[i+1]>a[i],后一个数字比前一个大; (2)a[i]-i<=n-r+1。 按回溯法的思想,找解过程可以叙述如下: 首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一

回溯法实验(最大团问题)

算法分析与设计实验报告第七次附加实验

} } 测试结果 当输入图如下时: 当输入图如下时: 1 2 3 4 5 1 2 3 4 5

当输入图如下时: 1 2 3 4 5

附录: 完整代码(回溯法) //最大团问题回溯法求解 #include using namespace std; class Clique { friend void MaxClique(int **,int *,int ); private: void Backtrack(int i); int **a; //图的邻接矩阵 int n; //图的顶点数 int *x; //当前解 int *bestx; //当前最优解 int cn; //当前顶点数 int bestn; //当前最大顶点数 }; void Clique::Backtrack(int i) { //计算最大团 if(i>n) //到达叶子节点 { for(int j=1;j<=n;j++) bestx[j]=x[j]; bestn=cn;

cout<<"最大团:("; for(int i=1;i=bestn) { //修改一下上界函数的条件,可以得到 x[i]=0; //相同点数时的解 Backtrack(i+1); } } void MaxClique(int **a,int *v,int n) { //初始化Y Clique Y; Y.x=new int[n+1]; Y.a=a; Y.n=n; https://www.wendangku.net/doc/2f7189552.html,=0; Y.bestn=0; Y.bestx=v; Y.Backtrack(1); delete [] Y.x; cout<<"最大团的顶点数:"<

回溯搜索算法

补充2 回溯法 解回溯法的深度优先搜索策略 z理解回溯法的深度优先搜索策略。 z掌握用回溯法解题的算法框架 (1)递归回溯 (2)迭代回溯 (3)子集树算法框架 (4)排列树算法框架 通过应用范例学习回溯法的设计策略 z通过应用范例学习回溯法的设计策略。

Sch2-1z Sch2-1 方法概述搜索算法介绍 (1)穷举搜索 (2)盲目搜索 —深度优先(DFS)或回溯搜索( Backtracking); —广度优先搜索( BFS ); (Branch &Bound) —分支限界法(Branch & Bound);—博弈树搜索( α-βSearch) (3)启发式搜索 —A* 算法和最佳优先( Best-First Search ) —迭代加深的A*算法 —B*AO*SSS*等算法B , AO , SSS 等算法 —Local Search, GA等算法

Sch2-1z Sch2-1 方法概述搜索空间的三种表示: —表序表示:搜索对象用线性表数据结构表示; —显示图表示:搜索对象在搜索前就用图(树)的数据结构表示; —隐式图表示:除了初始结点,其他结点在搜索过程中动态生成。缘于搜索空间大,难以全部存储。 z 搜索效率的思考:随机搜索 —上世纪70年代中期开始,国外一些学者致力于研究随机搜索求解困难的组合问题,将随机过程引入搜索; —选择规则是随机地从可选结点中取一个从而可以从统计角度分析搜选择规则是随机地从可选结点中取一个,从而可以从统计角度分析搜索的平均性能; —随机搜索的一个成功例子是:判定一个很大的数是不是素数,获得了第个多式时算法 第一个多项式时间的算法。

回溯法实验(n皇后问题)

算法分析与设计实验报告第六次实验

附录: 完整代码(回溯法) //回溯算法递归回溯n皇后问题#include #include #include #include"math.h" using namespace std; class Queen

{ friend int nQueen(int); //定义友元函数,可以访问私有数据 private: bool Place(int k); //判断该位置是否可用的函数 void Backtrack(int t); //定义回溯函数 int n; //皇后个数 int *x; //当前解 long sum; //当前已找到的可行方案数 }; int main() { int m,n; for(int i=1;i<=1;i++) { cout<<"请输入皇后的个数:"; //输入皇后个数 cin>>n; cout<<"皇后问题的解为:"<

