文档库 最新最全的文档下载
当前位置:文档库 › LTCC内埋电容设计

LTCC内埋电容设计

LTCC内埋电容设计
LTCC内埋电容设计

LTCC埋置电容分析与设计

在微波电路中,无源元件在整个电路系统中占有很大的比例,如果这些元件与有源电路都安装或者制作在微波电路基板的表面,那就大大增加了基板的面积,同时也增加了制作成本。而且由于是与有源电路制作在同一层,对整个电路性能的影响也比较大,目前技术发展的方向是尽可能多的把无源元件嵌入到基板内部,而LTCC技术采用内埋置的方法,将电容电感等无源部分埋置在基板内部,与表面的有源期间用金属层隔离,经通孔与表面的电路相连接,大大减小了整个模块的体积,增加了可靠性,充分体现了MCM技术的优势。

5.1埋置LTCC电容元件

5.1.1埋置LTCC电容的三维结构

在MCM技术之中,电容的实现形式有多种。第一种类型是传统的平板电容,为金属—绝缘体—金属的结构,上下极板之间可以通过通孔进行连接,主要要求极板之间的电容介质具有较好的平整度,才能有准确的电容值,因此在制作较小的电容值时,准确度较低。第二种类型包括两个电容通过一个共用的金属盘级连起来。用这种形式的电容可以减少寄生参量的影响。第三种电容形式是扇形短路电容,通常用在局部精确接地和设计低通滤波器。还有一种电容就是交指电容,这种电容是在同一层金属层进行电路实现,电容值对于间隙之间的变化非常敏感。

5.1.2电容模型参数提取

电容设计中最重要的参数之一是静电电容,静电容值取决于电容介质材料的介电常数、厚度和电极面积。采用图 4.4所示的单π拓扑结构,建立如图 5.3所示的内埋置电容等效电路模型来提取参数,此等效电路优点为电路简单、参数提取容易,可减少设计所需的时间,但缺点是该模型只适用于较窄的频宽。

图5-3为内埋置电容元件的π型等效电路,其中L为等效串联电感,表示电容引出端部分感性电抗;R为等效串联电阻,表示元件的损耗;C1和C2表示平行金属板对地寄生电容。内埋电容元件中由于电容和寄生的电感形成自我谐振,限定了其作为电容功能的频率范围,其中L和C3构成该电路模型中的串联自我谐振频率ωSRF。

5.2LTCC电容模型设计

图5-5是设计的一个5层电容的模型示意图,尺寸大小为

10mm×10mm×0.564mm,总共为6层介质,另外还有5层金属极板,面积为3mm×3mm,两端输入输出采用共面线方式,线宽已经匹配50。

经过仿真,得到模型的相关参数如下图5-5(a)-(d),其中(a)是S曲线,(b)是提取的有效电容数值,(c)是幅值,(d)是Q值。从图中可以看出电容有效值在接近第一自谐振频率(2.03GHz)时急剧上升,在超过这一频率时下降为负,这是由于电容在整体已经呈现感性了。Q值是一个随频率变化的函数,在 1.25GHz处最大是84,在 2.03GHz处为零,过了之后呈现负值。

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

传输线巴伦的原理设计、制作及测试

传输线平衡器(巴伦)的原理、设计、制作及测试 一、平衡器(巴伦)的由来 平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。 巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!

