文档库 最新最全的文档下载
当前位置:文档库 › 膜分离技术在味精生产中的应用

膜分离技术在味精生产中的应用

膜分离技术在味精生产中的应用
膜分离技术在味精生产中的应用

味精有限公司环评报告.doc

上海天厨味精食品有限公司 味精综合废水 处理方案

1. 概述 上海天厨味精食品有限公司建于1923年。公司地址位于上海市普陀区西郊,北界云岭东路,南滨苏州河,东西两上侧为工厂企业。占地面积为8.5公顷,已有建筑面积440,924m2。公司固定资产原值6,220万元,固定资产净值33,836万元。有职工808人,其中专业技术人员163人。该公司是我国第一家味精制造工厂主要产品为佛手牌味精。年生产味精总量为19,782吨,佛手牌味精总销售量为19,055吨。除味精产品外,还生产氨基酸,矿泉水,酵母调味料等产品。该公司97年总产值27,230万元,全员劳动生产率96,896元/人。销售收入25,559万元。创汇119万美元。 该公司年耗新鲜水量为1,375,938吨。排水为合流制。排放废水以有机物为主。其中公司每天排出的200吨高浓度废水已进行了预处理;采用蒸发浓缩离心分离干燥工艺生产动物饲料。 公司考虑新项目建成后尚有综合废水5000t/d (地面冲洗水,设备冲洗水,包括生活污水)尚未处理,经处理后的废水纳入苏州河合流污水截流管。公司要求处理后除COD Cr应达到300mg\L以下,其余均应达到DB31/199-1997表4中二级行业标准。 2. 设计依据 (1)建设单位提供的污水水质,水量等基础资料; (2)建筑给水,排水设计规范(GBJ15-88); (3)上海市地方标准(DB31/199-1997); (4)城市区域环境噪声标准(GB3096-93); (5)室外排水设计规范(GBJ14-87); (6)沪环保开(1994)第262号文。 3. 设计原则 (1)采用成熟、可靠的污水处理工艺,确保处理出水的各项指标达到上海市的有关排放标准及厂方要求的指标;

味精的生产工艺77843

味精的生产工艺一、味精的物理、化学性质: 1、物理性质: ①商品名称:味精、味素、谷氨酸钠,化学名称:L—α-氨基戊二酸一钠水化物,英文缩写:MSG ②分子式:C5H8O4N.Na.H2O.相对分子量:187.13. ③密度:粒子的相对密度为1.635,视相对密度为0.80—0.83 ④旋光性及比旋光度:因谷氨酸钠分子结构含有不对称碳原子,因此具有旋光性,分为L型、D型、D—L型三种。当L谷氨酸钠和D 谷氨酸钠各占50%时,发生消旋,即为D—L谷氨酸钠。在上述三种光学异构体中,只有L—谷氨酸钠具有鲜味。 20 L—谷氨酸钠的比旋光度为【α】=+24.8—+25.3(2.5mol/l.HCl) D⑤味精易溶于水,不溶于乙醚、丙酮等有机溶剂,难溶于纯乙醇,味精在水中的溶解度:65℃、64.42g/100ml溶液,70℃、66.38 g/100ml 溶液,80℃、71.06g/100ml. ⑥PH6.8—7.2(10%水溶液) ⑦全氮:7.48% ⑧熔点:195℃(在125℃以上易失去结晶水) 2、味精的化学性质: ①味精在盐酸的作用下生成谷氨酸或谷氨酸盐酸盐。 C5H8O4N.Na+ HCl=C5H9O4N+NaCl C5H8O4N.Na+ 2HCl=C5H9O4N.HCl+NaCl

②味精在强碱作用下可生成谷氨酸二钠。但加谷氨酸后仍可生成谷氨酸 C5H8O4N.Na+NaOH=C5H7O4N.Na2+H2O C5H7O4N.Na2+ C5H9O4N=2 C5H8O4N.Na 特别强调的是味精在强碱作用下可生成谷氨酸二钠的同时会产生消旋生成D—L谷氨酸钠,对提取的收率及精制的透光产生较大影响,必须引起重视。 ③味精在水溶液中长时间加热,可部分脱水生成焦谷氨酸钠。 C5H8O4N.Na----C5H6O3N.Na+H2O 在加温(120℃,≥2h)酸或碱作用下仍能水解生成谷氨酸钠 C5H6O3N.Na++H2O= C5H8O4N.Na ④味精在水溶液中解离: PK1=2.19(α- PK) PK2=4.25(β- COOH) PK3=9.67(γ-COOH)谷氨酸钠的等电点=(4.25+9.67)/2=6.96 二、味精的质量标准: ①谷氨酸钠含量≥99% ②谷氨酸钠透光≥98% 20 【α】+24.8—+25.3 ③比旋光度 ⑤氯化物(以Cl-计)≤0.1% 7.5