算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目回溯算法 实验评分表

实验报告 一、实验目的与要求 1、理解回溯算法的基本思想; 2、掌握回溯算法求解问题的基本步骤; 3、了解回溯算法效率的分析方法。 二、实验内容 【实验内容】 最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。 【回溯法解题步骤】 1、确定该问题的解向量及解空间树; 2、对解空间树进行深度优先搜索; 3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。 4、达到叶结点时记录下当前最优解。 5、实验数据n,m, ] ][ [j i w,] ][ [j i c的值由自己假设。 三、算法思想和实现【实现代码】

【实验数据】 假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。总价不超过7(c<=7)。 部件重量表: 部件价格表: 【运行结果】

实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。 四、问题与讨论 影响回溯法效率的因素有哪些? 答:影响回溯法效率的因素主要有以下这五点: 1、产生x[k]的时间; 2、满足显约束得x[k]值的个数; 3、计算约束函数constraint的时间; 4、计算上界函数bound的时间; 5、满足约束函数和上界函数约束的所有x[k]的个数。 五、总结 这次实验的内容都很有代表性,通过上机操作实践与对问题的思考,让我更深层地领悟到了回溯算法的思想。 回溯算法的基本思路并不难理解,简单来说就是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。回溯法的基本做法是深度优先搜索,是一种组织得井井

回溯法实验报告

实验04 回溯法 班级:0920561 姓名:宋建俭学号:20 一、实验目的 1.掌握回溯法的基本思想。 2.掌握回溯法中问题的解空间、解向量、显式约束条件、隐式约束条件以及子 集树与排列树的递归算法结构等内容。 3.掌握回溯法求解具体问题的方法。 二、实验要求 1.认真阅读算法设计教材,了解回溯法思想及方法; 2.设计用回溯算法求解装载问题、n后问题、图的m着色问题的java程序 三、实验内容 1.有一批共n个集装箱要装上2艘载重量分别为C1和C2的轮船,其中集装箱 i的重量为wi,且∑wi≤C1+C2。装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。如果有,找出一种装载方案。 2.在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则, 皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。 3.给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每 个顶点着一种颜色。是否有一种着色法使G中每条边的2个顶点着不同颜色。 这个问题是图的m可着色判定问题。 四、算法原理 1、装载问题 用回溯法解装载问题时,用子集树表示其解空间是最合适的。可行性约束可剪去不满足约束条件(w1x1+w2x2+…+wnxn)<=c1的子树。在子集树的第j+1层结点Z处,用cw记当前的装载重量,即cw=(w1x1+w2x2+…+wjxj),当cw>c1时,以结点Z为根的子树中所有结点都不满足约束条件,因而该子树中的解均为不可行解,故可将该子树剪去。 解装载问题的回溯法中,方法maxLoading返回不超过c的最大子集和,但未给出达到这个最大子集和的相应子集。 算法maxLoading调用递归方法backtrack(1)实现回溯搜索。Backtrack(i)搜索

回溯算法实验

中原工学院信息商务学院 实验报告 实验项目名称回溯划算法的应用 课程名称算法设计与分析 学院(系、部)中原工学院信息商务学院学科专业计算机科学与技术系班级学号计科132班17号姓名程一涵 任课教师邬迎 日期2014年12月9日

实验五回溯算法的应用 一、实验目的 1.掌握回溯算法的基本概念 2.熟练掌握回溯算法解决问题的基本步骤。 3.学会利用回溯算法解决实际问题。 二.问题描述 题目一:N皇后问题 要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。规则:皇后能吃掉同一行、同一列、同一对角线的任意棋子。求所有的解要求:键盘输入皇后的个数n (n ≤ 13) 输出有多少种放置方法 输入输出实例:

三.算法设计 首先,确定第一行皇后的位置,再确定第二行的位置,并且要注意不能同行同列同对角线,若是发现有错则返回上一层,继续判断。满足约束条件时,则开始搜索下一个皇后的位置,直到找出问题的解。 四.程序调试及运行结果分析 五.实验总结 通过这次试验,使得我们面对问题时的解题思路变得更加灵活和多变,并且使我们的编写能力稍稍的提高一些。初步了解了回溯算法,回溯算法实际是一个类似枚举的搜索尝试方法,他的主题思想是在搜索尝试的过程中寻找问题的解,当发现已不满足求解条件时,就回溯返回,尝试别的路径。他特别适用于求解那些涉及到寻求一组解的问题或者求满足某些约束条件的最优解的问题。此算法具有结构清晰,容易理解且可读性强等优点,并且通过稍加变通也可以适用于其他类似问题