二、传输线平衡器(巴伦)的简单原理 平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。

电力电容器的市场现状和发展前景

电力电容器的市场现状和发展前景 ——西安西电电力电容器有限责任公司房金兰 2007年06月14日14:26:36 市场需求现状 近年来,国内电力电容器行业的发展极其迅猛。产品的质量和数量都有了大幅度的提升,相当一部分优势企业已开始问鼎国际市场并取得了不俗的业绩。随着电力工业的快速发展、技术进步以及无功补偿、节能降损管理的加强,电力电容器制造企业遇到了前所未有的发展机遇。使电力电容器的市场迅速扩大,同时,也引发了许多领域对电力电容器的大量需求。 无功补偿:对电力系统进行无功补偿是电力电容器最主要的用途,需求量约占整个电容器市场的80%,容量达8000万kvar以上。其主要作用是提高功率因数、降低线路和输变电设备的损耗、改善受端电压质量以及提高输送功率。市场需求量与年新增发电装机容量有密切关系,过去公认的比例关系为0.7:1,即发电装机每增加1kW,需安装无功补偿电容器0.7kvar。近几年电网的发展有了很大变化,电压等级多,输送距离长,线路中为降低工频过电压而增设的并联电抗器也需要进行无功功率补偿,节能降耗和无功管理得到了加强。虽然无功补偿比率增加到多少尚无定论,但从近几年无功补偿电容器实

际安装容量来看,与新增发电装机容量大致存在1:1的关系。 谐波滤波:一方面,随着电气化铁道、冶金等非线形电力负荷的迅速增加,以及整流、变频、家用电器等电力电子设备的广泛应用,电力系统中谐波含量大幅度增加;另一方面,电力用户对电能质量的要求也不断提高。所以,电力系统对谐波滤波装置的需求逐年增加,但由于目前虽有谐波控制标准,尚无严格的谐波管理规定,近年滤波电容器增加的幅度还不是很大,年需求量大约为100万kvar。 串联电容器:在输电线路上安装串联电容器,以容抗补偿线路的感抗,可以提高输送功率、提高电网稳定性和提高线路受端电压、改善电压质量。我国近几年开始重视串联补偿的应用,在220kV和多条500kV输电线路上安装了串联电容器,发挥了预期的技术效用和经济效益。近几年按平均每年装设2套串补装置计,则需用串联电容器大约为100万kvar,但这类电容器主要还依靠进口。 直流输电用电力电容器:近年来,我国直流输电线路发展很快,天广、嵊泗、贵广Ⅰ回、三常、三广、灵宝、三沪等直流工程相继投运,贵广Ⅱ回、高岭工程正在建设中。大致每年新建一项直流工程。而一项±500kV的直流工程需要电容器800万kvar左右,包括:交流滤波和并联电容器、交流PLC电容器、换流阀阻尼和均压电容器、

滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法 作者:浙江大学王青松 关键词:整流电路,电压型变频器,纹波 摘要:电压型变频器直流环节并入电容对整流电路的输出进行滤波,理论上电容值越大,电压纹波越小,但是从空间和成本上考虑并不能如此。详细论述了三相输入和单相输入变频器滤波电容的计算方法,为电压型变频器不同功率的负载所需滤波电容的选择提供了理论依据。最后通过实验证明了该算法可行、可靠,不仅保证了产品的性能,更节约了成本。 0 引言 虽然利用整流电路可以将交流电变换成直流电,但是在三相电路中这种直流电压或电流含有频率为电源频率6倍的电压或电流纹波。此外,变频器逆变电路也将因输出和载波频率等原因而产生纹波电压或电流,并反过来影响直流电压或电流的品质。因此,为了保证逆变电路和控制电路能够得到高质量的直流电压或电流,必须对直流电压或电流进行滤波,以减少电压或电流的脉动。 直流环节是指插在直流电源和逆变电路之间的滤波电路,其结构的差异将对变换器的性能产生不同的影响:凡是采用电感式结构,其输入电流纹波较小,类似电流源性质;凡是采用电容式结构,其输入端电压纹波较小,类似电压源性质。 对电压型变频器米说,整流电路的输出为直流电压,直流中间电路则通过大电解电容对该电压进行滤波;而对于电流型变频器米说,整流电路的输出为直流电流,中间电路则通过大电感对该电流进行滤波。 l 三相变频器直流中间电路电解电容的计算 1.1 变频器及直流中间电路结构框图 变频器及直流中间电路结构图如图1所示。

1.2 三相输入及整流后的电压波形 三相输入线电压220V及整流后的电压波形如图2所示。 图2中,Ua、Ub、Uc是三相三线制的三相输入相电压;uc是电容电压,ur是整流之后未加电容时的电压。 1.3 分析过程 1.3.l 整流后电压的计算 对于三相三线制输入线电压为220V系列变频器(以下简称220V系列)来说U=220V;对于440V系列,U=440V。

