文档库 最新最全的文档下载
当前位置:文档库 › 锅炉掺烧污泥系统设计

锅炉掺烧污泥系统设计

锅炉掺烧污泥系统设计
锅炉掺烧污泥系统设计

炉排式垃圾焚烧炉中掺烧污泥项目应用

炉排式垃圾焚烧炉掺烧污泥的项目应用 张曙光宋志明牛作鹏 (徐州三原环境工程有限公司) 摘要:以炉排炉垃圾焚烧技术为基础,介绍垃圾焚烧中掺烧污泥的技术优势和难点以及实际工程应用,重点就北京高安屯垃圾焚烧厂和鲁家山焚烧厂两种掺烧污泥的进料方式进行比较说明。 关键词:柱塞泵; 垃圾焚烧;掺烧污泥;高安屯垃圾焚烧厂;鲁家山垃圾焚烧厂; 随着社会经济的高速发展和城镇化建设的加快,城镇的污水量迅速增长,污水处理厂的污泥也急剧增长。污泥中含有大量的有机物,丰富的氮、磷、重金属等物质以及病菌和病原菌等等,如不加以处理任其排放,会对环境造成严重的污染。目前污泥的处理处置方式主要有干化焚烧、厌氧消耗、堆肥、锅炉掺烧等处理方式,各有优缺点,这里我们主要讨论利用成熟的生活垃圾焚烧处理技术掺烧污泥处理。 1 垃圾焚烧处理掺烧污泥的技术优势及技术难点 污泥单独焚烧项目存在诸多问题:1)污泥焚烧炉及尾气净化和飞灰处理系统等设备昂贵,投资成本较高,2)运行成本高。污泥含水率高,热值低,必需吸收大量常规能源才能燃烧。3)建设周期长。 如果利用污水处理厂附近的电厂、水泥厂、垃圾焚烧厂等现有燃烧设备和技术就近焚烧处理污泥, 不仅可以利用垃圾焚烧发电厂完整的处理系统,实现污泥与生活垃圾的混合焚烧,而且投资少、运行成本低、见效快, 在经济效益和环境保护上均具有显著的优点。 但是含水率80%的污泥热值低,入炉后将影响炉膛内温度,同时大大增加废气量,掺烧量的多少也影响锅炉的热效率。 垃圾焚烧处理是一项成熟技术,但是污泥再进入焚烧炉后,如果和垃圾混合不好,就容易造成结渣和不易燃透,且臭味很大。污泥如何有效的掺入炉内并实现与垃圾的混合,是垃圾焚烧中掺烧污泥成功的关键和技术难点。 2垃圾焚烧处理掺烧污泥的方式 根据污泥的特性,结合炉排式焚烧炉的结构特点和运行方式,可行的掺烧方式有四种 图1 掺烧方式示意图 2.1垃圾坑加入:如图1标识1所示,将污泥倒入垃圾坑,用抓斗将污泥和垃圾混合后再投入焚烧炉进料斗。这种方式比较简单,费用较少,但是增加了垃圾坑渗滤液和淤泥的收集和处理负担,同时臭味较大。 2.2 进料斗处进入:如图1标识2所示,利用污泥柱塞泵和管道将污泥直接输送到焚

警惕电厂掺烧污泥十大政策风险

警惕电厂掺烧污泥十大政策风险 北极星电力网新闻中心 2012-8-27 14:43:43 我要投稿 所属频道: 电建火力发电关键词: 电厂锅炉煤炭 北极星火力发电网讯:目前所见电厂掺烧污泥项目的模式,按动机分类可以将大致分为4种类型: 一、“带帽保厂”型: 多为常州模式启发的早期项目;为企业生存,不惜代价,坚持少量湿泥掺烧,目标是将小火电、小热电转型为资源电厂或机组。采用这种方式的为数不少,多为小企业、小机组,如常州广源热电、合肥天源热电、连云港鑫能热电、南京协鑫热电、宁波明州热电、宁波正源电力象山、宁波中科绿色电力、宁波众茂杭州湾热电、青岛赛轮、无锡国联热电、烟台清泉热电等。在这些项目中,个别项目据说因成本高已经停运,如常州湖塘热电的印染污泥掺烧项目;有些最终还是难逃被关闭的命运,如宁波明耀热电。 二、“借名扩产”型: 上新项目、大机组(含上大关小),形成以废弃物处置为名义的大火电、大热电项目,如绍兴中环1000吨污泥掺烧、嘉兴新嘉爱斯2050吨污泥掺烧项目等。 三、“顺水推舟”型: 这类企业为数较多,多半也是因为地方政府影响的结果,“被动”地利用现有电厂锅炉,将污泥干化后焚烧;但也均争取上网电价补贴或其他优惠政策,提高利润率。这类项目多为大机组,经过深思熟虑,技术上采用干化后焚烧的路线,以减少对锅炉的影响,如宁波北仑、山东华能临沂、山东滕州新源热电等。 四、“自说自话”型: 为实现自产污泥的低成本处置,投资建设干化设施或直接掺烧湿泥,利用本系统的自备电厂进行处置,如中石化仪化、广州石化(含油污泥)、山东兖矿峄山(化工污泥)、吴江盛泽盛虹集团(印染污泥)等,但类似项目均存在将危废当普废的倾向。 电厂掺烧反映出来的涉及经济和环境政策方面的问题,则有10项: 1.电补政策是否可普遍适用? 暴利也好,非暴利也好,电补是促使电厂参与处置污泥的核心机制和原动力。 鉴于电补是中央财政支出的,它事实上形成了降低地方成本、负担“转嫁”于中央财政的效果,短期看似乎是地方环境治理取得“政绩”,从长期及全局看,这种做法对那些从事污泥处置但不能发电上网的企业是不公平的,因为他们无法得到这部分补贴,对全国的污泥处置来说某种程度上也起到了抑制作用。