附录:程序清单(程序过长,可附主要部分) #include #include using namespace std; int a[20],n; backdate(int n); int check(int k); void output(int n); int main() { int n; cout<<"请输入皇后的个数:"; cin>>n; cout<<"位置排列是:"<0) { a[k]=a[k]+1; while((a[k]<=n) && (check(k)==0)) a[k]=a[k]+1; if(a[k]<=n) if(k==n) { num++; output(n); } else { k=k+1; a[k]=0; } else k=k-1; } cout<<"一共有"<

实验五 回溯法

实验五回溯法 一、实验目的 进一步理解回溯算法的基本思想,学会根据具体问题确定相应的解空间树(子集树或排列树),并使用回溯法求解。 二、实验要求 1、上机前的准备工作 根据实验内容中所给题目,利用所学回溯法的基本设计思想设计算法并编写好上机程序,以提高上机效率; 2、独立上机,输入、调试所编程序; 3、上机结束后,写出实验报告。 4、上机时间:2学时 三、实验内容 1、算法分析题5-1 #include using namespace std; int n=4; //集装箱数 int w[5]={0,8,6,2,3}; //集装箱重量数组 int c=12; //第一艘轮船的载重量 int cw; //当前载重量 int bestw; //当前最优载重量 int r; //剩余集装箱重量 void backtrack(int i); void main() { int i; cw=0; bestw=0; for(i=1;i<=n;i++) r+=w[i]; backtrack(1); cout<<"最优载重量为:"<n && cw>bestw) { bestw=cw; return; } r-=w[i];

if(cw+w[i]<=c) { cw+=w[i]; backtrack(i+1); cw-=w[i]; } if(cw+r>bestw) { backtrack(i+1); } r+=w[i]; } 运行结果: 2、5-3 #include using namespace std; const int N=100; const int M=100; int n;//部件数 int m;//供应商 int w[N][M]; int p[N][M]; int bestx[N];//最优解 int x[N]; int bestw=9999;//当前最优重量 int cw;//当前重量 int cp;//当前价值 int d;//价格允许的最大值 void Backtrack(int t); void main() { cout<<"请输入部件的个数:"; cin>>n; cout<<"请输入供应商的个数:"; cin>>m; cout<<"请输入价格的最大值:"; cin>>d; cout<<"请依次输入重量:"<

回溯法

回溯法 回溯法也是搜索算法中的一种控制策略,但与枚举法不同的是,它是从初始状态出发,运用题目给出的条件、规则,按照深度优秀搜索的顺序扩展所有可能情况,从中找出满足题意要求的解答。回溯法是求解特殊型计数题或较复杂的枚举题中使用频率最高的一种算法。 一、回溯法的基本思路 何谓回溯法,我们不妨通过一个具体实例来引出回溯法的基本思想及其在计算机上实现的基本方法。【例题12.2.1】n皇后问题 一个n×n(1≤n≤100)的国际象棋棋盘上放置n个皇后,使其不能相互攻击,即任何两个皇后都不能处在棋盘的同一行、同一列、同一条斜线上,试问共有多少种摆法? 输入: n 输出: 所有分案。每个分案为n+1行,格式: 方案序号 以下n行。其中第i行(1≤i≤n)行为棋盘i行中皇后的列位置。 在分析算法思路之前,先让我们介绍几个常用的概念: 1、状态(state) 状态是指问题求解过程中每一步的状况。在n皇后问题中,皇后所在的行位置i(1≤i≤n)即为其时皇后问题的状态。显然,对问题状态的描述,应与待解决问题的自然特性相似,而且应尽量做到占用空间少,又易于用算符对状态进行运算。 2、算符(operater) 算符是把问题从一种状态变换到另一种状态的方法代号。算符通常采用合适的数据来表示,设为局部变量。n皇后的一种摆法对应1..n排列方案(a1,…,a n)。排列中的每个元素a i对应i行上皇后的列位置(1≤i≤n)。由此想到,在n皇后问题中,采用当前行的列位置i(1≤i≤n)作为算符是再合适不过了。由于每行仅放一个皇后,因此行攻击的问题自然不存在了,但在试放当前行的一个皇后时,不是所有列位置都适用。例如(l,i)位置放一个皇后,若与前1..l-1行中的j行皇后产生对角线攻击(|j-l|=|a j -i|)或者列攻击(i≠a j),那么算符i显然是不适用的,应当舍去。因此,不产生对角线攻击和列攻击是n皇后问题的约束条件,即排列(排列a1,…,a i,…,a j,…,a n)必须满足条件(|j-i|≠|a j-a i|) and (a i≠a j) (1≤i,j≤n)。 3、解答树(analytic tree) 现在让我们先来观察一个简单的n皇后问题。设n=4,初始状态显然是一个空棋盘。 此时第一个皇后开始从第一行第一列位置试放,试放的顺序是从左至右、自上而下。每个棋盘由4个数据表征相应的状态信息(见下图): (××××)