电容器的发展机遇及发展方向分析

电容器的发展机遇及发展方向分析 我国是全球最大的电容器生产国和出口国,同时也是电容器的消费大国。在日前公布的电容器行业“十二五”发展规划中明确指出,“十二五”期间电容器的发展重点为:新能源配套用电容器、功率型逆变电容器、功率型变频电容器、汽车电子配套电容器。可以说,节能环保、信息技术、新能源、新材料及新能源汽车等新兴产业为电容器发展带来了新的机遇。 国内电容器企业应更具前瞻性 目前,全球电容器产能主要集中在日本、台湾地区以及中国大陆。与前两者相比,国内电容器产能虽大,但多为低端产品。因此,中国电子元件行业协会电容器分会秘书长潘大男就指出:“国内电容器企业应顺应市场变化,密切关注前瞻性行业,不断推出适应不同整机要求的产品,才能做大做强。当前电容器厂商应该关注太阳能光伏、风力发电、潮汐发电、节能灯具、电动汽车、混合动力汽车、汽车电子、地铁、高铁、直流输变电、三网合一、高清电视、机顶盒、手机电视等行业的发展。” 铝电解电容优势依然巨大 电容器约占整机电子元件用量的40%左右,而铝电解电容器占整个电容器产量的34%。铝电解电容器由于具有电压和电容量范围宽、储电量大、价格低的优势,在消费电子产品应用中占44%,主要应用于电脑、彩电、空调、照相机等家用电器及数控车床等。

随着铝电解电容器技术进步不断提升、产品结构不断丰富,近年来其在汽车电子、新能源、航天军工等领域应用广泛,主要用于制造节能灯、变频器、逆变器、不间断电源等,这会使铝电解电容器在整个电容器市场占有率有望进一步提升。高频、低阻抗、长寿命、宽温度、超小型等将是铝电解电容器的发展方向。 薄膜电容顺势而起 与铝电解电容器相比,薄膜电容器有可靠性好、性能稳定、容量大等优点,更适用于户外较为恶劣的自然环境。尤其在新能源汽车、风力发电、太阳能发电、高铁和轻轨列车及高压变频器领域,薄膜电容器凭借寿命、温度和电压上的优势成为首选。 据了解,国际风电巨头维斯塔斯等厂商就已经开始启用薄膜电容器,而丰田新能源汽车普瑞斯二代用薄膜电容器替换铝电解电容器。在国内,铝电解电容器巨头江海股份也斥资20000万元,建设10条高压薄膜电容器生产线,形成年产100万只高压大容量薄膜电容器,也是为未来新能源汽车用薄膜电容器做准备。 作为全球前五大薄膜电容器厂商,法拉电子也大力拓展变频家电和新能源市场,该公司生产的交流薄膜电容器可以应用于新能源多个领域:混合动力汽车、风电、太阳能等。但薄膜电容器体积大、价格高的缺点也对市场占有率有很大影响。为了适应新型产业的需求,高频、大容量、大电流、低阻抗、高电压、高dv/dt特性将是薄膜电容器发展方向。 薄膜电容器PK铝电解电容,未来谁执牛耳? 目前,铝电解电容器在新能源市场上的市场容量仍大于薄膜电容器,但凭借优异的性能,薄膜电容器的渗透率也在不断提升当中。未来,是薄膜电容器谁取代铝电解

如何选择和计算滤波电容--电容使用详述

如何选择和计算滤波电容?--电容使用详述 嵌入式非其他类中的 2009-05-31 17:32 阅读617 评论1 字号:大中小 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压 又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需 求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不 太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。 --------------- 这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨

2016年国内外超级电容行发展现状及未来趋势分析

2016年国内外超级电容行发展现状及未来趋势分析 一、超级电容的定义 超级电容又名电化学电容器,双电层电容器是通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 二、超级电容有哪些特点 (1)充电速度快,充电几秒-几分钟就可充满; (2)循环使用寿命长,深度充放电循环使用次数可达1-50万次,远高于充电电池的充放电使用寿命; (3)功率密度高,可以快速存储释放电荷,可达300W/KG-5000W/KG,相当于电池电量的5-10倍; (4)大电流放电能力强,能量转换效率高,循环过程能量损失小,循环效率≥90%; (5)贮存寿命长,因为充电过程没有化学反应,电极材料相对稳定; (6)低温特性好,温度范围宽-40℃~+70℃,随着温度的降低,锂电池放电性能显著下降;(7)可靠性高。 缺点:成本高,功率密度较高,能量密度低。 法拉(farad),简称“法”,符号是F 1法拉是电容存储1库仑电量时,两极板间电势差是1伏特1F=1C/1V 1库仑是1A电流在1s内输运的电量,即1C=1A·S。 1法拉=1安培·秒/伏特 一个12伏14安时的电瓶放电量=14×3600×1/12=4200法拉(F),图中一个30000F的超级电容的电量相当于7个12伏14安时的电瓶放电量,够大吧。 三、超级电容的种类 按储存电能的机理,超级电容器可分为以下2种:包括双电层电容器和赝电容器。 四、超级电容的用途 超级电容可以广泛应用于辅助峰值功率、备用电源、存储再生能量、替代电源等不同的应用场景,在工业控制、风光发电、交通工具、智能三表、电动工具、军工等领域具有非常广阔的发展前景,特别是在部分应用领域具有非常大的性能优势。 1、电子设备最早应用:例如我们电脑的内存系统、照相机的闪光灯,音响设备后备存储电源。 2、汽车工业中:插电式混合动力汽车中超级电容主要和电池相配合形成智能启停控制系统。(1)超级电容可以迅速高效地吸收电动汽车制动产生的再生动能; (2)加速和爬坡时超级电容为智能启停控制系统电机提供电能,延长了电池的使用寿命。 3、大尺寸超级电容器可用在火车和地铁的刹车制动系统上,可以节省30%的能量。 4、超级电容轻轨列车 超级电容轻轨列车是一种新型电力机车。2012年8月10日,世界第一列超级电容轻轨列车在湖南省株洲市下线。这种新型电力机车最多能运载320人,不再需要沿途架设高压线,停站30秒钟就能快速充满电。列车充电后能高速驶向相距2公里左右的另一个站点,再上下客并充电,如此周而复始。 5、全球首创超级电容储能式现代电车

LED电源输入滤波电容的选择计算方法

LED 电源输入滤波电容的选择计算方法 对于中小功率电源来说,一般采用单相或三相交流经过全桥整流后得到的脉动直流电压,输入滤波电容C in 用来平滑这个直流电压,使其脉动减小,电容的选择是比较重要的,如果过小,直流电压脉动过大,为了得到输出电压,需要过大的占空比调节范围及过高的控制闭环增益。电容过大,其充电电流脉冲宽度变窄,幅值增高,导致输入功率因数降低,EMI 增大。 在有些场合,为了提高功率因数,交流整流后采用电感电容的LC 滤波方式,设计比较复杂,不在下面的计算范围内。 一般而言,在最低输入交流电时,整流滤波后的直流电压的脉动值V PP 是最低输入交流电压峰值的20%~25%假如已知交流输入电压的变化范围为V lin(min )~V lin(max),按照下面的步骤来计算C in 的容量 1)线电压有效值: V lin(min )~V lin(max) 2)线电压峰值:2 V lin(min )~2V lin(max) 3)整流滤波后直流电压的脉动值 V PP =2 V lin(min )×(20%~25%) (单相输入) V PP =2 V lin(min )×(7%~10%) (三相输入) 4)整流滤波后的直流电压:V in V in =(2 V lin(min )- V PP )~2V lin(in) 由于保证直流电压最小值符合要求,每个周期中C in 所提供的能力W in 为 W in =F A Pin ? A 是交流输入的相数,单相为1三相为3,F 为频率, 每个半周期输入滤波电容的能量为 2(min)2(min))2()2[2 12pp lin lin V V V Cin Win --??=(] 根据上式就可以计算出需要的电容的容量。