电站煤粉锅炉掺烧强结渣煤的混煤结渣性能研究

第26卷第14期中国电机工程学报V ol.26 No.14 Jul. 2006 2006年7月Proceedings of the CSEE ?2006 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2006) 14-0093-05 中图分类号:TM77 文献标识码:A 学科分类号:470?40 电站煤粉锅炉掺烧强结渣煤的混煤结渣性能研究阎维平1 , 陈吟颖1 , 邢德山1,高宝桐2 , 张立岩3 (1.华北电力大学,河北省保定市071003;2.华北电力科学研究院,北京市西城区100045; 3.大唐国际发电股份有限公司下花园发电厂,河北省张家口市075300) Performances of Pulverized-coal Boilers Burning Heavy Slagging Blending Coals YAN Wei-ping1, CHEN Yin-ying1, XING De-shan1, GAO Bao-tong2, ZHANG Li-yan3 (1. North-China Electric Power University, Baoding 071003, Hebei Province, China; 2. North-China Electric Power Research Institute, Xicheng District, Beijing100045,China; 3. Xiahuyuan Power Plant of Datang International Power Generation CO.,LTD., Xiahuayuan 075300, Hebei Province, China) ABSTRACT:The slagging performance of the blended heavy slagging coals is investigated for 100MW and 200MW boilers of a power plant in North China. Based on measurement and analysis of coals characteristics and ash composition, the main slagging parameters and tendency of the coal quality index of different blending ratios are predicted with the principle of coal blending and thermal calculation of the furnace. Reasonable blending ratios are presented for two boilers. The spot experimental result shows: To avoid heavy slagging of the discharge heater surface of the furnace, the blending ratios are not less than 50% for the 410t/h boiler and it can be properly added to 80% for the 670t/h boiler. The theoretical results are in agreement with experimental results. KEY WORDS: thermal power engineering; dry ash extraction coal boiler; blended ratio; blended coal; slagging properties. 摘要:该文研究了华北某发电厂100MW、200MW燃煤机组由现烧的弱结渣煤改烧强结渣混煤的炉膛受热面结渣性能变化。在煤质与灰分成分测量与分析的基础上,根据工程上动力用煤配煤原则,并结合锅炉炉膛热力计算与2台锅炉的设计特点,分析预测了不同掺混比的混煤煤质主要结渣指标与程度,得到2台锅炉掺烧强结渣煤的合理比例。在理论分析基础上的试烧实验结果表明:在锅炉满负荷运行工况下,为避免炉膛出口受热面严重结渣,410t/h锅炉掺烧强结渣煤的比例不宜超过50%;670t/h锅炉掺烧强结渣煤的比例可适当增加到80%。实际试烧实验结果与理论预测基本吻合,该研究方法可为大型煤粉锅炉掺烧强结渣煤提供一定理论分析依据。 关键词:热能动力工程;固态排渣炉;强结渣性煤;掺烧比; 基金项目:教育部重点实验室“电站设备状态监测与控制”项目。混煤;结渣性能 0 引言 华北某发电厂100MW、200MW发电机组分别为HG-410/100-9型、HG-670/140-9型单锅筒自然循环锅炉,π型布置,四角切圆燃烧,中间仓储式热风送粉系统,原设计煤及现烧煤均为弱结渣煤。 近年来,为了降低发电成本,该电厂希望能在不改造设备的条件下,改烧、或与弱结渣煤掺烧大于50%的当地廉价、强结渣煤,因此,掺烧强结渣性煤后可能造成的锅炉炉膛出口受热面严重结渣,成为锅炉安全经济运行中的突出问题。为了确定避免锅炉炉膛严重结渣的合适掺烧比例,本文对现烧煤、拟掺烧煤的煤质及其灰分进行了比较详细的检测分析,应用合理的工程实用计算与预测方法,并结合锅炉炉膛热力计算,对2台锅炉掺烧强结渣煤的结渣指标、影响因素与合适的掺烧比例进行了比较深入的研究和预测。在理论分析的基础上,采用50%~70%的强结渣煤掺混比例进行了锅炉试烧,以验证分析结果。该研究方法与实践验证对国内电厂普遍存在的同类问题具有一定的工程参考价值。 1 锅炉炉膛结渣分析与预测方法 固态排渣煤粉锅炉炉膛的结渣程度主要取决于煤的灰熔融特性,还与灰分含量、燃烧方式、炉膛结构和运行工况等有关[1-3]。如果在锅炉上直接进行试烧实验,则除了要较长的周期及大量人力、物力耗费外,还要承担炉内严重结渣造成事故的风险。