味精的生产工艺流程简介教程文件

1味精的生产工艺流程简介 味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等4个主要工序。 1.1液化和糖化 因为大米涨价,目前大多数味精厂都使用淀粉作为原材 料。淀粉先要经过液化阶段。然后在与B一淀粉酶作用进入糖 化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并 将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来 的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶 段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤 去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙, 整个液化时间约30min。一定温度下液化后的糊精及低聚糖在 糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降 温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,PH值4.5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85℃,灭酶30min。过滤得葡萄糖液,经过压滤 机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消 毒后进入发酵罐。 1.2谷氨酸发酵发酵 谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32℃,置入 菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一

段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个 复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体 内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞 壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个 发酵过程一般要经历3个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH值及供风量都有不同的 要求。因此,在发酵过程中,必须为菌体的生长代谢提供适宜的生长环境。经过大约34小时的培养,当产酸、残糖、光密度等指标均达到一定要求时即可放罐。 1.3 谷氨酸提取与谷氨酸钠生产工艺 该过程在提取罐中进行。利用氨基酸两性的性质,谷氨酸 的等电点在为pH3.0处,谷氨酸在此酸碱度时溶解度最低,可经长时间的沉淀得到谷氨酸。粗得的官司谷氨酸经过于燥后分 装成袋保存。 1.4谷氨酸钠的精制 谷氨酸钠溶液经过活性碳脱色及离子交换柱除去C a 、 Mg 、F e 离子,即可得到高纯度的谷氨酸钠溶液。将纯净的 谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295 时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结 晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时 的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

(完整版)味精的生产工艺流程简介

1 味精的生产工艺流程简介味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等 4 个主要工序。 1 .1 液化和糖化因为大米涨价,目前大多数味精厂都使用淀粉作为原材料。淀粉先要经过液化阶段。然后在与 B 一淀粉酶作用进入糖化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙,整个液化时间约30min 。一定温度下液化后的糊精及低聚糖在糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降温至60 C进入糖化罐,加入糖化酶进行糖化。糖化温度控制在 60 C左右,PH值4 . 5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85 C,灭酶30min。过滤得葡萄糖液,经过压滤机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消毒后进入发酵罐。 1. 2 谷氨酸发酵发酵谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32 C,置入菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个发酵过程一般要经历 3 个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH 值及供风量

膜分离技术综述

膜分离技术应用综述 摘要:膜分离工程技术是一项新兴的高效分离技术,已广泛应用于化工、电子、轻工、纺织、石油、食品、医药等工业,被认为是20世纪末到21世纪中期最有发展前途的高技术之一。由于膜分离的优势,越来越多的中药研究者正致力于开发膜技术在中药工业中的应用。膜分离技术 (微滤、超滤、纳滤、反渗透膜技术)在中药领域中发挥着非常重要的作用,可应用于中药提取液的纯化、浸膏制剂的制备、口服液的生产、注射剂的制备以及热原的去除等。膜分离技术将在中药现代化进程中发挥重大作用,并对中药的规范化和标准化生产起到一定的促进作用。由于历史的原因,生物技术发展初期,绝大多数的投资是在上游过程的开发,而下游处理过程的研究投入要比上游过程少得多,因而使得下游处理过程的研究明显落后,已成为生物技术整体优化的瓶颈,严重地制约了生物技术工业的发展,因此,当务之急是要充实和强化下游处理过程的研究,以期有更多的积累和突破,使下游处理过程尽快达到和适应上游过程的技术水平和要求。 关键词:生物分离下游工程膜分离 正文: 1、常用的膜分离过程 1.1微滤 鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 具体涉及领域主要有:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。 1.2超滤 早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。1.3纳滤 纳滤的主要应用领域涉及:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保净水和污水处理及其资源化工业。1.4反渗透 由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水。 1.5其他常用膜分离过程 除了以上四种常用的膜分离过程,另外还有渗析、控制释放、膜传感器、膜法气体分离等。

年产2万吨味精生产工艺设计

目录 摘要 (1) 前言 (2) 一.工艺方法 (4) 1.1原料的预处理和淀粉水解制备 (4) 1.2谷氨酸发酵 (4) 1.3种子扩大培养与谷氨酸的提取 (5) 1.4谷氨酸制取味精及味精成品加工 (5) 二.工艺计算 (6) 2.1. 味精工厂工艺技术指标 (6) 2.1.1 主要经济技术指标 (7) 2.1.2主要原材料质量指标 (7) 2.1.3二级种子培养基 (7) 2.1.4发酵培养基 (7) 2.1.5接种量 (7) 2.2 谷氨酸发酵车间的物料衡算 (7) 2.3发酵车间的物料衡算结果 (8) 三.味精生产过程中的污水处理 (8) 3.1 污水处理工艺总流程 (9) 四.味精厂发酵车间设备一览表 (9) 结束语 (10) 参考文献 (10)