滤波电容的选型与计算详解终审稿)

滤波电容的选型与计算 详解 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是 直接储存脉动电压来 平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流 越小滤波效果越好。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输 出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低 频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与 市电一致为50Hz; 而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千 Hz到几万Hz。当我 们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好, 它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液

的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频, 4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时 变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为 WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率. 采用电容滤波设计需要考虑参数: ESR ESL

-逆变器输出滤波器计算-

输出滤波器的计算 一、滤波器选择的部分指标 (1)逆变电源的空载损耗是逆变电源的重要指标之一。空载损耗与空载时滤波器的输入电流有关,电流越大,损耗越大,原因有以下两个方面:一方面,滤波器的输入电流越大,逆变开关器件上的电流越大,逆变器的损耗就越大;另一方面,空载时滤波器的输入电流也流过电抗器及电容器,电流增大也会使电抗器及电容器的损耗增大。所以从限制空载电流的角度来讲,空载时滤波器的输入电流不能太大。一般的,空载时滤波器的输入基波电流不能超过逆变电源的额定输出电流的30%。 设I m 表示空载时输入滤波器的输入基波电流的有效值,U 0表示输出电压基波的有效值,Wo 为基波角 频率, 则由图1可得: 00Im CU ω= (1) 有上式可知,空载时滤波器输入基波电流的大小与C 成正比。所以从限制逆变电源空载损耗的角度来讲,LC 滤波器的电容之不能太大。 (2)逆变电源对非线性负载的适应性指标 逆变电源对非线性负载的适应性是衡量逆变电源性能优劣的重要指标。非线性负载之所以会引起逆变电源输出电压波形的畸变,是因为非线性负载时一种谐波电流源,它产生的谐波电流在逆变电源输出阻抗上产生谐波压降,从而引起输出电压波形畸变。可见逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源对非线性负载适应性越好。 开环时逆变电源的输出阻抗就是LC 滤波器的输出阻抗,根据公式LC L Z 201ωω?= (2)

在L 、C 乘积恒定时,L 越小,则输出阻抗值越小。 当逆变电源采用电容电流及电压瞬时值反馈控制方案时,可以得到和开环时相同的结论。 综上说述可以得到以下两点结论: 1)在L 、C 之积恒定时,L 越小,逆变电源的输出阻抗越小,逆变电源对非线性负载的适应性越好; 2)L 越小,越不容易出现过调制,逆变电源对非线性负载的适应性越好。、 (3)在采用同步调制控制方式的逆变电源中,频率为(2ωs -ω0)的谐波是逆变器输出PWM 波中复制最高的谐波,它对输出电压的波形影响最大。输出电压中,只要频率为(2ωs -ω0)的谐波符合要求,则其他高次谐波含量均能符合要求。所以在这种情况下设计LC 滤波器是,只需考虑滤波器对(2ωs -ω0)频率谐波的衰减。 二、输出LC 滤波器的计算 2.1综述 一般说来,空载与负载相比,空载时电压中的频率(2ωs -ω0)的谐波含量是最大的,根据公式: )(*)1(1*2)2(1222200απββπωωJ N Q N b HF s ++=? (3) 式中C L R Q L //=;00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;2 2)1(/ββα?+=Q b ;)(1απJ 为1阶的Besset 函数,计算比较繁琐。 空载时,)2(00ωω?s HF 可表示为: )(*11*2)2(1 200απβπωωJ N b HF s ?=? (4) 式中:00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;βα?=1b 。 对式(4)进行分析,可得空载时)2(00ωω?s HF 的特性如下: a ,当逆变电源输入电压增大时,输出电压中的频率为 )2(0ωω?s 的谐波的谐波含量将增大。

超级电容器前景及应用

超级电容器发展现状及发展前景分析 超级电容器研究国世界分布图 超级电容器在新能源领域并不是一个陌生的名词。实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。因此,尽管研发过程困难重重,但攻克它的意义却很重大。 超级电容器的尴尬现状 超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