工业煤粉锅炉技术应关注的几个问题

工业煤粉锅炉技术应关注的几个问题 1煤种适应性问题 1.1工业煤粉锅炉技术最成熟、应用最广的是德国 德国工业煤粉锅炉采用的燃料是褐煤。德国最大的褐煤产区为莱茵矿区,1960年有17个露天矿、产褐煤81.4Mt;1992年有4个露天矿,产褐煤110Mt;1995年达193Mt。 褐煤是煤化程度最浅的煤种。德国褐煤灰分低于软褐煤,其灰分在2%左右。褐煤孔隙多,反应性强,是一种化学活性好的煤种。其含氧量一般在15%~30%,且大部分以含氧官能团的形式存在(以酚羟基(-OH)为主,其次是羧基(-COOH)和羰基(=CO),甲氧基(-OCH2)较少)。其挥发分在47%左右。由于以上特点,褐煤燃烧最适宜的方式就是悬浮燃烧(沸腾床,循环流化床,煤粉燃烧,水煤浆燃烧等)。褐煤挥发分成分中,H2占28%,CH4占8.8%,CO占12%,CmHn占1%,这就使其点火较为容易。当挥发份较低时,由于工业煤粉锅炉炉膛容积较小,中心温度较低,点火较困难;又由于炉距较短,燃烬较困难。所以,必须区分不同的煤质,根据煤种的适应性决定是否采用煤粉锅炉。 1.2煤种 煤种包话褐煤、烟煤、无烟煤、硬煤、长焰煤、气煤、肥煤、焦煤、瘦煤、1/3焦煤、气肥煤、1/2中粘煤、贫瘦煤、贫煤、不粘煤、弱粘煤、自然焦、风化煤。影响煤粉燃烧的煤质内容主要是热值、挥发份、水份、灰份、硫份及其工艺性内容—抗碎强度、结渣性、可磨性、灰渣融性等。如此众多的煤种,煤质千差万别,除褐煤、长焰煤外,其余煤种的适应性尚待试验。 1.3神府煤质 神府煤质其干基挥发分38%左右、低位发热值6000-6300大卡/公斤,灰分<10%。 国家煤炭总院北京煤化工研究院基于神府煤(长焰煤)采用德国技术研发的工业煤粉锅炉技术,显然煤种是适宜的。当前国内山东泰山锅炉、临沂华源锅炉、山西忻州蓝天锅炉、吉林长春合心锅炉、江苏无锡中正锅及山西太原瑞泽锅炉,近四、五年来研制运行的工业煤粉锅炉基本都是基于引进国家煤炭总院北京煤化工研究分院(现已更名为“节能工程技术研究院”)的技术,其煤粉煤质基本均为褐煤、长焰煤。 1.4大同经验 国家煤炭总院北京煤化工研究院将大同做为工业煤粉锅炉示范基地,从2007年起陆续安装运行了18台工业煤粉锅炉(其中部分为山西忻州蓝天锅炉生产),燃烧系统按照高挥发分烟煤设计(如优质褐煤—产地内蒙、长焰煤—产地陕西神府东盛),绝大部分原煤需从陕西、内蒙调运。 曾经想用大同本地煤制煤粉使用,对大同多个煤矿采样试验(每次20吨送京加工),但都遇到点火困难问题与锅炉运行状态不稳定问题,最终燃料本地化的努力不得不放弃。 此外,当煤粉中水分大于5%时,煤仓易结块,板结,不易下粉。煤质变化,灰融点降低时,若燃烧组织设计不合理,炉内易结焦,排灰(渣)困难。 1.5“不能一刀切”是推广应用工业煤粉锅炉必须遵守的原则 山西省是我国产煤大省,各地煤质差别很大。并不是所有的煤质都适用于煤粉锅炉燃烧。现有工业煤粉锅炉更不可能什么煤质都能烧。所以,应根据用户的煤质经试验后确实适应工业

循环流化床锅炉(污泥处理)特点简介

循环流化床锅炉(淤泥处理)特点简介 一、污泥处理方式及设备简介 目前在工业、生活废物中存在的淤泥主要有城市污泥、造纸污泥、制革污泥。而目前处理这些污泥的几种主要方式一般采用填埋、堆放、焚烧等。 填埋在污泥处置的各种方法中简便易行,但是各国并不对这种方法看好。因为人们逐渐考虑到填埋要占用大量的土地和花费大量的运输费用。而且填埋场周围的环境也会恶化,遭受渗沥水、臭气的困挠。另外,适合填埋的土地逐年减少。堆放也同样有占用大量土地、场所,还有臭气随风飘散,持久污染。 焚烧工艺的应用前景则越来越被看好,这种技术在目前为止是处理污泥的最 好方法之一。第一,焚烧可以大量减少污泥的体积,相对于机械脱水的污泥来说,最终的焚烧产物体积只相当于最初产物的10%。第二,焚烧也可以杀死一切病原体,一切有机物在燃烧过程中都会最大程度的被分解,病原体和细菌也不例外。通过高温处理,在燃烧残渣内几乎没有病原体存在。此外,焚烧还可以解决污泥的恶臭问题。第三,经过脱水后的污泥的热值相当于低质煤的水平,因此可以掺合其它燃料进行燃烧。这样可以在一定程度上减轻污泥焚烧的费用。 而由普通焚烧炉发展而成的循环流化床锅炉还具有其本身独特的优点:燃料适应性广,燃料处理系统简单、灰渣易利用,空气过量系数较少,易于实现对有害气体SO2和NOX等的控制,还可获得较高的燃烧效率等等优点,采用循环流化床掺烧污泥具有可行性。 循环流化床锅炉是在炉内铺设一定厚度、一定粒度范围的炉渣,通过底部布风板进入一定压力的空气,将渣粒吹起、翻腾、浮动。流化床内气—固混合强烈,传热传质速率高,单位面积处理能力大,具有极好的着火条件。循环流化床锅炉掺烧污泥的方法为:含水率为25%~90%的污泥经过压滤后成干化污泥饼,然后利用污泥输送装置,将污泥在循环流化床锅炉的炉膛上部或中上部负压区送入循环流化床锅炉炉膛内,与灼热的渣粒迅速处于完全混合状态,污泥受到加热、干燥,有利于完全燃烧;同时将残留在污泥内的有害微生物、有害病菌以及污泥的异味在850℃~980℃的高温区,经过2~6秒高温分解,被彻底消除。 二、循环流化床锅炉(淤泥处理)的主要特点 1、主要技术参数

公司污泥干化项目供热及掺烧可行性研究报告(20140312)

公司污泥干化供热及掺烧项目可行性研究报告 江苏国信扬州发电有限责任公司 2014年3月10日

目录 1 概述 (2) 1.1项目概况 (2) 1.2建设的必要性 (3) 1.3编制依据 (3) 2 污泥干化项目供热技术论证 (4) 3 公司锅炉污泥掺烧技术论证 (4) 3.1污泥成份 (4) 3.2 干化污泥的燃烧特点 (5) 3.3污泥的堆放、加仓及掺烧方式 (5) 3.4污泥掺烧环保方面的影响 (5) 4公司污泥干化项目投资估算及效益分析 (6) 4.1投资估算 (6) 4.2投资效益分析 (7) 5 结论与建议 (9) 5.1 结论 (9) 5.2 建议 (9)