摘要 本设计是年产两万吨味精工艺设计,以薯干原料及淀粉水解成葡萄糖。利用谷氨酸生产菌进行碳代谢、生物生成谷氨酸、谷氨酸与碱作用生成谷氨酸钠,即味精主体工艺。再进行工艺计算、物料衡算、热量衡算、设备选型,并绘制了等电点罐结构图,发酵工序带控制点图,糖化工序图,工厂平面布置图。生产工艺流程设计是工艺设计的基础,所涉及面很广,是味精工厂设计的核心和重要部分。在设计中必须做到技术先进、经济合理、成熟可靠;在保证产品质量条件下,力求工艺流程简化,生产管理方便;把各个生产过程按一定顺序、要求组合起来,编制成工艺流程图等来完成工艺流程设计。因为工艺流程设计的质量直接决定车间的生产产品质量、生产能力、操作条件、安全生产、三废治理、经济效益等一系列根本性问题。 关键词:味精、发酵、工艺设计

前言 本设计是年产两万吨味精工艺设计。通过发酵法生产及等电点—离子交换法提取工艺生产谷氨酸钠。 味精即谷氨酸钠,是L-谷氨酸的单钠盐,又称味素,学名α-氨基戊二酸钠,含有一分子的结晶水,分子式为NaC5H8O4N·H2O,分子量为187.13。谷氨酸钠是一种胺基酸谷氨酸的钠盐。是一种无颜色无气味的晶体,在232℃时解体熔化。谷氨酸钠的水溶性很好,在100毫升水中可以溶解74克谷氨酸钠。味精的主要作用是增加食品的鲜味,在中国菜里用的最多,也可用于汤和调味汁。 目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A,然后进入三羧酸循环,生成α-酮戊二酸。α-酮戊二酸在谷氨酸脱氢酶的催化及有NH+4存在的条件下,生成谷氨酸。我国现有生产谷氨酸的菌种有3种:1)生物素亚适量型;2)高生物素及表面活性剂型;3)温度敏感型。现在全国味精行业 82 家生产厂所用的生物素亚适量菌种为S9114 和FM415两种,尚处生产试验阶段;生物素亚适量型菌种是谷氨酸发酵较为普遍使用的菌种,其特点是产酸稳定、提取收率高、发酵周期短、不易染菌、放罐体积小和经济效益好。生物素亚适量菌种发酵周期为 30h,产酸率为 10.5%,糖酸转化率 60%以上,提取收率达 96%。生物素亚适量菌种工艺路线是液化、糖化、发酵、提取和精制,为等电加离交的提取工艺。温度敏感型菌种是现在一种新兴的菌种,此菌种的优点是发酵产酸率高和糖酸转化率高。温度敏感型菌种的产酸率在 14%-16 %,糖酸转化率 64 %左右,提取收率达 85%,发酵时间为 36h。 当前也使用谷氨酸的连续离交技术于味精生产工艺。首先原料在高pH值下发酵,原料可用甘蔗糖蜜、甜菜糖蜜、大米、淀粉等。发酵后pH下降,然后在结晶器内生成谷氨酸结晶,经离心机和母液分离,所得谷氨酸结晶重新溶解,加入氢氧化物,脱色后在结晶器内生成MSG结晶,分离后经干燥、包装得到产品。从发酵液中分离谷氨酸的方法较多,有等电点法、离子交换法、等电点—离子交换法、连续等点—转晶法、锌盐法、钙盐法、溶剂萃取法、电渗析法等。国内味精生产厂采用的提取工艺主要是:等电点—离交法、连续等电—转晶法、

(完整版)味精的生产工艺说明

味精的生产工艺说明 一、味精及其生理作用 1. 味精的种类 按谷氨酸的含量分类:99%、95%、90%、80%四种 按外观形状分类:结晶味精、粉末味精 2.味精的生理作用和安全性 (1)参与人体代谢活动:合成氨基酸 (2)作为能源 (3)解氨毒 味精的毒性试验表明是安全的。 二、味精的生产方法 味精的生产方法:水解法、发酵法、合成法和提取法。 1、水解 原理:蛋白质原料经酸水解生成谷氨酸,利用谷氨酸盐酸盐在盐酸中的溶解度最小的性质,将谷氨酸分离提取出来,再经 中和处理制成味精。 生产上常用的蛋白质原料——面筋、大豆及玉米等。 水解中和,提取 蛋白质原料——谷氨酸————味精 2、发酵法 原理: 淀粉质原料水解生成葡萄糖,或直接以糖蜜或醋酸为 原料,利用谷氨酸生产菌生物合成谷氨酸,然后中和、提取 制得味精。 淀粉质原料—→糖液—→谷氨酸发酵—→中和—→味精