超级电容器“全家福” 使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显 著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国 为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。 然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获 得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金 支持,技术的进步和发展也就受到很大程度地制约。另外,超级电容器成本高、能量密度 低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。 先驱EEStor公司勇于挑战却惨遭败北 尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。一部分厂商面对超 级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个 涉足此领域并获得成功的例子。另外一部分厂商则坚信,只要超级电容器的生产成本实现 大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。美国超级电容器生产商EEStor就属于后者。 上世纪90年代,美国超级电容器生产商EEStor为改变超级电容器的市场现状,曾用 好几年的时间将大量财力物力投向如何提高超级电容能量密度的研发上,期望能通过自身

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

超级电容器展现状及前景分析

超级电容器发展现状及前景分析 一、超级电容器的概念 超级电容器是一种具有超级储电能力,可提供强大的脉冲功率的物理二次电源,它是根据电化学双电层理论研制而成的,所以又称双电层电容器。 超级电容器基本原理为:当向电极充电时,处于理想极化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。 超级电容器实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。目前,超级电容器已形成系列产品,实现电容量0.5-1000F(法),工们电压12-400V,最大放电电流400-2000A。 超级电容器的性能特点: ①.具有法拉级的超大电容量; ②.比脉冲功率比蓄电池高近十倍; ③.充放电循环寿命在十万次以上; ④.能在-40℃-70℃的环境温度中正常使用; ⑤.有超强的荷电保持能力,漏电源非常小; ⑥.充电迅速,使用便捷; ⑦.无污染,真正免维护。 二、超级电容器行业市场分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为小于5F、5F~200F、大于200F,它们由于其特点的不同,运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中;而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件;另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。这三种超级电容器在全球和国内的生产规模情况分别见表1和表2 所示。

如何选择和计算滤波电容

如何选择和计算滤波电容 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz 左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。

巴伦设计

巴伦的设计 在混频器的设计中,推挽式放大器(push-pull amplifier),巴伦被用于对称(平衡)到不对称(不平衡)电路的连接。 巴伦的设计中有一个精确的180度相移,拥有最小损耗和等同的平衡阻抗。在功率放大器中,对称性的损失会减小效率,对称端口应与地绝缘,以减小寄生振荡。 基本的巴伦构造或设计包含两条90度定向线,通过使用λ/4和λ/2提供需要的180度分离。 绕线形变压器比下述的印刷或集总元件(lumped element)巴伦更贵。在实际混频器设计中,后者应用更广泛。请注意这些集总元件和印刷巴伦大多不提供中心抽头的底线给偶模式信号(even mode signal),在混频器的设计中应考虑到该因素。 1. L-C 巴伦 该设计本质上是一个桥梁,被誉为“点阵类型”巴伦。它包含两个电容两个电感,能够提供±90°相移。巴伦的电路图如下图所示 图1 L-C 集总巴伦原理图 操作频率: 设计该电路时,请确保操作频率低于组件的自谐振频率,并将压焊块电容考虑在内。 该电路的主要应用之一为推挽式放大器的输出,它能按照我们的需要将平衡信号转化为单一的非平衡输出。通常,绕制螺纹型的巴伦的使用如下图:

图2 在推挽式放大器中使用绕线巴伦提供平衡到不平衡的转换然而,采用前述的集总巴伦,实现绕制变压器类型巴伦,特别是在芯片级实现,会非常方便。如图3所示。 图3 使用集总巴伦代替绕制变压器可实现平衡到不平衡的转换 2. 传输线巴伦 该巴伦可使用图4中的λ/4长度线或同轴电缆来实现。