1概述 1.1项目概况 江苏国信扬州发电有限责任公司位于扬州市开发区八里镇的长江边,占地面积1700亩,水陆交通十分便利。公司一期工程安装2台63万千瓦燃煤发电机组,是利用世界银行贷款建设的国家“九五”重点建设项目。工程由华东电力设计院设计,江苏电建三公司主体施工,于1996年3月28日正式开工,到1999年6月20日,2台机组全面建成提前投产。工程总投资74.4亿元人民币。一期项目两台机组是华东电网和江苏电网的主力发电机组,其主要设备均从国外引进。二期工程建设2台63万千瓦超临界燃煤机组,项目建议书于2004年7月21日获国务院常务办公议审查通过,2005年3月30日获国家发展与改革委员会核准。工程动态总投资47.3亿元。工程由华东电力设计院总体设计,江苏电建一公司主体施工。工程于2007年1月26日全面建成投产,脱硫系统同步建设同时投用。三期工程拟建设两台100万千瓦级超超临界燃煤机组,项目可行性研究报告基本完成,报审工作正在积极向前推进。 扬州市洁源排水有限公司(以下简称洁源公司)注册成立于1998年9月,是市城建国有资产控股(集团)有限责任公司下属的全资子公司,独立法人,注册资金6390万元,总资产近13.86亿元,是一个管理体系完善、发展态势良好的中型污水处理环保企业。经过十年多的建设和经营,洁源公司目前拥有汤汪和六圩两座现代化污水处理厂、污水中途提升泵站35座,污水处理规模由最初的10万吨/日增长至33万吨/日,管网长度由2006年的200多公里增长至400多公里,服务人口由最初的35万人增长至167万人。管网覆盖范围东至杭集镇、北洲功能区,南至瓜洲镇,西至新城西区,北至江阳工业园,服务面积达276平方公里,在扬州市开创并建立了市区污水管网全覆盖,部分区域的污水管网现已延伸至周边乡镇及工业园区的污水处理格局。目前,汤汪和六圩两座污水处理厂运行质态良好,日均处理污水约28万吨,出水水质综合合格率98%以上,达标排放,年削减COD排放量逾万吨,处理后的尾水排入施桥船闸下游入长江,产生的污泥焚烧发电处理。 为解决扬州市城市污水处理厂污泥干化项目及最终产物污泥处置的问题,本项目拟与扬州洁源共同合作,利用公司现有供热能力对污泥进行干化后,送回锅

火力发电厂污泥掺烧技术应用

火力发电厂污泥掺烧技术应用! [摘要]利用火力发电厂掺烧的方式处置城市污泥是目前公认最具前景的途径。为了考察掺烧污泥时锅炉的燃烧稳定性,本文以 2 台 300 MW 容量等级、亚临界蒸汽参数、四角切圆燃烧方式的煤粉炉为试验对象,进行污泥掺烧试验,分别在不同负荷和不同掺烧比例的条件下,对比了炉膛温度、锅炉效率和 NOx 质量浓度的变化。试验结果显示:随着掺烧污泥比例的增加,炉膛温度下降,NOx 质量浓度有所增加;在 10%的掺烧比例范围内,锅炉效率无明显变化。 本文研究结果可为电厂污泥掺烧技术的发展提供借鉴。 随着我国城镇化的发展,各城市的污泥存量及增量都在急剧增加。据统计,2017 年我国污水处理厂产生的污泥量为 4 000 万 t,预计在 2020 年突破6 000 万 t。国家在近十年相继出台了污泥处置的相关文件,“十三五”规划要求城市污泥处理率达到90%。城市污泥处理处置市场潜力巨大。由于成分复杂及高含水率的特性,污泥的处置成本高,且易造成二次污染。而通过火力发电厂掺烧的方式处置污泥,即可利用电厂已有的烟气处理设备避免二次污染,也能实现污泥的资源化利用,是我国提倡的污泥处置方向。由于污泥热值低,含水率高,掺烧时锅炉的燃烧稳定性是电厂所面对的最直接问题。本文即以燃烧稳定性为重点,对 2 台 300 MW 机组掺烧城市污泥进行试验研究,同时关注污染物排放值和锅炉效率的变化情况,为电厂污泥掺烧技术的发展提供经验数据。 1 试验概况 1.1 试验设备 本文 2 台试验机组均为亚临界参数自然循环汽包炉,四角切圆燃烧方式,配备 5 套正压直吹式制粉系统,分别对应 ABCDE 共 5 层燃烧器。试验设备主要参数见表 1,污泥及煤质特性见表 2。为保证燃烧的稳定性,本文所掺烧的污泥均为含水率在30%左右的脱水干化污泥。

污泥电厂锅炉掺烧的成本解析

2011年5 月笔者曾写过一篇题为《电厂锅炉掺烧废弃物:中国环保业界之癌》的文章。将近一年过去了,又见更多的掺烧项目上马投产,掺烧之势似乎已不可阻挡。这种“技术”之所以流行,其中一个最主要的原因是它“便宜” 。对此,至今似乎还没有人质疑。 本文和接下来的几篇将分析几个不同类型的电厂锅炉掺烧实例。通过实例,我们不难发现,所谓电厂掺烧“便宜”的说法恐怕就不再成立了。 一、计算依据 隋树波、杨全业发表在《山东电力技术》2010年第6 期上的文章“污泥干化焚烧系统在燃煤电站锅炉应用” (以下简称《隋文》)。该文详细描述了山东华能临沂发电有限公司利用电厂循环流化床锅炉高温烟气对污泥进行干化后处置的项目实例和设计理念。 有关华能临沂污泥处置项目的介绍还来自网上: “华能临沂电厂始建于1958 年,1997年改制成立有限责任公司,2008年底划归华能集团运营管理。现有5台14万千瓦热电联产机组。 华能临沂电厂在服务地方经济发展,提供清洁能源的同时,还积极履行社会责任,承担了临沂市城区集中供热任务和临沂市以及周边县区所有污水处理厂产生污泥的处置任务。2009 年底,华能临沂电厂建成山东省内最大的污泥干化焚烧项目,利用电厂锅炉尾部烟气余热直接接触污泥进行干化,将干化后的污泥掺入原煤进入锅炉进行高温焚烧处理。彻底解决了城市污水处理厂产生污泥的排放难题” 。 据《临沂日报》期“力保碧水蓝天华能临沂发电有限公司全力确保迎淮”