算法分析与设计实验四回溯法

实验四 回溯法 实验目的 1. 掌握回溯法的基本思想方法; 2. 了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法; 3. 掌握回溯法算法复杂性分析方法,分析问题复杂性。 预习与实验要求 1. 预习实验指导书及教材的有关内容,掌握回溯法的基本思想; 2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯; 3. 认真听讲,服从安排,独立思考并完成实验。 实验设备与器材 硬件:PC 机 软件:C++或Java 等编程环境 实验原理 回溯法是最常用的解题方法,有“通用的解题法”之称。当要解决的问题有若干可行解时,则可以在包含问题所有解的空间树中,按深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的搜索,继续查找该结点的兄弟结点,若它的兄弟结点都不包含问题的解,则返回其父结点——这个步骤称为回溯。否则进入一个可能包含解的子树,继续按深度优先的策略进行搜索。这种以深度优先的方式搜索问题的解的算法称为回溯法。它本质上是一种穷举法,但由于在搜索过程中不断略过某些显然不合适的子树,所以搜索的空间大大少于一般的穷举,故它适用于解一些组合数较大的问题。 回溯法也可以形式化地描述如下:假设能够用n 元组()n i x x x x ,,,,,21 表示一个给定问题P 的解,其中i i S x ∈。如果n 元组的子组()i x x x ,,,21 ()n i <满足一定的约束条件,则称为部分解。如果它已经是满足约束条件的部分解,则添加11++∈i i S x 形成新的子组()121,,,,+i i x x x x ,并检查它是否满足约束条件,若仍满足则继续添加22++∈i i S x ,并以此类推。如果所有的11++∈i i S x 都不满足约束条件,那么去掉1+i x ,回溯到i x 的位置,并去掉当前的i x ,另选一个i i S x ∈',组成新的子组()i x x x ',,,21 ,并判断其是否满足约束条件。如此反复下去,直到得到解或者证明无解为止。

回溯法实验(最优装载)

算法分析与设计实验报告第二次附加实验 )用可行性约束函数可剪去不满足约束条件

附录: 完整代码(贪心法) //回溯法递归求最优装载问题#include #include #include using namespace std; template class Loading { public: void Backtrack(int i);

int n, //集装箱数 *x, //当前解 *bestx; //当前最优解 Type *w, //集装箱重量数组 c, //第一艘轮船的载重量 cw, //当前载重量 bestw, //当前最优载重量 r; //剩余集装箱重量 }; template void Loading::Backtrack(int i); template //参数为:w[]各物品重量数组,c为第一艘轮船的载重量,n为物品数量,bestx[]数组为最优解 Type MaxLoading(Type w[],Type c,int n,int bestx[]); int main() { int n=3,m; int c=50,c2=50; int w[4]={0,10,40,40}; int bestx[4]; clock_t start,end,over; //计算程序运行时间的算法 start=clock(); end=clock(); over=end-start; start=clock(); m=MaxLoading(w,c,n,bestx); //调用MaxLoading函数 cout<<"轮船的载重量分别是:"<