(1) 1:1 同轴巴伦 图4 同轴巴伦,采用四分之一长度同轴电缆实现,1:1 阻抗转换 如果要求阻抗转换为1:4,可使用图5中所述的同轴巴伦。 (2) 1:4同轴巴伦 图5 同轴巴伦,采用四分之一长度同轴电缆实现,1:4 阻抗转换 3. 微带线巴伦 已存在一系列的印刷/微带线巴伦拓扑结构,基于PCB或MIC基板,具有价格便宜的优势。他们的下方可以做得很大,尤其是在更低的射频频段。环形电桥常用于带宽高至10-20%的微波频率。

电容器应用发展趋势

电容器应用发展趋势 电容器是电子电路中的基本元件之一,有重要而广泛的用途。按应用分类,大多数电容器常分为四种类型:交流耦合,包括旁路(通交流隔直流);去耦(滤除交流信号或滤除叠加在直流信号上的高频信号或滤除电源、基准电源和信号电路中的低频成分);有源或无源RC滤波或选频网络;模拟积分器或采样保持电路(捕获和存储电荷)。 现在高速高密度已成为电子产品的重要发展趋势之一。与传统的PCB设计相比,高速高密度PCB设计面临不少新挑战,对所使用的电容器提出很多新要求,很多传统的电容器已不能用于高速高密度PCB。本文结合高速高密度PCB的基本特点,分析了电容器在高频应用时 主要寄生参数及其影响,指出了需要纠正或放弃的一些传统认识或做法,总结了适用于高 速高密度PCB的电容器的基本特点,介绍了适用于高速高密度PCB的电容器的若干新进展。 大量的理论研究和实践都表明,高速电路必须按高频电路来设计。对高速高密度PCB中使用的电容器,基本要求是高频性能好和占用空间小。实际电容器都有寄生参数。对高速 高密度PCB中使用的电容器,寄生参数的影响尤为重要,很多考虑都是从减小寄生参数的影响出发的。 然而,研究表明:电容器在高频应用时,自谐振频率不仅与其自身的寄生电感有关, 而且还与PCB上过孔的寄生电感、电容器与其它元件(如芯片)的连接导线(包括印制导线)的寄生电感等都有关系。如果不注意到这一点,查资料或自己估算的自谐振频率可能 与实际情况相去甚远。另外,在高频应用时,集肤效应和分布参数使连接导线的电阻明显 变大,这部分电阻实际上相当于电容器等效串联电阻的一部分,应一并加以考虑。 2 适用于高速高密度PCB 的电容器的基本特点 在高速高密度PCB设计中,虽然不同的具体应用对电容器的具体要求不尽相同,但大 多要求电容器具有以下基本特点。 ? 2.1 片式化 ?片式电容器的寄生电感几乎为零,总的电感可以减小到元件本身的电感,通常只是传统电容器寄生电感的1/3~1/5,自谐振频率可达同样容量的带引线电容器的2倍(也有资 料说可达10倍)。所以,高速高密度PCB中使用的电容器,几乎都选择片式电容器。 ? 2.2 微型化 ?片式电容器的封装尺寸由1206、0805 向0603、0402、0201 等发展、主流已由0603 过渡到0402。Murata Manufacturing 公司已经生产出 01005 的微型电容器[8]。微型化不仅满足了高密度的需要,而且可以减小寄生参数和分布参数的影响。 ? 2.3 高频化 ?许多现代电子产品的速度越来越高,计算机的时钟频率提高到几百兆赫乃至千兆赫,无绳电话的频率从45MHz 提高到2400MHZ,数字无线传输的频率达到2GHZ以上。因而信号及其高次谐波引起的噪声也相应地出现在更高的频率范围,相应地对电容器的高频性能 提出越来越高的要求。Vishay Intertechnology 公司的基于硅片的表面贴装RF 电容器的 自谐振频率已达13GHZ[9]。微型化的片式微波单层瓷介电容器(SLC)的自谐振频率已达 50GHZ[10]。 2 多功能化