3、合成法 原理:石油裂解气丙烯氧化氨化生成丙烯腈,通过羰化、 氰氨化、水解等反应生成消旋谷氨酸,再经分割制成L-谷氨酸, 然后制成味精。 丙烯→氧化、氨化→丙烯睛→谷氨酸→味精 4、提取法 原理:以废糖蜜为原料,先将废糖蜜中的蔗糖回收,再将废液用碱法水解浓缩,提取谷氨酸,然后制得味精。 水解、浓缩中和,提取 废糖蜜————→谷氨酸————→味精 二、味精的生产工艺图 三、原料来源

谷氨酸发酵以糖蜜和淀粉为主要原料。 糖蜜:是制糖工厂的副产物,分为甘蔗糖蜜和甜菜糖蜜两大类。 淀粉:来自薯类、玉米、小麦、大米等 1、淀粉的预处理 (1)淀粉的水解 原料→粉碎→加水→液化→糖化→淀粉水解糖 (2)淀粉的液化 在 -淀粉酶的作用将淀粉水解生成糊精和低聚糖。 (3)淀粉的糖化 在糖化酶(如曲霉菌糖化剂)的作用下将糊精和低聚糖水解成葡萄糖。 喷射液化器出口温度控制在100-105℃,层流罐温度维持在95-100 ℃,液化时间约1h,然后进行高温灭酶。淀粉浆液化后,通过冷却器降温至60 ℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60 ℃左右,pH值4.0-4.4,糖化时间48h.糖化结束后,将糖化罐加热至80-85 ℃,灭酶30min.过滤得葡萄糖液。

膜分离技术的应用现状及发展前景

膜分离技术的应用现状及发 展前景 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

膜分离技术的应用现状及发展前景 摘要:膜分离技术( Membrane Separation Technologies)是近十几年发展起来的一种高新技术,随着膜设备和技术的不断发展和成熟,其在各行业中有着广泛的应用。本文介绍了膜分离技术的特性,阐述了膜分离技术在食品工业、水处理、生物技术、医药工业和医疗设备方面的应用,并展望膜分离技术应用领域的发展前景,分析膜分离技术在膜材料、新的膜过程和膜通量等方面的发展趋势,同时指出膜分离技术将在人类社会的发展史上起到不可替代的作用。 关键词:膜分离技术;膜生物反应器;选择透过性膜;膜材料; 前言: 膜分离技术是指用天然或人工合成的具有选择透过性膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的边缘学科高新技术[1]。由于膜分离技术具有节能、高效、简单、造价低、无相变、可在常温下连续操作等优点,而且特别适合热敏性物质的处理的特点,其应用已渗透到人们生活和生产的各个方面,现已被广泛应用于化工、环保、生物工程、医药和保健、食品和生化工程等行业[2]。虽然膜分离技术的应用在许多方面离产业化要求还有很长的距离,但是随着新型膜材料的不断开发、高效的强化膜过程分离技术研究的不断深入, 膜分离技术应将得到更加广泛的应用,其在未来是世界各国研究的热点,它将在各个领域发挥更引人注目的作用。 现本文对膜技术的特点、类型及其在各方面的应用现状进行综述,并且提出了膜分离技术的发展前景。 1 膜分离技术的特点 膜分离技术作为一种新型的分离技术, 具有以下特点[3]: 1.1 在常温下进行,特别适用于热敏性物质的分离、分级、提纯和浓缩,且可 以同步进行能较好地保持产品原有的色、香、味和营养成分; 1.2 分离过程中不发生相变,挥发性物质损失少,节约能源; 1.3 具有冷杀菌作用,保存期长,无二次污染; 1.4 选择性好,应用范围广,但要选择相应的膜类型; 1.5 设备简单,易于操作,可连续进行,效率高。 2 膜分离技术的类型