{ friend int nQueen(int); //定义友元函数,可以访问私有数据 private: bool Place(int k); //判断该位置是否可用的函数 void Backtrack(int t); //定义回溯函数 int n; //皇后个数 int *x; //当前解 long sum; //当前已找到的可行方案数 }; int main() { int m,n; for(int i=1;i<=1;i++) { cout<<"请输入皇后的个数:"; //输入皇后个数 cin>>n; cout<<"皇后问题的解为:"<

实验四回溯算法

实验四回溯算法的应用 一、实验目的 1.掌握回溯算法的基本思想、技巧和效率分析方法。 2.熟练掌握用回溯算法求解问题的基本步骤,非递归算法框架和递归算法框架。 3.学会利用回溯算法解决实际问题。 二、实验内容 1.问题描述: 题目一、 n后问题 在n*n格的棋盘上摆放n个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一对角线上,问有多少种摆法。 题目二、数字全排列问题 任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。如N=3时,共有以下6种排列方式:123,132,213,231,312,321。注意:数字不能重复,N由键盘输入。 题目三、0-1 背包问题 有N件物品和一个容量为V的背包。第i件物品的体积是v[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 题目四、连续邮资问题 假设国家发行了n种不同面值的邮票,并且规定每个信封上最多只允许贴m 张邮票。连续邮资问题要求对于给定的n和m的值,给出邮票面值的最佳设计,使得可在1张信封上贴出从邮资1开始,增量为1的最大连续邮资区间。 【输入样例】 n=5

m=4 【输出样例】 1,3,11,15,32 含义:当n=5,m=4时,面值为{1,3,11,15,32}的5种邮票可以贴出邮资的最大连续区间是1到70。 2.数据输入:个人设定,由键盘输入。 3.要求: 1)上述题目任选一做。上机前,完成程序代码的编写 2)独立完成实验及实验报告 三、实验步骤 1.理解算法思想和问题要求; 2.编程实现题目要求; 3.上机输入和调试自己所编的程序; 4.验证分析实验结果; 5.整理出实验报告。

回溯算法的一些例题

回溯算法 搜索与回溯是计算机解题中常用的算法,很多问题无法根据某种确定的计算法则来求解,可以利用搜索与回溯的技术求解。回溯是搜索算法中的一种控制策略。它的基本思想是:为了求得问题的解,先选择某一种可能情况向前探索,在探索过程中,一旦发现原来的选择是错误的,就退回一步重新选择,继续向前探索,如此反复进行,直至得到解或证明无解。如迷宫问题:进入迷宫后,先随意选择一个前进方向,一步步向前试探前进,如果碰到死胡同,说明前进方向已无路可走,这时,首先看其它方向是否还有路可走,如果有路可走,则沿该方向再向前试探;如果已无路可走,则返回一步,再看其它方向是否还有路可走;如果有路可走,则沿该方向再向前试探。按此原则不断搜索回溯再搜索,直到找到新的出路或从原路返回入口处无解为止。 递归回溯法算法框架[一] procedure Try(k:integer); begin for i:=1 to 算符种数 Do if 满足条件 then begin 保存结果 if 到目的地 then 输出解 else Try(k+1); 恢复:保存结果之前的状态{回溯一步} end; end; 递归回溯法算法框架[二] procedure Try(k:integer); begin if 到目的地 then 输出解 else for i:=1 to 算符种数 Do if 满足条件 then begin 保存结果 Try(k+1); end; end;