专题报道,“项目规划建设3套污泥干化焚烧装置,概算总投资2890万元,日处 理湿态污泥500吨,一期工程建设两套日处理能力168吨的污泥干化焚烧装置” 另据2010-04-29报道“淄博、威海党政考察团到华能临沂发电公司考察污泥焚烧发电项目”,“自(2010年)1月24日投入运营以来,目前设备运转良好,每天处理150吨左右的污泥”。 有关经济参数,参考山东省发改委《关于华能临沂发电公司污泥干化焚烧发电上网电价的批复一一鲁价格发〔2010〕138号》和《关于华能临沂发电公司污泥干化焚烧发电上网电价的批复一一鲁价格发[2011]31号》o 二、计算条件和取值华能临沂电厂锅炉为SG —435/13.7—M765型超高压自然循环锅炉,配套135 MW 发电机组。查该类型锅炉的蒸汽参数一般为13.7 MPa 540度,主蒸汽流量440~490 t/h,再热蒸汽流量361~430 t/h,再热蒸汽进/出口压力2.76?4.02/2.53?3.76 MPa.g。 已知再热蒸汽参数,可以计算得到再热循环发电的蒸汽耗约 3.04kg/kW 1、脱水污泥性质 假设某种污泥的干基低位热值2757大卡/公斤。湿泥含固率按20%考虑,湿基污 泥量150吨/日。此时,湿泥的收到基构成可能为: 2、燃煤热值 670 t/h锅炉双稳燃宽调节浓淡煤粉燃烧器应用》):

电厂掺烧污泥或为暴利而来

电厂掺烧污泥或为暴利而来? 2012-05-03 14:37来源:中国环境报 为什么要透视?因为行业存在诸多乱象,需要我们擦亮双眼来识别,也需要我们用锐利的目光来发现、专业的说理来揭示真相。 透视什么?虽然环保产业是一个改善环境质量的美好行业,但不可否认,环保产业领域的问题不少,在技术、市场、竞争、使用优惠政策方面还有很多灰色地带。此外,打着环保旗号的伪环保不少,更需要我们擦亮双眼,增强识别能力。 仅以垃圾焚烧领域略举几例,比如垃圾焚烧发电享受优惠电价,为了套取优惠电价,就有运营商在运行中大量掺烧燃煤,远远超过国家关于垃圾焚烧发电项目中“掺烧燃煤比例不得超过20%”的限制性规定。一些名义上的垃圾焚烧发电厂,实际上成为“享受国家补贴的混合垃圾小火电厂”。 最近有业内人士跟产业市场编辑部交流、反映,对电厂掺烧污泥就很忧虑,他比喻电厂锅炉=焚烧炉,效仿的企业还不少,而且很多地方政府还非常支持。 类似于电厂掺烧污泥,真的能达到预期的处置污泥的功效吗?真的不会出现我们非常担心的二次污染,或是污染治理过程中的转移吗?类似这许多问题需要我们透视这些项目背后的动机、做法、环境影响。我们也将围绕这个问题推出系列“透视”文章,对电厂进行污泥处置路线进行分析。 利用电厂锅炉掺烧污泥,在全国已成燎原之势。 之所以流行,一个最主要的原因是“便宜”。然而事实真的是这样吗? 掺烧背后,隐藏着许多隐性问题,包括处理总成本、环保标准等方面,另外还有可能引发二次污染的担忧。 每吨200元利润

称为“暴利”似不为过 根据报道,山东华能某发电公司于2009年底建成了当时山东省内最大的污泥干化焚烧项目,利用电厂锅炉尾部烟气余热直接接触污泥进行干化,将干化后的污泥掺入原煤进入锅炉进行高温焚烧处理。项目规划建设3套污泥干化焚烧装置,概算总投资2890万元,日处理湿态污泥500吨,一期工程建设两套日处理能力168吨的污泥干化焚烧装置。自2010年1月24日投运以来,每天处理150吨左右的污泥。 电厂选用SG-435/13.7-M765型超高压自然循环锅炉,配套135MW发电机组。污泥干化采用的是东南大学旋流喷动干燥技术,将相当于锅炉产生烟气量的约10%引入干燥机,与污泥进行直接接触换热后,经除尘脱硫后从高烟囱排放。 通过对其热工系统完整分析后笔者发现,污泥预干化可大幅度降低入炉污泥的水分,但尽管如此,仍会导致锅炉烟气中水分的上升,以及由此造成的锅炉效率降低,在维持同等蒸发量下,燃煤的耗量上升。此外,灰渣量的提高和烟气量的加大,对锅炉设备会导致一定程度的磨损。 具体来说,锅炉作为“处置设施”处置污泥,可能会产生的“处置成本”如下:锅炉的热效率降低,单位蒸汽产量的煤耗增加;蒸汽减产,减产蒸汽部分有利润损失;蒸汽减产,吨蒸汽产能的电耗成本分摊上升;原锅炉设备按照蒸吨所计算的折旧增加;可能对锅炉产生的磨损、腐蚀等,维护成本增加;新增干泥输送(运输)、料仓或混合上料等系统的配套投资及其折旧;灰渣量提高,导致灰渣捕捉、输送等处理和运输设备的负荷增大;上述成本与损失大致可分别量化为:吨蒸汽减产量,考虑利润损失50元/吨(这一参数蒸汽的价值〉200元/吨);吨蒸汽产量的煤耗增加,以吨煤价格900元评估;其他各项损失,设增加20元/吨湿泥。 所以,总体来说,以这种方式处置污泥,其综合成本大约在240元/吨湿泥左右,其中热干化的成本不到90元,因燃煤增加所造成的成本约130元。 但项目得到了当地政府的大力支持,并实现了相应的政策配套。山东省发改委在对其污泥干化焚烧发电上网电价的批复中称:“为扶持可再生能源发电项目发展,根据国家发展改革委《可再生能源发电价格和费用分摊试行办法》(发改价格[2006]7号)的规定,电厂#5、