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

味精的生产工艺

味精的生产工艺 【摘要】本文主要介绍了味精的发现、谷氨酸的生物合成以及由谷氨酸制得味精的工艺流程。谷氨酸与适量的碱进行中和反应,生成谷氨酸一钠,其溶液经过脱色、除铁、除去部分杂质,最后通过减压浓缩、结晶及分离得到谷氨酸钠。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。 【关键字】味精、谷氨酸、发酵、氨基酸 内蒙古阜丰生物科技有限公司是世界第一大谷氨酸生产商——中国阜丰集团的核心企业。成立于2006年3月,坐落于呼和浩特经济技术开发区金川南区。阜丰集团有限公司是一家在香港主板上市的国际化生物制品公司。主要致力于生物发酵产品的生产、经营和研发,是全球第三大黄原胶生产商。公司目前下辖谷氨酸、味精、淀粉、葡萄糖、复混肥、热电、黄原胶、新型建材厂等多个分厂。主要产品及年产量为谷氨酸20万吨,味精10万吨,淀粉80万吨,结晶葡萄糖15万吨,复混肥30万吨,黄原胶2万吨。主导产品谷氨酸、味精、黄原胶销往全国二十多个省市,并出口到世界四十多个国家和地区。 1.味精简介 味精,又名“味之素”,学名“谷氨酸钠”。成品为白色柱状结晶体或结晶性粉末,是目前国内外广泛使用的增鲜调味品之一。其主要成分为谷氨酸和食盐。我们每天吃的食盐用水冲淡400倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠盐,用于水稀释3000倍,仍能感觉到鲜味,因而得名“味精”。 2.味精的发现 1908年的一天,日本东京大学教授Ikeda做完一天的实验后,回到家中。妻子端上做好的晚饭,早已饥肠辘辘的教授吃得特别香,尤其是汤,尽管汤里只有几片黄瓜和海带,却异常鲜美。黄瓜绝不会这么鲜美,教授心想,这个奥妙一定出自海带。于是教授决定揭示其中的秘密。通过对海带中含有的化学物质提取研究后,Ikeda终于发现海带里含有一种叫“谷氨酸钠”的物质。它非常鲜美,放进汤里,能使汤的味道更佳。池田菊苗教授给它取了个名字,叫“味之素”。从此开始了工业化生产氨基酸的历史。在此后的近50年中,谷氨酸的生产都是以大豆或面筋蛋白为原料,采用酸水解后分离提取的方法。1957年日本科学家Kinoshita等人发现,在培养某些微生物,如谷氨酸棒杆菌(Corynbacterium glutamicam)时会产生谷氨酸的积累,从此揭开了用微生物发酵方法生产氨基酸

膜分离技术的应用特点

膜是具有选择性分离功能的材料。利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统的过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。 膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等。交叉流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1μm,能对大直径的菌体、悬浮固体等进行分离。故微滤膜作为一般料液的澄清、预过滤、空气除菌。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300 000,能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离。因此超滤膜广泛应用于料液的澄清、大分子有机物的分离纯化、除热源等方面。 对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60%~90%,相应截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。 反渗透的截留对象是所有的离子,仅让水透过膜,对NaCl的载留率在98%以上,出水为无离子水。反渗透法能够去除可溶性的金属盐、有机物、细菌、胶体粒水、发热物质,也即能截留所有的离子,在生产纯净水、软化水、无离子水、产品浓缩、废水处理方面反渗透膜已经应用广泛。 由于膜分离过程是一种纯物理过程,能够广泛应用于发酵、制药、化工、食品、饮料、水处理工艺过程及环保等领域,并体现了以下特点:分子级别的分离,精密高效,滤液质量好,是普通过滤分离手段难以比拟的;物理过程,无相变,无化学反应;系统惟一的能源耗是电力,能耗低;系统全封闭运行,实现清洁化生产;系统体积小,操作简便安全,可实现自动化控制,扩展性好。 随着膜技术的不断发展,可以实现现有系统的软件升级,及时优化工艺操作条件,提高生产效益。 针对不同的料液及工艺处理要求,选择合适的膜工艺,对料液进行有效的分离、过滤澄清、浓缩,降低能耗、提高产品的质量和收率、减少环境污染,从而降低生产成本,促进效益。

膜分离技术及其应用领域分析

膜分离技术及其应用领域分析 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。 一、膜分离技术原理及特点 膜分离技术以选择性透过膜为分离介质,如图1所示,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。膜分离技术以其低能耗、高效率被认为是理想的分离技术之一。 图1膜分离技术原理 利用膜分离技术进行分离所具有的特点包括:1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。 基于膜分离技术所具有上述特点,是现代生物化工分离技术中一种效率较高的分离手段,完全可以取代传统的过滤、吸附、蒸发、冷凝等分离技术,所以膜分离技术在生物化工分离工程中起着很大的作用。 二、膜分离技术种类分析 按照膜孔径和成膜材料分类,常用的膜分离技术主要有微滤、超滤、纳滤、反渗透以及气体分离等。各种膜过程具有不同的分离机理,可适用于不同的对象和要求。按分离原理和按被分离物质的大小区分的分离膜种类,从下表可以看出,几乎所有的分离膜技术均可应用于任何分离、提纯和浓缩领域。反渗透和纳滤作为主要的水及其它液体分离膜之一,在分离膜领域内占重要地位。