输入滤波电容的选择

输入滤波电容的选择 对于中小功率电源来说,一般采用单相或三相交流经过全桥整流后得到的脉动直流电压,输入滤波电容C in 用来平滑这个直流电压,使其脉动减小,电容的选择是比较重要的,如果过小,直流电压脉动过大,为了得到输出电压,需要过大的占空比调节范围及过高的控制闭环增益。电容过大,其充电电流脉冲宽度变窄,幅值增高,导致输入功率因数降低,EMI 增大。 在有些场合,为了提高功率因数,交流整流后采用电感电容的LC 滤波方式,设计比较复杂,不在下面的计算范围内。 一般而言,在最低输入交流电时,整流滤波后的直流电压的脉动值V PP 是最低输入交流电压峰值的20%~25%假如已知交流输入电压的变化范围为V lin(min )~V lin(max),按照下面的步骤来计算C in 的容量 1)线电压有效值: V lin(min )~V lin(max) 2)线电压峰值:2 V lin(min )~2V lin(max) 3)整流滤波后直流电压的脉动值 V PP =2 V lin(min )×(20%~25%) (单相输入) V PP =2 V lin(min )×(7%~10%) (三相输入) 4)整流滤波后的直流电压:V in V in =(2 V lin(min )- V PP )~2V lin(min) 由于保证直流电压最小值符合要求,每个周期中C in 所提供的能力W in 为 W in =F A Pin ? A 是交流输入的相数,单相为1三相为3,F 为频率, 每个半周期输入滤波电容的能量为 2(min)2(min))2()2[21 2pp lin lin V V V Cin Win --??=(] 根据上式就可以计算出需要的电容的容量。

巴伦设计

巴伦设计 在混频器,push-pull放大器设计中,常常用巴伦连接平衡电路和不平衡电路。巴伦设计要求有精准的180°相移,有最小的差损以及相等平衡的阻抗。在功率放大器中对称差损将降低效率,对称平衡端口必须和地之间有良好的隔离以消除寄生震荡。巴伦的基本结构包含两条90°相移线产生需要的180°相移,这就涉及到了λ/4 和λ/2。一个绕线变压器将提供一个优异的巴伦。从几KHz到超过2GHz的小型绕线变压器都可以买到。 绕线变压器相对于印刷巴伦或者集总器件巴伦要贵很多,在实际混频器设计中后两种巴伦形式也更为适合。值得注意的是大多数集总器件和印刷巴伦并没有中心引线的地这种情况在混频器设计中要考虑到。 (1)L-C巴伦 LC巴伦设计本质上是一个电桥,称为“格子形式”巴伦。电路中包含两个电容两个电感,分别产生± 90°相移。下面图1中是LC巴伦的电路示意图。 图1 LC集总器件巴伦电路原理图 在工作频率时,满足 ; ; 设计LC巴伦时要确保工作频率远远低于电容电感的自身谐振频率,并考虑贴片电容。上述电路主要用在推挽放大器的输出端,推挽功放提供平衡信号我们希望变成不平衡的信号输出。通常还用到螺旋绕线形式的巴伦,在图2中给出。 图2 用于推挽式功法输出端的绕线巴伦提供平衡不平衡转换

然而,用之前表述的集总器件巴伦实现芯片级的绕线巴伦更为方便,如图3所示。 图3 集总器件代替绕线变压器实现平衡不平衡转换 (2)传输线 传输线巴伦可以通过λ/4传输线实现或者图4中所示的同轴线实现。 (a)1:1同轴巴伦 图4 四分之一波长同轴线实现的同轴巴伦,1:1阻抗传输 如果需要阻抗变换为1:4,可以用图5中所示巴伦形式 (b)1:4同轴巴伦 图5 四分之一波长实现的同轴巴伦,实现1:4阻抗变换 (3)微带线 微带印刷巴伦有很多种形式,优势是价格低廉,可以印刷在pcb板上或者微波集成电路介质板上。另一方面微带巴伦尺寸相当大,尤其是在低频RF频段。小的耦合线常用在微波频段带宽可以达到10-20%。 最简单的印刷式巴伦是耦合线巴伦,也称作平行线巴伦,如图6所示。用中心频率的四分之一波长微带线构成,带宽可以达到一个倍频,提供足够高的微带线之间的耦合。实际中图6中的单边耦合巴伦并不常用。

相关文档