热电联产污泥掺烧工艺方案

热电联产污泥(20吨/日绝干量)掺烧主要工艺方案一、污泥焚烧拟采用的主要方案概述 本方案是经脱水干化、破碎后的污泥拟送入热电厂的循环流化床锅炉焚烧,污泥焚烧是把污泥作为资源看待,利用先进的锅炉高温燃烧技术,在髙温条件下氧化污泥中的有机物,使污泥完全矿化为少量灰烬的处理技术,是污泥减量化、稳定化最彻底的方式,焚烧后灰渣仅是原污泥干固体的7.5%,可大大减少运输成本。灰渣可以作为建材利用,也可以用作道路基层的回填等。以热电厂的循环流化床锅炉焚烧技术为核心的污泥处理方法在发达国家普遍采用。有毒有机物经高温彻底分解,这样不仅节约用于填埋的土地资源,有效控制二次污染,同时还可以综合利用,回收能源用于供给汽轮发电机组发电,转变为清洁能源,达到开发新能源实行循环经济的目的。 本次方案污泥干化输送及焚烧的主要流程为:污泥通过专用密封运输车运输到厂区后,先进行污泥深度脱水处理,深度脱水后含水约60%的污泥送入干污泥仓,再通过皮带输送机送至炉前污泥斗,污泥斗内污泥经污泥给料机自动送入锅炉炉膛,与炉膛内的高温物料混合,污泥经干燥、充分燃烧后从底灰从出渣口排出,飞灰随烟气流出炉膛由除尘器收集;燃煤由输煤皮带送至炉前煤斗,先经皮带称重式给煤机计量后,再经皮带给煤机送入锅炉的炉膛,与炉膛内的高温床料混合,循环燃烧。同时可向炉内投入生石灰进行炉内脱硫。污泥和燃煤共用皮带输送机,分不同时间段运输。污泥和燃煤燃烧所产生的高温烟气经炉膛(四周布置有膜式水冷壁)、过热器,经分离器分离后流至省煤器、空气预热器进行热交换,经烟气处理装置、引风机,最后经烟囱排入大气。

本方案的循环流化床锅炉烟气采用的脱氮工艺系统是锅炉低氮燃烧+SNCR 方式并预留SCR安装空间;脱硫采用如炉内喷钙+炉后石灰石—石膏法脱硫装置;脱硫采用布袋+塔后湿式除尘器除尘。处理后的烟气执行超低排放标准(即在基准氧含量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于5、35、50mg/Nm3)。 污泥掺烧采用的主要工艺流程图如图所示。 污泥掺烧采用的主要工艺流程图

污泥电厂锅炉掺烧的成本解析详细版.docx

2011年5月笔者曾写过一篇题为《电厂锅炉掺烧废弃物:中国环保业界之癌》的文章。将近一年过去了,又见更多的掺烧项目上马投产,掺烧之势似乎已不可阻挡。这种“技术”之所以流行,其中一个最主要的原因是它“便宜”。对此,至今似乎还没有人质疑。 本文和接下来的几篇将分析几个不同类型的电厂锅炉掺烧实例。通过实例,我们不难发现,所谓电厂掺烧“便宜”的说法恐怕就不再成立了。 一、计算依据 隋树波、杨全业发表在《山东电力技术》2010年第6期上的文章“污泥干化焚烧系统在燃煤电站锅炉应用”(以下简称《隋文》)。该文详细描述了山东华能临沂发电有限公司利用电厂循环流化床锅炉高温烟气对污泥进行干化后处置的项目实例和设计理念。 有关华能临沂污泥处置项目的介绍还来自网上: “华能临沂电厂始建于1958年,1997年改制成立有限责任公司,2008年底划归华能集团运营管理。现有5台14万千瓦热电联产机组。 华能临沂电厂在服务地方经济发展,提供清洁能源的同时,还积极履行社会责任,承担了临沂市城区集中供热任务和临沂市以及周边县区所有污水处理厂产生污泥的处置任务。 2009年底,华能临沂电厂建成山东省内最大的污泥干化焚烧项目,利用电厂锅炉尾部烟气余热直接接触污泥进行干化,将干化后的污泥掺入原煤进入锅炉进行高温焚烧处理。彻底解决了城市污水处理厂产生污泥的排放难题”。 据《临沂日报》20091229期“力保碧水蓝天———华能临沂发电有限公司全力确保迎淮”专题报道,“项目规划建设3套污泥干化焚烧装置,概算总投资2890万元,日处理湿态污泥500吨,一期工程建设两套日处理能力168吨的污泥干化焚烧装置”。 另据2010-04-29报道“淄博、威海党政考察团到华能临沂发电公司考察污泥焚烧发电项目”,“自(2010年)1月24日投入运营以来,目前设备运转良好,每天处理150吨左右的污泥”。有关经济参数,参考山东省发改委《关于华能临沂发电公司污泥干化焚烧发电上网电价的批复——鲁价格发〔2010〕138号》和《关于华能临沂发电公司污泥干化焚烧发电上网电价的批复——鲁价格发[2011]31号》。 二、计算条件和取值 华能临沂电厂锅炉为SG-435/13.7-M765型超高压自然循环锅炉,配套135 MW发电机组。查该类型锅炉的蒸汽参数一般为13.7 MPa、540度,主蒸汽流量440~490 t/h,再热蒸汽流量361~430 t/h,再热蒸汽进/出口压力2.76~4.02/2.53~3.76 MPa.g。 已知再热蒸汽参数,可以计算得到再热循环发电的蒸汽耗约3.04kg/kW。 1、脱水污泥性质 假设某种污泥的干基低位热值2757大卡/公斤。湿泥含固率按20%考虑,湿基污泥量150吨/日。此时,湿泥的收到基构成可能为:

锅炉煤粉、天然气混烧操作规程

锅炉煤粉、天然气混烧操作规程 一、天然气成份及特性: (一)成份 CH 4:86.22 % C 2 H 6 :7.43 % C 3 H 8 :3.37% nC 4 H 10 :1.07% iC 4 H 10 :0.68% nC 5H 12 :0.28% iC 5 H 12 :0.37% C 6 H 14 :0.38 % N 2 :0.19% 高位发热量:43.7MJ/Nm3 密度:0.8099Kg/m3(相对密度0.6724)。 (二)特性 1.易燃性和易爆性:天然气是一种火灾和爆炸危险性较大的可燃气体。天然气燃烧没有物态的变化,燃烧速度快,放出热量多,产生的火焰温度高,辐射热强。在容器或管道中,如果有天然气与空气形成的混合气体,其浓度在5%~15%爆炸极限范围内时,遇火源即发生燃烧或爆炸。 2.加热自燃性:天然气加热到一定的温度,即使不与明火接触也能自行着火。着火温度范围593℃~704℃。 3.窒息性:当大量天然气或其生成物扩散到空气或房间里,达到一定浓度,使含氧量减少,严重时可使人窒息死亡。 二、锅炉天然气联锁: (一)锅炉燃用天然气时必须将该炉上下层支路及各角天然气快关阀、点火控制柜送电,天然气联锁投入,压缩空气压力正常,冬季应保证压缩空气管路的畅通。 (二)锅炉两台送风机掉闸或MFT动作时,锅炉上下层支路速断阀及四角天然气快关阀自动关闭,各层角支路的天然气压力低于2.0kPa时,相应支路天然气速断阀和层角快关阀自动关闭;主燃气阀后母管压力低于40KPa时,主燃气阀、上下层支路天然气速断阀和层角快关阀自动关闭。 三、天然气系统投用前的检查 (一)天然气主管道及各炉分管道及法兰严密、阀门、膨胀节,无变型、无泄漏现象;

2021年工业煤粉锅炉技术应关注的几个问题

工业煤粉锅炉技术应关注的几个问题 欧阳光明(2021.03.07) 1煤种适应性问题 1.1工业煤粉锅炉技术最成熟、应用最广的是德国 德国工业煤粉锅炉采用的燃料是褐煤。德国最大的褐煤产区为莱茵矿区,1960年有17个露天矿、产褐煤81.4Mt;1992年有4个露天矿,产褐煤110Mt;1995年达193Mt。 褐煤是煤化程度最浅的煤种。德国褐煤灰分低于软褐煤,其灰分在2%左右。褐煤孔隙多,反应性强,是一种化学活性好的煤种。其含氧量一般在15%~30%,且大部分以含氧官能团的形式存在(以酚羟基(-OH)为主,其次是羧基(-COOH)和羰基(=CO),甲氧基(-OCH2)较少)。其挥发分在47%左右。由于以上特点,褐煤燃烧最适宜的方式就是悬浮燃烧(沸腾床,循环流化床,煤粉燃烧,水煤浆燃烧等)。褐煤挥发分成分中,H2占28%,CH4占8.8%,CO占12%,CmHn占1%,这就使其点火较为容易。当挥发份较低时,由于工业煤粉锅炉炉膛容积较小,中心温度较低,点火较困难;又由于炉距较短,燃烬较困难。所以,必须区分不同的煤质,根据煤种的适应性决定是否采用煤粉锅炉。 1.2 煤种 煤种包话褐煤、烟煤、无烟煤、硬煤、长焰煤、气煤、肥煤、焦煤、瘦煤、1/3焦煤、气肥煤、1/2中粘煤、贫瘦煤、贫煤、不粘煤、弱

粘煤、自然焦、风化煤。影响煤粉燃烧的煤质内容主要是热值、挥发份、水份、灰份、硫份及其工艺性内容—抗碎强度、结渣性、可磨性、灰渣融性等。如此众多的煤种,煤质千差万别,除褐煤、长焰煤外,其余煤种的适应性尚待试验。 1.3神府煤质 神府煤质其干基挥发分38%左右、低位发热值6000-6300大卡/公斤,灰分<10%。 国家煤炭总院北京煤化工研究院基于神府煤(长焰煤)采用德国技术研发的工业煤粉锅炉技术,显然煤种是适宜的。当前国内山东泰山锅炉、临沂华源锅炉、山西忻州蓝天锅炉、吉林长春合心锅炉、江苏无锡中正锅及山西太原瑞泽锅炉,近四、五年来研制运行的工业煤粉锅炉基本都是基于引进国家煤炭总院北京煤化工研究分院(现已更名为“节能工程技术研究院”)的技术,其煤粉煤质基本均为褐煤、长焰煤。 1.4大同经验 国家煤炭总院北京煤化工研究院将大同做为工业煤粉锅炉示范基地,从2007年起陆续安装运行了18台工业煤粉锅炉(其中部分为山西忻州蓝天锅炉生产),燃烧系统按照高挥发分烟煤设计(如优质褐煤—产地内蒙、长焰煤—产地陕西神府东盛),绝大部分原煤需从陕西、内蒙调运。

污泥电厂锅炉掺烧的成本解析

污泥电厂锅炉掺烧的成 本解析 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

2011年5月笔者曾写过一篇题为《电厂锅炉掺烧废弃物:中国环保业界之癌》的文章。将近一年过去了,又见更多的掺烧项目上马投产,掺烧之势似乎已不可阻挡。这种“技术”之所以流行,其中一个最主要的原因是它“便宜”。对此,至今似乎还没有人质疑。 本文和接下来的几篇将分析几个不同类型的电厂锅炉掺烧实例。通过实例,我们不难发现,所谓电厂掺烧“便宜”的说法恐怕就不再成立了。 一、计算依据 隋树波、杨全业发表在《山东电力技术》2010年第6期上的文章“污泥干化焚烧系统在燃煤电站锅炉应用”(以下简称《隋文》)。该文详细描述了山东华能临沂发电有限公司利用电厂循环流化床锅炉高温烟气对污泥进行干化后处置的项目实例和设计理念。 有关华能临沂污泥处置项目的介绍还来自网上: “华能临沂电厂始建于1958年,1997年改制成立有限责任公司,2008年底划归华能集团运营管理。现有5台14万千瓦热电联产机组。 华能临沂电厂在服务地方经济发展,提供清洁能源的同时,还积极履行社会责任,承担了临沂市城区集中供热任务和临沂市以及周边县区所有污水处理厂产生污泥的处置任务。 2009年底,华能临沂电厂建成山东省内最大的污泥干化焚烧项目,利用电厂锅炉尾部烟气余热直接接触污泥进行干化,将干化后的污泥掺入原煤进入锅炉进行高温焚烧处理。彻底解决了城市污水处理厂产生污泥的排放难题”。