味精的生产工艺

味精的生产工艺Prepared on 21 November 2021

味精的生产工艺 一、味精的物理、化学性质: 1、物理性质: ①商品名称:味精、味素、谷氨酸钠,化学名称:L—α-氨基戊二 酸一钠水化物,英文缩写:MSG ②.相对分子量:187.13. ③密度:粒子的相对密度为1.635,视相对密度为0.80—0.83 ④旋光性及比旋光度:因谷氨酸钠分子结构含有不对称碳原子,因 此具有旋光性,分为L型、D型、D—L型三种。当L谷氨酸钠和D 谷氨酸钠各占50%时,发生消旋,即为D—L谷氨酸钠。在上述三种光学异构体中,只有L—谷氨酸钠具有鲜味。 L—谷氨酸钠的 比旋光度为【α】20D=+24.8—+25.3(2.5mol/l.HCl) ⑤味精易溶于水,不溶于乙醚、丙酮等有机溶剂,难溶于纯乙 醇,味精在水中的溶解度:65℃、64.42g/100ml溶液,70℃、 66.38 g/100ml溶液,80℃、71.06g/100ml. ⑥PH6.8—7.2(10%水溶液) ⑦全氮:7.48% ⑧熔点:195℃(在125℃以上易失去结晶水) 2、味精的化学性质: ①味精在盐酸的作用下生成谷氨酸或谷氨酸盐酸盐。 C5H8O4N.Na+ HCl=C5H9O4N+NaCl C5H8O4N.Na+ 2HCl=C5H9O4N.HCl+NaCl

②味精在强碱作用下可生成谷氨酸二钠。但加谷氨酸后仍可生成谷 氨酸 C5H8O4N.Na+NaOH=C5H7O4N.Na2+H2O C5H7O4N.Na2+ C5H9O4N=2 C5H8O4N.Na 特别强调的是味精在强碱作用下可生成谷氨酸二钠的同时会产 生消旋生成D—L谷氨酸钠,对提取的收率及精制的透光产生较大影响,必须引起重视。 ③味精在水溶液中长时间加热,可部分脱水生成焦谷氨酸钠。 C5H8O4N.Na----C5H6O3N.Na+H2O 在加温(120℃,≥2h)酸或碱作用下仍能水解生成谷氨酸钠 C5H6O3N.Na++H2O= C5H8O4N.Na ④味精在水溶液中解离: PK1=2.19(α- PK) PK2=4.25(β- COOH) PK3=9.67(γ-COOH) 谷氨酸钠的等电点=(4.25+9.67)/2=6.96 二、味精的质量标准: ①谷氨酸钠含量≥99% ②谷氨酸钠透光≥98% ③比旋光度【α】20 +24.8—+25.3 ⑤氯化物(以Cl-计)≤0.1% ⑥PH 6.7—7.5 ⑦干燥失重≤0.5%

膜分离技术应用现状与展望_程淑英

膜分离技术应用现状与展望 程淑英 (北京化工大学,北京100029) 龚莉莉 (中国昊华化工(集团)公司,北京100723) 摘 要 介绍了膜分离技术的发展概况、应用现状,展望了它的发展趋势和应用前景。 关键词 膜分离 发展趋势 应用现状 前景 Presen t Situa tion and Foreca st of M em brane Separa tion Technology Cheng S huy ing (Beijing Chem ical T echno logy U niversity,Beijing100029) Gong L ili (Ch ina H aohua Chem ical Industry Group Co rpo rati on,Beijing100723) Abstract T he general situati on and its app licati on of m em b rane separati on techno logy in Ch ina are in troduced in th is pap er.T he develop ing trend and its app licati on p ro spect are also m ade. Key words m em b rane sep arati on,develop ing trend,app licati on situati on,p ro spect 膜分离是指通过特定的膜的渗透作用,借助于外界能量或化学位差的推动,对两组分或多组分混合的气体或液体进行分离、分级、提纯和富集。膜技术作为新的分离净化和浓缩技术,过程中大多无相变化,常温下操作,有高效、节能、工艺简便、投资少、污染小等优点,特别对于处理热敏物质领域如食品、药品和生物工程产品,显示出极大优越性,与传统分离操作(如蒸发、萃取或离子交换等)相比较,不仅可以避免组分受热变性或混入杂质,通常还有能耗低和效率高的特点,因而具有显著的经济效益,故其发展相当迅速,应用也越来越广泛(见表1)。在国际膜会议上曾将“在21世纪的多数工业中膜过程所扮演的战略角色”列为专题,进行深入讨论,并认为它是20世纪末到21世纪中期最有发展前途的高技术之一。 膜分离法按其分离对象可分为气体(蒸汽)分离和液体分离等。按分离方法又可分为反渗透法(RO)、微滤法(M F)、超滤法(U F)、透析(D)、电渗析法(ED)、气体分离(GS)和渗透蒸发(PV)以及与其它过程相结合的分离过程膜蒸馏和膜萃取(见表2)。就膜本身而言,按膜的材料,又可分为有机膜(或高分子膜)及无机膜;按膜的结构,又可分为对称膜 收稿日期:1999201213和不对称膜。 表1 膜分离的工业应用 应用领域应用举例 金属工艺金属回收,富氧燃烧 纺织及制革工业药剂回收 造纸工业代替蒸馏,纤维及药剂回收 食品及生化工业净化,浓缩,消毒,代替蒸馏,副产品回收 化工及石化工业有机物分离、药品制备及气体分离和富集,副产 品回收、化工产品制备 医药及保健人造器官,血液分离,消毒,水净化 水处理海水苦咸水淡化,超纯水制备,电厂锅炉水净 化,油田回注水处理 国防工业淡水供应,战地受污染水净化,低放射性水处理 环境保护活水处理、废气处理 对于膜分离方法的总体性能而言,过程设计及化学工程方面是很重要的,但是关键部分仍是膜本身。 1 国内外膜分离技术发展概况及现状 膜分离现象在200多年前就已经发现。世界上首家商品化生产微孔滤膜的公司创建于1927年。1960年第一张高通量、高脱盐的醋酸纤维膜的问世,真正为以反渗透、微滤、超滤和纳滤膜为主体的现代膜工业奠定了基础,并引起全球范围内的广泛关注,一些国家和地区的政府、政府间的国际合作组织、一些公司陆续斥巨资进行膜技术研究和工程化开发,到80年代初已逐步实现了商品化和产业化。 已投入工业生产应用的有代表性的膜技术装备