例 1:素数环:把从1到20这20个数摆成一个环,要求相邻的两个数的和是一个素数。【算法分析】非常明显,这是一道回溯的题目。从1 开始,每个空位有 20(19)种可能,只要填进去的数合法:与前面的数不相同;与左边相邻的数的和是一个素数。第 20个数还要判断和第1个数的和是否素数。 〖算法流程〗1、数据初始化; 2、递归填数: 判断第J种可能是否合法; A、如果合法:填数;判断是否到达目标(20个已填完):是,打印结果;不是,递归填下一个; B、如果不合法:选择下一种可能; 【参考程序】 program z74;框架[一] var a:array[0..20]of byte; b:array[0..20]of boolean; total:integer; function pd(x,y:byte):boolean; var k,i:byte; begin k:=2; i:=x+y; pd:=false; while (k<=trunc(sqrt(i)))and(i mod k<>0) do inc(k); if k>trunc(sqrt(i)) then pd:=true; end; procedure print; var j:byte; begin inc(total);write('<',total,'>:'); for j:=1 to 20 do write(a[j],' '); writeln; end; procedure try(t:byte); var i:byte; begin for i:=1 to 20 do if pd(a[t-1],i)and b[i] then begin a[t]:=i; b[i]:=false; if t=20 then begin if pd(a[20],a[1]) then print;end

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

西北工业大学算法设计实验2

实验二:回溯法VS分支定界法 一、问题分析 回溯法可以处理货郎担问题,分支定界法也可以处理货郎担问题,回溯法和分支定界法哪个算法处理货郎担问题效率更高呢? 实现回溯法、分支定界法,以及不同的界值函数(课上讲过的或者自己新设计的),通过随机产生10个不同规模的算例(城市数量分别为10,20,40,80,100,120,160,180,200,500,或者其它规模),比较回溯法和分支定界法在相同界值函数下的执行效率。另外,分别比较回溯法和分支定界法在不同界值函数下的执行效率。 二、算法基本思想 1、回溯法 从初始状态出发,搜索其所能到达的所有“状态”, 当一条路走到尽头,再后退一步或若干步,从另外一种状态出发,继续搜索,直到所有的路径都搜索过。这种不断前进、不断回溯寻找解的方法叫回溯法。回溯法通常将问题解空间组织成“树”结构,采用系统的方法搜索解空间树,从而得到问题解。 搜索策略: 深度优先为主,也可以采用广度优先、函数优先、广度深度结合等。 避免无效搜索策略: 约束函数:在扩展结点处剪去不满足约束条件的子树 界限函数:在扩展结点处剪去得不到最优解的子树 2、分支限界法 分支界限法类似与回溯法,也是在问题解空间中搜索问题解的一种算法。 分支界限法与回溯法思想对比: 求解目标:回溯法的可以用于求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标通常是找出满足约束条件的一个解或最优解。 搜索方式的不同:回溯法主要以深度优先的方式搜索解空间树,而分支限界法则

主要以广度优先或以最小耗费优先的方式搜索解空间树。 在分支限界法中,每个活结点只有一次机会成为扩展结点。一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。 此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。 三、算法设计 1、回溯法 TSP问题的目的是得到一条路径,即一个解向量(X1,X2...Xn),为排列树问题。 对所有城市进行编号后,按大小顺序存储于数组path中,构造一个交换函数swap();对数组path进行遍历,判断当前城市与目标城市是否连通,若连通,通过swap函数对当前节点和目标城市进行交换,即树的节点拓展。若不连通则恢复,并进入下一次的循环,循环到叶子节点时,判断叶是否与初始节点相连,并计算代价cost是否小于当前最小代价bestc,若小于,则更新bestc,再返回上一节点,知道遍历完树中的所有节点。 2、分支限界法 因为问题是经典的TSP问题,所以确定问题的解空间树为排列树。 问题解的表示:可以将问题的解表示成一个n元式 [x1,x2,…,xn]。 使用优先级队列实现最小耗费优先求解。 界函数的确定:首先利用贪心的方法获得一个较优的上界。对于当前路径下的扩展的过程中,每一步需要存储的当前的结点的下界。其中的第二部分需要计算的是当前路径的起始结点以及终止结点各自与仍未访问过的结点中的结点只存存在的最小代价。 结点的扩展过程如下:根据优先级从队列中选取优先级最高的元素,当结点不是叶子结点的父节点时,扩展该结点的所有子节点,在扩展的过程中需要根据计算所得的下界与当前求解得到的最优解进行对比,如果下界大于当前的最优解则对相应的子节点时进行剪枝处理,否则扩展该子节点,将其加入到队列中。当当前所访问的结点为叶子结点的父节点时,判断当前费用+当前结点到叶子结点的费

相关文档