据《临沂日报》期“力保碧水蓝天———华能临沂发电有限公司全力确保迎淮”专题报道,“项目规划建设3套污泥干化焚烧装置,概算总投资2890万元,日 处理湿态污泥500吨,一期工程建设两套日处理能力168吨的污泥干化焚烧装置”。 另据2010-04-29报道“淄博、威海党政考察团到华能临沂发电公司考察污泥焚 烧发电项目”,“自(2010年)1月24日投入运营以来,目前设备运转良好, 每天处理150吨左右的污泥”。 有关经济参数,参考山东省发改委《关于华能临沂发电公司污泥干化焚烧发电上网电价的批复——鲁价格发〔2010〕138号》和《关于华能临沂发电公司污泥干化焚烧发电上网电价的批复——鲁价格发[2011]31号》。 二、计算条件和取值 华能临沂电厂锅炉为SG-435/-M765型超高压自然循环锅炉,配套135 MW发电机组。查该类型锅炉的蒸汽参数一般为 MPa、540度,主蒸汽流量440~490 t/h,再热蒸汽流量361~430 t/h,再热蒸汽进/出口压力~~ 。 已知再热蒸汽参数,可以计算得到再热循环发电的蒸汽耗约kW。 1、脱水污泥性质 假设某种污泥的干基低位热值2757大卡/公斤。湿泥含固率按20%考虑,湿基污泥量150吨/日。此时,湿泥的收到基构成可能为: 2、燃煤热值 用于计算的燃煤性质如下(取自《郑州热电厂670 t/h锅炉双稳燃宽调节浓淡煤粉燃烧器应用》):

燃煤电厂污泥掺烧技术研究

燃煤电厂污泥掺烧技术研究 摘要:随着我国城市化进程的加快,城市生活污水量急剧增加。污泥作为污水处理后的附属产品,对环境影响极大,因此污泥的无害化、减量化、资源化处理迫在眉睫。燃煤电厂污泥掺烧是实现最大体积减少污泥的处置方法之一。发达国家和地区中,污泥掺烧工艺已逐渐成熟,在燃煤电厂的应用更为广泛。综述了污泥掺烧技术的现状,分析了燃煤电厂掺烧污泥造成的影响,并讨论了燃煤电厂污泥掺烧技术的未来发展方向。 关键词:燃煤电厂; 污泥; 掺烧; 焚烧设备 随着我国城市化进程的加快,生物质垃圾处理需求逐渐增加。截至2018年6月底,全国地市级城市建成城市污水处理厂累计5 222座(不含乡镇污水处理厂和工业),污水处理能力达2.28亿m3/d。典型污泥成分复杂,由各种有机相、无机相、水分以及水溶性物质构成。除此之外,还含有其他物质,如:致病菌、病毒等有害微生物;铜、锌、汞等重金属;多氯联苯、二噁英等难降解物质。如何采取有效措施,实现污泥处置“无害化、减量化、资源化”是急需解决的问题。常见的污泥处理技术有堆肥处理、海洋倾倒、填埋、农用和焚烧等。但以上几种方法存在有害物质残留、重金属污染、水体污染、土地资源浪费、运行成本高等缺点。燃煤电厂掺烧污泥处理一般是指将污泥送入锅炉与煤炭进行混烧。只要工艺选择恰当、设施设备运行良好、操作运行规范,该方法可以减少甚至不添加辅助燃料,从而实现污泥的无害化、资源化、减量化,是一种极具前途的处置方法。 1. 燃煤电厂掺烧污泥研究现状 国外较早对燃煤电厂掺烧污泥进行了研究。世界上第1台焚烧污泥的流化床锅炉在1962年建于美国华盛顿,至今仍在运行。目前,在众多污泥处理处置工程中,污泥掺烧工艺被认为是污泥处理中的最有效技术之一。 1.1 国外研究现状 污泥焚烧多段竖炉在德国首先得到应用,而后流化床炉逐渐占领了市场,大 排放量,自2012年以来,韩国政府对运行能力超约占90%以上份额。为减少CO 2 过500 MW的燃煤电厂的发电公司实施了限制性政策。此外,煤电公司已尝试使

煤粉炉煤泥掺烧存在的问题及其隐患

煤粉炉煤泥掺烧存在的问题及其隐患 【摘要】在火力发电厂锅炉煤粉锅炉掺烧煤泥还存在居多问题需要解决,这些问题严重影响锅炉的稳定燃烧和使用寿命,并且在运行期间制粉系统等方面也存在大量隐患,容易造成堵塞、结焦以及积灰严重等现象,所以粉煤锅炉掺烧煤泥应考虑多方面因素,避免掺烧后造成严重后果。 【关键词】煤粉炉;煤泥;掺烧 1.煤泥简介 1.1煤泥大致由如下几种类型产生: (1)选煤厂的浮选尾煤:这类煤泥一般是一种废弃物,其性质与洗选矸石或中煤类似。因煤质不同,浮选煤泥的品质有较大差别,根据煤泥回收工艺的不同,煤泥的物理性质差别较大。 (2)煤泥沉淀池或尾矿场,根据固体颗粒在水中自然沉淀的原理,实现固液分离而产出的煤泥。 (3)矿井排水夹带的煤泥、矸石山浇水冲刷下来的煤泥 1.2煤泥的特性 1.2.1持水性强 由于煤泥颗粒小,所以表面积增大,水分携带能力强,经过检测小于200目的微粒约占70%~90%,与原煤相比粒度相差极大。这样使得煤泥具有较高持水性,带水后类似糯米团,又细又软,晾晒几个月,表面似已干燥,但其内部含水率仍然很高。 1.2.2灰分含量高,发热量偏低 按灰分及热值的高低可以把煤泥分成三类:低灰煤泥灰分为20%~32%,热值为12.5~20MJ/kg;中灰煤泥灰分为30%~55%,热值为8.4~12.5MJ/kg;高灰煤泥灰分>55%,热值为3.5~6.3MJ/kg。 1.2.3黏性较大 由于煤泥中一般含有大量的黏土类矿物,并且含水量较高,颗粒微小,所以多数煤泥黏性较大,并且还具有一定的流动性。由于这些特性,导致了煤泥的堆放、贮存和运输都比较困难。尤其在堆存时,其形态极不稳定,遇水后易流失,风干后易飞扬。结果不但浪费了宝贵的煤炭资源,而且易造成环境污染。

相关文档
相关文档 最新文档