膜分离技术及其应用和前景

膜分离技术概论 XXX 机械工程及自动化专业机械104班1003010414 摘要:膜分离是在20世纪60年代迅速发展起的一门分离技术,膜分离主要包括分离、浓缩、纯化和精制等功能且操作简单、易于操作,因此目前膜分离技术被广泛应用于供水、制药、食品、环保、废品回收、水的淡化等工业生产过程中,产生了巨大的经济效益和社会效益。本文首先介绍了膜分离技术中的一些概念、膜的种类及其原理,然后介绍了一些常见的膜分离过程在实际生产中的应用;最后介绍了我国膜分离技术的发展概况及前景。 关键词:膜分离,技术,前景,概况 Membrane-Seperating technology Abstract: Membrane-Seperating technology is a separating technology which developed fast in the 1960s. This technology involves in various functions like separating、concrntrating、purifying and refining,what else, for it’s easily to operate it’s now widely used in the fields of water supplyment、medicine production、food、environment protecting、waste water recycling and so on, make great economical and social benefits. This passage first explain some concepts membrane technology、main theory involved and sort of it. Key words: Membrane-Seperating,technology,introduction,prospect 1膜分离技术的原理 现代膜分离技术分离的根本原理在于膜具有选择透过性。膜分离法是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法,可用于液相和气相。对于液相分离,可用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系。以下重点介绍反渗透的基本原理、微滤原理及超滤原理。

味精的生产工艺

谷氨酸钠的生产工艺 学生:张欣舒,指导教师:李永丽 内蒙古工业大学化工学院,呼和浩特,010051 摘要 味精是调味料的一种,主要成分为谷氨酸钠。味精的主要作用是增加食品的鲜味,在中国菜里用的最多,也可用于汤和调味汁。中国自1965年以来已全部采用糖质或淀粉原料生产谷氨酸,然后经等电点结晶沉淀、离子交换或锌盐法精制等方法提取谷氨酸,再经脱色、脱铁、蒸发、结晶等工序制成谷氨酸钠结晶。现在随着工业的发展的,味精的加工规模、设备等也向着大型化发展。本文论述了味精生产的发展过程、生产设备与生产配料选择等内容。 关键词:谷氨酸;发展过程;生产工艺;生产设备;配料选择

引言 1861年,德国的一位教授从小麦的面筋当中,第一次提取出味精的组成成分谷氨酸。1908年,日本池田菊苗教授采用水提取和结晶的 方法,从海带中分离出谷氨酸,制成一种新型的调味品,并将其味道命名为umami(鲜味),即谷氨酸钠,申请了专利并起名“味之素”。日本的味之素传入中国后,引起一位名叫吴蕴初的化学工程师的兴趣,买了一瓶来研究,后来他独立发明出一种生产谷氨酸钠的方法,称之为味精。在小麦麸皮(面筋)中,谷氨酸的含量可达40%,他先用34%的盐酸加压水解面筋,得到一种黑色的水解物,经过活性炭脱色,真空浓缩,就得到白色结晶的谷氨酸。再把谷氨酸同氢氧化钠反应,加以浓缩、烘干,就得到了谷氨酸钠。他是世界上最早用水解法来生产味精的人[1]。用水解法生产味精很不经济,因为这种方法要耗用很多粮食,每生产1吨味精,至少要花费40吨的小麦。而且,在提取 谷氨酸钠时要放出许多味道不好的气体,使用的盐酸也易腐蚀机器设备,还会产生许多有害污水。因此,味精公司不得不继续进行研究工作,以便用更好的方法生产出更好的产品来[2]。1956年,日本协和发酵公司宣布,发现找到了短杆菌。谷氨酸钠的发酵法生产就此诞生。科学家们用糖、水分和尿素等配制成培养液,再用高温蒸汽灭菌法将那些杂菌统统杀死,然后把培育好的纯种短杆菌在最有利的环境下接种进去,让它们繁衍后代。短杆菌把绝大部分的糖和尿素转变为谷氨

综述:高分子膜分离技术.

高分子膜分离技术 摘要:对现有的超滤、微滤、渗透汽化及气体分离等膜技术在水处理和石油化工产业领域的研究与应用现状进行了综述,分析了各种膜产品的市场占有率及未来发展趋势.提出了利用膜分离技术改造传统产业及提高工业生产经济效益的可能途径。 关键词:膜分离;水处理;气体分离;石油化工 一、研究背景 膜分离过程作为现代材料科学、高分子物理化学以及化学工程交叉融会而形成的新型高效分离技术,近10多年以来得到了显著的技术进步和应用市场发展.膜分离技术进步的动力主要来自两个方面,现代分析技术和微细加工技术的发展使得从微观或介观尺寸上对材料加工过程进行有效控制成为现实,能够高质量地稳定生产具有特定微观结构的分离膜.另外,在工业生产过程中存在许多现有技术难于解决的技术难题,例如,对采油、炼油过程产生的大量含油污水深度处理和油田回注用水的低成本化;燃料油储存、运输过程中产生的大量有机蒸气回收利用;膜分离能够有效克服精馏过程恒沸点,降低精馏过程能耗等问题.以上技术需求极大地推动膜分离过程在石油化工领域的应用基础研究,所取得的成果为膜分离技术在石油化工领域的推广应用奠定坚实基础.通过论述膜分离技术本身特征,分析了石油开采和石油产品加工过程膜分离技术的应用研究现状,以技术经济的综合评价为基础,对膜分离技术在石油化工领域应用研究现状和巨大的市场发展潜力进行了阐述. 二、研究现状

1 膜分离技术和分离膜市场 膜分离是利用功能性分离膜作为过滤介质,实现液体或气体高度分离纯化的现代高新技术之一.和普通过滤介质相比较,分离膜具有更小的孔径和更窄的孔径分布.根据分离膜孔径从大到小的顺序,可以分为微滤(microfiltration)、超滤(ultrafiltration)、纳滤(nanofiltration)和反渗透(reverseosmosis).如图1所示,微孔滤膜孔径在1~0.01Lm左右,可以有效除去水中的大部分微粒、细菌等杂质,超滤膜孔径在几十纳米附近,能够很容易地实现蛋白质等大分子的分级、纯化,能够除去水中的病毒和热原体.纳滤膜和反渗透膜孔径更小,大约在几个埃(1∪=1×10-10m),能够从水中脱除离子,达到海水和苦咸水淡化目的.一般认为,当分离膜孔径小于0.01Lm以后,分离作用的实现,不仅仅依靠孔径大小的/筛分0效果,分子或离子渗透通过膜材料时,渗透物和分离膜间的表面相到作用逐渐占据主要地位.气体分离膜和渗透汽化膜的分离作用是依靠不同渗透组分在膜中溶解度和扩散系数不同来实现,通常可用溶解扩散机理进行定量描述.例如,使用聚乙烯醇和聚丙烯腈为原料的渗透汽化PVA/PAN复合膜,能够从乙醇水溶液中脱除微量的水生产无水乙醇,与萃取精馏、恒沸精馏相比,制取无水乙醇的能耗大约降低1/3左右。 与现存的分离过程相比,膜分离过程在液体纯化、浓缩、分离领域有其独特的优势,膜分离过程大多无相变,在常温下操作,设备和流程简单,容易实现工业放大等.近10多年以来,北美、欧洲、日本等发达国家的政府和大企业联合,投入巨资开发研究.以反渗透分离膜为例,膜材料从初期单一的醋酸纤维素非对称膜发展到表面聚合技术制成的交联芳香族聚酰胺复合膜,操作压力也扩展到高压(海水淡化)膜、中压(苦咸水淡化)膜、低压(复合)膜和超低压(复合)膜,80年代以来又开发出多种材质的纳滤膜.膜组件的形式近年来也呈现出多样化的趋势,除了传统的中

相关文档